上海民办新华初级中学八年级数学下册第四单元《一次函数》检测(答案解析)
上海市西初级中学八年级数学下册第四单元《一次函数》检测题(答案解析)

一、选择题1.若关于x 的不等式组20210x x a ->⎧⎨-+<⎩有解,则一次函数()32y a x =-+的图象一定不经过的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限2.下列图象中,不表示y 是x 的函数的是( )A .B .C .D .3.已知点P (m ,n )在第二象限,则直线y =nx +m 图象大致是下列的( )A .B .C .D .4.若实数k 、b 满足0k b +=,且k b >,则一次函数y kx b =+的图象可能是( )A .B .C .D .5.如图,直线5y x =+和直线y ax b =+相交于点P ,根据图象可知,方程组5y x y ax b=+⎧⎨=+⎩的解是( )A .510x y =⎧⎨=⎩B .1520x y =⎧⎨=⎩C .2025x y =⎧⎨=⎩D .2530x y =⎧⎨=⎩6.甲、乙两汽车从A 城出发前往B 城,在整个行程中,汽车离开A 城的距离y 与时间t 的对应关系如图所示.下列结论错误的是( ).A .A ,B 两城相距300km B .行程中甲、乙两车的速度比为3∶5C .乙车于7:20追上甲车D .9:00时,甲、乙两车相距60km7.已知点()1,4P 在直线2y kx k =-上,则k 的值为( ) A .43B .43-C .4D .4-8.甲,乙两车分别从A , B 两地同时出发,相向而行.乙车出发2h 后休息,当两车相遇时,两车立即按原速度继续向目的地行驶.设甲车行驶的时间为x (h ), 甲,乙两车到B 地的距离分别为y 1(km ), y 2(km ), y 1, y 2关于x 的函数图象如图.下列结论:①甲车的速度是45a km /h ;②乙车休息了0.5h ;③两车相距a km 时,甲车行驶了53h .正确的是( )A .①②B .①③C .②③D .①②③9.如图,在Rt ABC △中,90ACB ∠=︒,2AC BC ==,AB 的中点为D .以C 为原点,射线CB 为x 轴的正方向,射线CA 为y 轴的正方向建立平面直角坐标系.P 是BC 上的一个动点,连接AP 、DP ,则AP DP +最小时,点P 的坐标为( ).A .2,03⎛⎫⎪⎝⎭B .2,02⎛⎫⎪⎪⎝⎭C .10,010⎛⎫⎪⎪⎝⎭D .1,010⎛⎫⎪⎝⎭10.如图,直线y kx b =+与x 轴交于点()1,0-,与y 轴交于点()0,2-,则关于x 的不等式0kx b +<的解集为( )A .1x >-B .2x >-C .1x <-D .2x <-11.在直角坐标系中,点()2,3A -、()4,3B 、()5,C a 在同一条直线上,则a 的值是( ) A .-6B .6C .6或3D .6或-612.甲、乙两人从公司去健身房,甲先步行前往,几分钟后乙乘出租车追赶,出租车的速度是甲步行速度的5倍,乙追上甲后,立刻带上甲一同前往,结果甲比预计早到4分钟,他们距公司的路程y (米)与时间x (分)间的函数关系如图所示,则下列结论中正确的个数为( )①甲步行的速度为100米/分;②乙比甲晚出发7分钟;③公司距离健身房1500米;④乙追上甲时距健身房500米.A .1个B .2个C .3个D .4个二、填空题13.如图,已知直线,点,过点作轴的垂线交直线于点,以为边,向右侧作正方形,延长交直线于点;以为边,向右侧作正方形,延长交直线于点;……;按照这个规律进行下去,点的横坐标为______.(结果用含正整数的代数式表示)14.已知一次函数y kx b =+与y mx n =+的图象如图所示.(1)写出关于x ,y 的方程组y kx by mx n =+⎧⎨=+⎩的解为________.(2)若0kx b mx n <+<+,写出x 的取值范围________.15.A 、B 两地相距480千米,甲车从A 地匀速前往B 地,乙车同时从B 地沿同一公路匀速前往A 地.甲车出发30分钟时发现自己有物件落在A 地,于是立即掉头以原速返回取件,取件后立即掉头以原速继续匀速前行(掉头和取件时间忽略不计),两车之间相距的路程(km)y 与甲车出发时间(h)t 之间的函数关系如图所示.则当甲车到达B 地时,乙车离A 地的路程为______千米.16.已知直线2y ax a =-+(a 为常数)不经过第四象限,则a 的取值范围是________. 17.甲,乙两人都要从A 仓库运送货物到B 仓库.甲从A 仓库出发匀速行驶,1小时后乙也从A 仓库出发沿同一线路匀速行驶,当乙先到达B 仓库送完货物后(不考虑货物交接的时间)立刻以原速一半的速度返回并在途中与甲第二次相遇.设甲行驶的时间为()h x ,甲和乙之间的距离为()km y 与甲出发的时间x 的函数关系式如图所示.则甲与乙第二次相遇时到A 仓库的距离为______km .18.如图,在平面直角坐标系中,(0,2)A ,(4,2)B ,点P 是x 轴上任意一点,当PA PB +有最小值时,P 点的坐标为________.19.函数51y x=-的定义域是______. 20.已知一次函数y kx b =+的图象经过点(4,3)A 且与直线2y x =平行,则此函数的表达式为____.三、解答题21.如图,在平面直角坐标系中,已知(,0)A a ,(,0)B b ,其中a ,b 满足|1|30a b ++-=.(1)填空:a =______,b =______.(2)如果在第三象限内有一点(2,)M m -,请用含m 的式子表示ABM 的面积.(3)在(2)条件下,当52m =-时,在y 轴上有一点P ,使得BMP 的面积与ABM 的面积相等,请求出点P 的坐标.22.已知一次函数3y kx =+与x 轴交于点()2,0A ,与y 轴交于点B .(1)求一次函数的表达式及点B 的坐标; (2)画出函数3y kx =+的图象;(3)过点B 作直线BP 与x 轴交于点P ,且2OP OA =,求ABP △的面积. 23.如图,在平面直角坐标系中,过点()0,6C 的直线AC 与直线OA 相交于点()4,2A .(1)求直线AC 和OA 的函数解析式;(2)动点M 在直线AO 上运动,是否存在点M ,使OMC 的面积是OAC 的面积的14?若存在,求出此时点M 的坐标;若不存在,请说明理由.24.己知,如图,在平面直角坐标系中,直线y kx b =+经过点(3-,4-),(6,2),且分别交x 轴、y 轴于A 、B 两点. (1)确定直线y kx b =+的表达式: (2)求A 、B 两点的坐标; (3)求AOB 的面积;(4)过AOB 的顶点B 的一条直线把AOB 分成面积相等的两部分,求这条直线表达式.25.一次函数()0y kx b k =+≠满足,当112x -≤≤,121y -≤≤,求这条直线的函数解析式. 26.综合与探究 如图1,一次函数162y x =-+的图象交x 轴、y 轴于点A ,B ,正比例函数12y x =的图象与直线AB 交于点(),3C m .(1)求m 的值并直接写出线段OC 的长;(2)如图2,点D 在线段OC 上,且与O ,C 不重合,过点D 作DE x ⊥轴于点E ,交线段CB 于点F .请从A ,B 两题中任选一题作答.我选择题____题. A .若点D 的横坐标为4,解答下列问题: ①求线段DF 的长;②点P 是x 轴上的一点,若PDF 的面积为CDF 面积的2倍,直接写出点P 的坐标; B .设点D 的横坐标为a ,解答下列问题: ①求线段DF 的长,用含a 的代数式表示;②连接CE ,当线段CD 把CEF △的面积分成1:2的两部分时,直接写出a 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】先解不等式组,根据不等式组有解,求得a 的取值范围,即可判断一次函数()32y a x =-+的图象一定不经过的象限.【详解】∵20210x x a ->⎧⎨-+<⎩,∴212x a x >⎧⎪⎨-<⎪⎩,∵不等式组有解,∴122->a , ∴5a >,∴30a ->,∴()32y a x =-+经过第一、二、三象限,不经过第四象限, 故选:D . 【点睛】本题考查了一次函数的性质、解一元一次不等式组,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.2.A【分析】依据函数的定义,x 取一个值,y 有唯一值对应,可直接得出答案. 【详解】解:A 、根据图象知给自变量一个值,可能有2个函数值与其对应,故A 选项不是函数, B 、根据图象知给自变量一个值,有且只有1个函数值与其对应,故B 选项是函数, C 、根据图象知给自变量一个值,有且只有1个函数值与其对应,故C 选项是函数, D 、根据图象知给自变量一个值,有且只有1个函数值与其对应,故D 选项是函数, 故选:A . 【点睛】此题主要考查了函数概念,任意画一条与x 轴垂直的直线,始终与函数图象有一个交点,那么y 是x 的函数.3.C解析:C 【分析】根据点P 在第二象限,确定m <0,n >0,根据k ,b 的符号,确定图像的分布即可. 【详解】∵点P (m ,n )在第二象限, ∴m <0,n >0,∴图像分布在第一,第三象限,第四象限, 故选C. 【点睛】本题考查了根据k ,b 的符号确定一次函数图像的分布,熟记k ,b 的符号与图像分布的关系是解题的关键.4.A解析:A 【分析】根据0k b +=,且k b >确定k ,b 的符号,从而求解. 【详解】解:因为实数k 、b 满足k+b=0,且k >b , 所以k >0,b <0,所以它的图象经过一、三、四象限, 故选:A . 【点睛】本题主要考查一次函数图象在坐标平面内的位置与k 、b 的关系.解答本题注意理解:直线y=kx+b 所在的位置与k 、b 的符号有直接的关系.k >0时,直线必经过一、三象限.k <0时,直线必经过二、四象限.b >0时,直线与y 轴正半轴相交.b=0时,直线过原点;b <0时,直线与y 轴负半轴相交.5.C【分析】根据图像可知,x=20,y=25即满足函数y=x+5,也满足函数y=ax+b ,即2025x y =⎧⎨=⎩是二元一次方程y=x+5的解,也是二元一次方程y=ax+b 的解,恰好满足了方程组的解. 【详解】∵一次函数图像的交点为(20,25), ∴方程组5y x y ax b =+⎧⎨=+⎩的解是2025x y =⎧⎨=⎩,故选C. 【点睛】本题考查了一次函数图像交点与二元一次方程组解的关系,熟练驾驭数形结合思想,准确理解交点的意义是解题的关键.6.C解析:C 【分析】根据题意得A ,B 两城相距300km ,结合图表甲、乙两车消耗的总时间,可计算得甲、乙两车的速度,从而得到乙车追上甲车和在9:00时甲、乙两车的距离,从而得到答案. 【详解】根据题意得:A ,B 两城相距300km ,故选项A 结论正确;根据题意得:甲车从A 城出发前往B 城共消耗5小时,乙车从A 城出发前往B 城共消耗3小时; 甲车的速度300==60km/h 5乙车的速度300==100km/h 3∴行程中甲、乙两车的速度比为603=1005,故答案B 结论正确; 设乙车出发x 小时后,乙车追上甲车得:()601100x x += ∴32x =∵乙车于6:00出发∴乙车于7:30追上甲车,故选项C 结论错误; ∵9:00时,甲车还有一个小时的到B 城∴9:00时,甲、乙两车相距60160km ⨯=,故选项D 结论正确; 故选:C . 【点睛】本题考查了函数图像和一元一次方程的知识;解题的关键是熟练掌握函数图像的性质,从而完成求解.7.D解析:D【分析】根据一次函数图象上的点的坐标特征,将P (1,4)代入反比例函数的解析式2y kx k =-,然后解关于k 的方程即可.【详解】解:∵点P (1,4)在反比例函数2y kx k =-的图象上,∴4=k-2k ,解得,k=-4.故选:D .【点睛】本题考查了一次函数图象上点的坐标特征,图象上的点的坐标适合解析式是解题的关键. 8.A解析:A【分析】根据速度=路程÷时间即可算出甲的速度,由此可判断①,甲乙相遇时甲走路程为2akm ,计算出时间可判断②,分甲乙相遇前和相遇后两个时间段考虑甲乙相距akm 时的时间,可判断③.【详解】解:由函数图象可知,甲5小时到达,速度为4/5a km h ,故①正确; 甲与乙相遇时,时间为42 2.545a a h a -=,所以乙休息了2.520.5h -=,②正确; 乙的速度为:2/2a akm h =, 在2小时时,甲乙相距4242255a a a akm --⋅=, ∴在2小时前,若两车相距a km 时,445a a a a t t -=⋅+⋅,解得53t h =, 当两车相遇后,即2.5小时后,若两车相距a km 时,44(0.5)5a a a a t t +=⋅-+⋅, 解得5518t h =, ∴两车相距a km 时,甲车行驶了53h 或5518h ,故③错误; 故选:A .【点睛】本题考查一次函数的应用.解答此类问题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.9.A解析:A【分析】作点A 关于x 轴的对称点A',连接A'P ,则AP=A'P ,当A',P ,D 在同一直线上时,AP+DP 的最小值等于A'D 的长,依据待定系数法即可得到直线A'D 的解析式,进而得出点P 的坐标为2,03⎛⎫ ⎪⎝⎭. 【详解】解:如图所示,作点A 关于x 轴的对称点A',连接A'P ,则AP=A'P ,∴AP+DP=A'P+DP ,当A',P ,D 在同一直线上时,AP+DP 的最小值等于A'D 的长,∵AC=BC=2,AB 的中点为D ,∴A (0,2),B (2,0),D (1,1),A'(0,-2),设直线A'D 的解析式为y=kx+b (k≠0),则12k b b =+⎧⎨-=⎩, 解得:32k b =⎧⎨=-⎩, ∴y=3x -2, 当y=0时,x=23, ∴点P 的坐标为(23,0), 故选:A .【点睛】本题主要考查了最短路线问题以及等腰直角三角形的性质,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.10.A解析:A【分析】根据一次函数的性质得出 y 随 x 的增大而减小,当 x >-1时,y <0,即可求出答案.【详解】直线 y kx b =+ 与 x 轴交于点(-1,0),与y 轴交于点()0,2-∴ 根据图形可得 k <0,∴y 随 x 的增大而减小,当 x >-1时,y <0,即0kx b +<.故答案为: A【点睛】本题主要考查对一次函数与一元一次不等式,一次函数的性质等知识点的理解和掌握,能熟练地运用性质进行说理是解此题的关键.11.B解析:B【分析】先用待定系数法求出直线AB 的解析式,然后将点C 的坐标代入即可确定a 的值.【详解】解:设点()2,3A -、()4,3B 所在的直线解析式为y=kx+b则3234k b k b -=+⎧⎨=+⎩,解得39k b =⎧⎨=-⎩则直线y=3x-9将点C 的坐标代入得:a=3×5-9=6.故选:B .【点睛】本题主要考查了一次函数的应用,确定直线AB 的解析式是解答本题的关键.12.C解析:C【分析】根据一次函数的图象获取信息,可得到距公司的路程y (米)与时间x (分)间的函数关系,进而对四个结论进行判断,即可得出结果.【详解】解:观察图象,得:甲步行的速度为1000÷10=100米/分,故①正确; 10−1000500=10−2=8,即乙比甲晚出发8分钟,故②错误; 设公司距离健身房x 米,依题意得 x 100−(10+x 1000500-)=4,解得x=1500,∴公司距离健身房1500米,故③正确;乙追上甲时距健身房1500−1000=500米,故④正确.故选:C.【点睛】本题考查了一次函数图象的应用,熟练掌握一次函数图象与性质及利用数形结合的思想是解题的关键.二、填空题13.3n-12n-2【分析】先根据一次函数方程求出B1点的坐标再根据B1点的坐标求出A2C1的坐标以此类推总结规律便可求出点Bn的坐标【详解】解:∵A1(20)∴B1(21)由正方形的性质可求A2(30解析:【分析】先根据一次函数方程求出点的坐标,再根据点的坐标求出,的坐标,以此类推总结规律便可求出点的坐标.【详解】解:,,由正方形的性质,可求,,,,,……,点的横坐标为,故答案为.【点睛】本题考查一次函数的图像及性质,点的坐标规律;理解题意,结合一次函数的图像和正方形的性质,探索点的坐标规律是解题的关键.14.【分析】(1)方程组的解就是函数图象的交点坐标的横纵坐标;(2)不等式的解就是当一次函数的图象在一次函数的图象上方时且两者的函数图象都在x轴上方时x的取值范围【详解】解:(1)方程组的解就是一次函数解析:34x y =⎧⎨=⎩35x << 【分析】(1)方程组的解就是函数图象的交点坐标的横纵坐标;(2)不等式的解就是当一次函数y mx n =+的图象在一次函数y kx b =+的图象上方时,且两者的函数图象都在x 轴上方时,x 的取值范围.【详解】解:(1)方程组y kx b y mx n=+⎧⎨=+⎩的解就是一次函数y kx b =+与y mx n =+的交点坐标的横纵坐标,由图知,34x y =⎧⎨=⎩; (2)不等式0kx b mx n <+<+的解就是找到图中一次函数y mx n =+的图象在一次函数y kx b =+的图象上方时,且两者的函数图象都在x 轴上方时,x 的取值范围, 由图知,35x <<.【点睛】本题考查一次函数与二元一次方程组和不等式的关系,解题的关键是能够理解方程组的解就是函数图象的交点坐标的横纵坐标,以及利用函数图象解不等式的方法.15.【分析】结合题意分析函数图象:由甲车开车半小时后返回再到达出发点A 地共用时此时两车间距离减少求得乙车的速度为由经过时两车相遇求得甲车的速度再求得甲车到达B 地时所用时间即可求解【详解】甲车开车半小时后 解析:80【分析】结合题意分析函数图象:由甲车开车半小时后返回再到达出发点A 地共用时1h ,此时两车间距离减少80km ,求得乙车的速度为80/km h ,由经过3h 时,两车相遇,求得甲车的速度,再求得甲车到达B 地时,所用时间,即可求解.【详解】甲车开车半小时后返回再到达出发点A 地共用时1h ,而此时两车间距离减少48040080-=(km ),则乙车的速度为80/km h ,3h 时,两车距离为0,即两车相遇,()31803480v -+⨯=甲,解得:120v =甲(/km h ),∴甲车到达B 地时,共用时48015120t =+=(h ), 此时,乙车行驶了580400⨯=(km ),则乙车离A 地的路程为48040080-=(km ),故答案为:80.【点睛】本题考查了函数图象的应用,关键是把条件表述的几个过程对应图象理解清楚,再找出对应x 和y 表示的数量关系.16.0≤a≤2【分析】当a≠0时根据一次函数的图象不经过第四象限可得图象经过一三象限或一二三象限列出关于a 的不等式组求出a 的取值范围当a=0时y=2不经过第四象限综上即可得答案【详解】当a≠0时不经过第解析:0≤a≤2【分析】当a≠0时,根据一次函数的图象不经过第四象限可得图象经过一、三象限或一、二、三象限,列出关于a 的不等式组,求出a 的取值范围,当a=0时,y=2不经过第四象限,综上即可得答案.【详解】当a≠0时,2y ax a =-+不经过第四象限,∴经过一、三象限或一、二、三象限,∴020a a >⎧⎨-+⎩, 解得:02a <,当a=0时,直线方程为y=2,不经过第四象限,符合题意,∴a 的取值范围为0≤a≤2.故答案为:0≤a≤2【点睛】本题考查一次函数图象与系数的关系,熟练掌握一次函数图象与系数的关系并运用分类讨论的思想是解题关键.17.72【分析】根据题意和函数图象中的数据可以求得甲乙的速度然后即可求得甲乙第二次相遇的时刻进而求得乙第二次与甲相遇时距离A 地多少千米【详解】解:从图象可以看出A 点表示乙从A 仓库出发B 点表示甲乙第一次相 解析:72【分析】根据题意和函数图象中的数据可以求得甲乙的速度,然后即可求得甲乙第二次相遇的时刻,进而求得乙第二次与甲相遇时,距离A 地多少千米.【详解】解:从图象可以看出,A 点表示乙从A 仓库出发,B 点表示甲乙第一次相遇,C 点表示乙到达B 码头,D 点表示甲乙第二次相遇.设甲的速度为akm/h ,乙的速度为bkm/h ,()()1.5 1.517 1.5403a b b a ⎧-⎪⎨⎛⎫-⨯- ⎪⎪⎝⎭⎩== 解得,2472a b ⎧⎨⎩== 设甲乙第二次相遇的时间为t 小时,()74024363t ⎛⎫=+⨯- ⎪⎝⎭, 解得,t=3,则乙第二次与甲相遇时,甲距离A 仓库:24×3=72(km ),故答案为:72.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.18.(20)【分析】作点A 关于x 轴的对称点C 连接BC 交x 轴于一点即为点P 此时有最小值则C (0-2)求出直线BC 的解析式即可得到答案【详解】作点A 关于x 轴的对称点C 连接BC 交x 轴于一点即为点P 此时有最小值解析:(2,0)【分析】作点A 关于x 轴的对称点C ,连接BC 交x 轴于一点即为点P ,此时PA PB +有最小值,则C (0,-2),求出直线BC 的解析式,即可得到答案.【详解】作点A 关于x 轴的对称点C ,连接BC 交x 轴于一点即为点P ,此时PA PB +有最小值,则C (0,-2),设直线BC 的解析式为y=kx+b ,将点B 、C 的坐标代入,得422k b b +=⎧⎨=-⎩,解得12k b =⎧⎨=-⎩, ∴直线BC 的解析式为y=x-2,当y=0时,得x-2=0,解得x=2,∴P (2,0),故答案为:(2,0)..【点睛】此题考查最短路径问题,待定系数法求函数解析式,正确理解最短路径问题作点A 的对称点利用一次函数图象与x 轴的交点求出答案是解题的关键.19.x <1【分析】根据被开方数大于等于0分母不等于0列式进行计算即可求解【详解】解:根据题意得1-x >0解得x <1故答案是:x <1【点睛】本题考查了自变量的取值范围使函数解析式有意义列式求解即可是基础题解析:x <1.【分析】根据被开方数大于等于0,分母不等于0列式进行计算即可求解.【详解】解:根据题意得,1-x >0,解得x <1.故答案是:x <1.【点睛】本题考查了自变量的取值范围,使函数解析式有意义列式求解即可,是基础题,比较简单.20.【分析】先求出k 再求出b 即可得到解答【详解】解:由题意可得k=2∴有y=2x+b ∵y=2x+b 的图象经过A (43)∴有2×4+b=3解之可得:b=-5∴所求的函数表达式为y=2x-5故答案为y=2x解析:25y x =-【分析】先求出k ,再求出b ,即可得到解答.【详解】解:由题意可得k=2,∴有y=2x+b ,∵y=2x+b 的图象经过A (4,3),∴有2×4+b=3,解之可得:b= -5,∴所求的函数表达式为y=2x-5,故答案为y=2x-5 .【点睛】本题考查一次函数的图象与性质,熟练掌握一次函数图象的平移是解题关键.三、解答题21.(1)1-;3;(2)△ABM 的面积为2m -;(3)点P 的坐标为10,2⎛⎫ ⎪⎝⎭或70,2⎛⎫-⎪⎝⎭. 【分析】(1)根据非负数性质可得a 、b 的值;(2)根据三角形面积公式列式整理即可;(3)先根据(2)计算S △ABM ,再分两种情况:当点P 在y 轴正半轴上时、当点P 在y 轴负半轴上时,利用割补法表示出S △BMP ,根据S △BMP =S △ABM 列方程求解可得.【详解】解:(1)∵|1|30a b ++-=,∴10a +=,30b -=,∴1a =-,3b =;(2)如图1所示,过M 作ME x ⊥轴于E ,∵(1,0)A -,(3,0)B ,∴1OA =,3OB =,∴4AB =,∵在第三象限内有一点(2,)M m -,∴||ME m m ==-,∴114()222ABM S AB ME m m =⨯=⨯⨯-=-. (3)设(0,)P n ,BM 交y 轴于点C ,连接MP ,BP 如下图:设直线BM 的解析式为y kx b =+,把(3,0)B ,52,2M ⎛⎫-- ⎪⎝⎭代入得30522k b k b +=⎧⎪⎨-+=-⎪⎩, 解之得:1232k b ⎧=⎪⎪⎨⎪=-⎪⎩, 即1322y x =-, ∴30,2C ⎛⎫-⎪⎝⎭, 当52m =-时,11545222ABM m S AB y =⋅=⨯⨯=. ∵BMP ABM SS =, ∴()1||52x x B M PC -=, 即13(32)522n ⨯++=, 解之得:12n =或72n =-, 综上,点P 的坐标为10,2⎛⎫ ⎪⎝⎭或70,2⎛⎫- ⎪⎝⎭. 【点睛】本题主要考查了非负数的性质,坐标与图形的性质,利用待定系数法求一次函数解析式,利用割补法表示出△BMP 的面积等知识,根据题意建立方程是解题的关键. 22.(1)332y x =-+,点B 的坐标是()0,3;(2)一次函数的图象如图所示;见解析;(3)ABP ∆的面积为3或9.【分析】(1)利用待定系数法求出解析式,令y=0求出x 的值得到点B 的坐标;(2)利用描点法画出函数图象;(3)根据2OP OA =,得到A 1P 1=2或A 1P 2=6,再利用三角形的面积公式计算得出答案.【详解】(1)把点()2,0A 的坐标代入3y kx =+中,得230k +=, 解得32k =-, 所以,一次函数表达式为332y x =-+,当0x =,y=3,所以,点B 的坐标是()0,3;(2)一次函数的图象如图所示;(3)因为点A 的坐标是()2,0A ,所以2OA =,因为点P 在x 轴上,且2OP OA =,所以OP=2OA=4,∴AP 1=2或AP 2=6, ∴111123322ABP S AP OB ∆=⨯⨯=⨯⨯=; 221163922ABP S AP OB ∆=⨯⨯=⨯⨯=, 所以,ABP ∆的面积为3或9.【点睛】此题考查待定系数法求函数的解析式,一次函数与坐标轴的交点坐标,描点法画一次函数的图象,分类思想求一次函数图象构成的三角形的面积.23.(1)16,2y x y x =-+=;(2)存在,11,2⎛⎫ ⎪⎝⎭或11,2⎛⎫-- ⎪⎝⎭ 【分析】(1)利用待定系数法即可求出直线AC 和OA 的函数解析式;(2)根据(1)求出OAC 的面积,然后将OMC 的面积用含有M 坐标的式子表示出来,即可求出M 坐标.【详解】(1)设直线AB 的解析式是y kx b =+,根据题意得:426k b b +=⎧⎨=⎩解得:16k b =-⎧⎨=⎩则直线的解析式是:6y x =-+,设OA 的解析式是y mx =,则42m =, 解得:12m =,则直线的解析式是:12y x =; (2)∵当OMC ∆的面积是OAC ∆的面积的14时, ∴14OMC S OAC ∆=∆, 即111242M C OC x OC x ⨯⨯=⨯⨯⨯, ∴1414M x =⨯=, 当1M x =时,12M y =, 当1M x =-时,12M y =-时, ∴M 的坐标为11,2⎛⎫ ⎪⎝⎭或11,2⎛⎫-- ⎪⎝⎭. 【点睛】本题重点在于利用待定系数法求函数解析式,以及利用未知数表示三角形面积,依次求出点坐标.24.(1)223y x =-;(2)(3,0)A ,(0,2)B -;(3)3;(4)423y x =-. 【分析】(1)利用待定系数法即可得;(2)求出0y =时,x 的值即可得点A 的坐标,求出0x =时,y 的值即可得点B 的坐标; (3)先根据点A 、B 的坐标可得OA 、OB 的长,再利用直角三角形的面积公式即可得; (4)先根据三角形的中线与面积关系可得这条直线一定经过OA 的中点,再根据点A 的坐标求出中点的坐标,然后利用待定系数法即可得.【详解】(1)由题意,将点(3,4),(6,2)--代入y kx b =+得:3462k b k b -+=-⎧⎨+=⎩, 解得232k b ⎧=⎪⎨⎪=-⎩,则直线y kx b =+的表达式为223y x =-; (2)对于一次函数223y x =-, 当0y =时,2203x -=,解得3x =,即(3,0)A ,当0x =时,2y =-,即(0,2)B -;(3)(3,0),(0,2)A B -,3,2OA OB ∴==,又x 轴y ⊥轴,AOB ∴是直角三角形,则AOB 的面积为1132322OA OB ⋅=⨯⨯=; (4)设这条直线的表达式为y mx n =+,这条直线过AOB 的顶点B ,且把AOB 分成面积相等的两部分,∴这条直线一定经过OA 的中点,(0,0),(3,0)O A ,∴OA 的中点的坐标为3(,0)2, 将点3(,0)2和点(0,2)B -代入y mx n =+得:3022m n n ⎧+=⎪⎨⎪=-⎩, 解得432m n ⎧=⎪⎨⎪=-⎩, 则这条直线的表达式为423y x =-. 【点睛】本题考查了利用待定系数法求一次函数的表达式、求一次函数与坐标轴的交点坐标等知识点,熟练掌握待定系数法是解题关键.25.1y x =-或y x =-.【分析】分点()1,2--,()2,1或()1,1-,()2,2-在直线上两种情形,分别解答即可.【详解】解:∵112x -≤≤时,121y -≤≤,∴点()1,2--,()2,1或()1,1-,()2,2-在直线上.∵点()11,x y 在直线y kx b =+上,∴221k b k b -+=-⎧⎨+=⎩或122k b k b -+=⎧⎨+=-⎩, ∴11k b =⎧⎨=-⎩或10k b =-⎧⎨=⎩ ∴1y x =-或y x =-.【点睛】本题主要考查运用待定系数法求一次函数解析式,掌握分类讨论思想是解答本题的关键. 26.(1)6m =,OC =2)A 或B ;A①2DF =;②()0,0P 或()8,0;B①6FD a =-+,②3a =或245【分析】 (1)将(),3m 代入12y x =求解即可,根据勾股定理即可得出OC ; (2)若选择A 题:①先求出D 和F 的坐标,然后即可求出DF ; ②先求出CDF 的面积,然后可求出PDF S △,可求出EP 即可得出答案;若选择B 题:①过程如下:先求出D 和F 的坐标,即可求出FD ;②先求出D ,F 的坐标,然后得出FD ,DE ,分当12CDF CDE S S =△△时和当21CDF CDE S S =△△时两种情况求解即可.【详解】(1)将(),3m 代入12y x =得132m =, 解得6m =,OC ==(2)若选A 题:①过程如下:将4x =代入162y x =-+得1462y =-⨯+=4, ∴()4,4F ;将4x =代入12y x =得142y =⨯=2, ∴()4,2D ,∴422DF =-=.②过程如下:易得CDF 的面积1S 2222CDF =⨯⨯=△, ∴224PDF S =⨯=△, 又∵12PDF S DF EP =⨯⨯△,易得4EP =, ∵P 点是x 轴上动点,E 的坐标为(4,0) ∴P 点坐标()0,0或()8,0;若选B 题:①过程如下:将x a =代入162y x =-+,易得1,62F a a ⎛⎫-+ ⎪⎝⎭;将x a =代入12y x =,易得1,2D a a ⎛⎫ ⎪⎝⎭. 116622F D FD y y a a a ⎛⎫=-=-+-=-+ ⎪⎝⎭. ②过程如下:将x a =代入162y x =-+,易得1,62F a a ⎛⎫-+ ⎪⎝⎭; 将x a =代入12y x =,易得1,2D a a ⎛⎫ ⎪⎝⎭. D 点在C 点左侧,116622F D FD y y a a a ⎛⎫=-=-+-=-+ ⎪⎝⎭. 12D E DE y y a =-=, 当12CDF CDE S S =△△时,12DF DE =, ∴61122a a -+=, 解得245a =, 当21CDF CDE S S =△△时,21DF DE =, ∴62112a a -+=, 解得3a =.【点睛】本题考查了一次函数的综合,充分理解题意是解题关键.。
上海所在地区八年级数学下册第四单元《一次函数》检测题(答案解析)

一、选择题1.若正比例函数y =(m ﹣2)x 的图象经过点A(x 1,y 1)和点B(x 2,y 2),当x 1<x 2时,y 1>y 2,则m 的取值范围是( ) A .m >0B .m <0C .m >2D .m <22.一次函数y=-3x-2的图象和性质,表述正确的是( ) A .y 随x 的增大而增大 B .函数图象不经过第一象限 C .在y 轴上的截距为2D .与x 轴交于点(-2,0)3.若一次函数y kx b =+(k b ,都是常数)的图象经过第一、二、四象限,则一次函数y bx k =+的图象大致是( )A .B .C .D .4.甲、乙两汽车从A 城出发前往B 城,在整个行程中,汽车离开A 城的距离y 与时间t 的对应关系如图所示.下列结论错误的是( ).A .A ,B 两城相距300km B .行程中甲、乙两车的速度比为3∶5C .乙车于7:20追上甲车D .9:00时,甲、乙两车相距60km5.已知一次函数2y kx =+的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( ) A .()2,4-B .()2,4--C .()2,4D .()0,46.八个边长为1的正方形如图摆放在平面直角坐标系中,经过P 点的一条直线l 将这八个正方形分成面积相等的两部分,则该直线的解析式为( )A .5182y x =+ B .2133y x =+ C .7162y x =+ D .3142y x =+ 7.如图,在四边形ABCD 中,AD ∥BC ,∠B =60°,∠D =90°,AB =4,AD =2,点P 从点B 出发,沿B→A→D→C 的路线运动到点C ,过点P 作PQ ⊥BC ,垂足为Q .若点P 运动的路程为x ,△BPQ 的面积为y ,则表示y 与x 之间的函数关系图象大致是( )A .B .C .D .8.已知直线()1:0l y kx b k =+≠与直线()2:30l y mx m =-<在第三象限交于点M ,若直线1l 与x 轴的交点为()10B ,,则k 的取值范围是( ) A .33k -<<B .03k <<C .04k <<D .30k -<<9.已知关于x,y的二元一次方程组(7)2(31)5y k xy k x=--⎧⎨=-+⎩无解,则一次函数32y kx=-的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限10.下列图象中,不可能是关于x的一次函数y=px﹣(p﹣3)的图象的是()A. B.C.D.11.下列说法正确的是()①从开始观察时起,50天后该植物停止长高;②直线AC的函数表达式为165y x=+③第40天,该植物的高度为14厘米;④该植物最高为15厘米A.①②③B.②④C.②③D.①②③④12.弹簧挂上物体后伸长,已知一弹簧的长度y(cm)与所挂物体的质量m(kg)之间的关系如下表:所挂物体的质量m/kg012345弹簧的长度y/cm1012.51517.52022.5A.在没挂物体时,弹簧的长度为10cmB.弹簧的长度随所挂物体的质量的变化而变化,弹簧的长度是自变量,所挂物体的质量是因变量C.弹簧的长度y(cm)与所挂物体的质量m(kg)之间的关系可用关系式y=2.5m+10来表示D.在弹簧能承受的范围内,当所挂物体的质量为4kg时,弹簧的长度为20cm参考答案二、填空题13.已知A、B两地相距200千米,货车甲从A地出发将一批物资运往B地,行驶一段路程后出现故障,即刻停车与B地联系.B地收到消息后立即派货车乙从B地出发去接运甲车上的物资,货车乙遇到货车甲后,用了30分钟将物资从货车甲搬运到货车乙上,随后以原速开往B地,货车甲以原速的25返回A地.两辆货车之间的路程()kmy与货车甲出发的时间()hx的函数关系如图所示(通话等其他时间忽略不计).若点C的坐标是()1.6,120,点D的坐标是()3.6,0,则点E的坐标是______.14.如图,直线y=12x+b交x轴于点A,交y轴于点B,OA=2,点C是x轴上一点,且△ABC是直角三角形,满足这样条件的点C的坐标是_____.15.如图1,在中,是边上一动点,设两点之间的距离为两点之间的距离为,表示与的函数关系的图象如图2所示.则线段的长为_____,线段的长为______.16.如图,已知直线,点,过点作轴的垂线交直线于点,以为边,向右侧作正方形,延长交直线于点;以为边,向右侧作正方形,延长交直线于点;……;按照这个规律进行下去,点的横坐标为______.(结果用含正整数的代数式表示)17.已知y 是x 的一次函数,下表中列出了部分对应值,则m 的值是________.x-1 0 my 1-2-518.如图,在平面直角坐标系中,点A 、C 分别在x 轴、y 轴上,四边形ABCO 是边长为2的正方形,点D 为AB 的中点,点P 为OB 上的一个动点,连接DP 、AP ,当点P 满足DP AP +的值最小时,则点P 的坐标为______.19.在平面直角坐标系中,有直线1l :25y x =+和直线2l :1y x 53=+,直线2l 的有一个点M ,当M 点到直线1l 5M 的横坐标取值范围是________. 20.已知一次函数y =2x +b 的图象经过点A (2,y 1)和B (﹣1,y 2),则y 1_____y 2(填“>”、“<”或“=”).三、解答题21.为了满足广大人民群众的消费需求,某商场计划于今年“五一黄金周”期间,用160000元购进一批家电,这批家电的进价和售价如下表:(1)若全部资金用来购买彩电和洗衣机共100台,问商店可以购买彩电和洗衣机各多少台?(2)若在现有资金160000元允许的范围内,购买上表中三类家电共100台,其中彩电台数和冰箱台数相同,且购买洗衣机的台数不超过购买彩电的台数,请你算一算有几种进货方案?哪种进货方案能使商店销售完这批家电后获得的利润最大?并求出最大利润.(利润=售价-进价) 类别彩电冰箱洗衣机进价 2000 1600 1000 售价22001800110022.如图,顶点M 在y 轴上的抛物线2=y ax c +与直线1y x =+相交于,A B 两点,且点A 在x 轴上,点B 的横坐标为2,连接,AM BM , (1)求抛物线对应的函数表达式; (2)判断ABM ⊿的形状,并说明理由;(3)若将(1)中的抛物线沿y 轴上下平移,则如何平移才能使平移后的抛物线过点(2,3)--?23.直线2y x =--与x 轴相交于A 点,与y 轴相交于B 点,直线24(0)y kx k k =+->与直线2y x =--相交于C 点.(1)请说明24(0)y kx k k =+->经过点(4,2);(2)1k =时,点D 是直线24(0)y kx k k =+->上一点且在y 轴的右侧,若2DOBDOA SS=,求点D 的坐标;(3)若点C 在第三象限,求k 的取值范围.24.地表以下岩层的温度()y ℃随着所处深度() km x 的变化而变化,在某个地点y 与x 之间满足如下关系: 深度() km x 1 2 3 4 温度()y ℃5590125160y x (2)当8x =时,求出相应的y 值.(3)若岩层的温度是510℃,求相应的深度是多少?25.某商品经销店欲购进A 、B 两种纪念品,用160元购进的A 种纪念品与用240元购进的B 种纪念品的数量相同,每件B 种纪念品的进价比A 种纪念品的进价贵10元. (1)求A 、B 两种纪念品每件的进价分别为多少元?(2)若这两种纪念品共购进1000件,由于A 种纪念品销量较好,进购时A 不少于B 种纪念品的数量,且不超过B 种纪念品的1.5倍,问共有多少种进购方案?(3)该商店A 种纪念品每件售价24元,B 种纪念品每件售价35元,在(2)的条件下求出哪种方案获利最多,并求出最大利润.26.如图,直线6y kx =+与x 轴、y 轴分别相交于点E 、F ,点E 的坐标为()8,0-,点A 的坐标为()6,0-,点(),P x y 是第二象限内的直线上的一个动点.(1)求k 的值.(2)在点P 的运动过程中,写出OPA 的面积S 与x 的函数表达式,并写出自变量x 的取值范围.(3)已知()0,2Q -,当点P 运动到什么位置时,直线PQ 将四边形EPOQ 分成两部分,面积比为1:2,请直接写出P 点坐标.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据正比例函数的大小变化规律判断k 的符号. 【详解】解:根据题意,知:y 随x 的增大而减小, 则k <0,即m ﹣2<0,m <2. 故选:D . 【点睛】本题考查了一次函数的性质:当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小.2.B解析:B【分析】根据一次函数y=kx+b(k≠0)的性质:k>0,y随x的增大而增大,函数从左到右上升;k <0,y随x的增大而减小,即可判断A项,解析式特点找到函数通过的象限即可判断B 项;使y=0时,对应的横坐标即可判断C;使x=0时,对应的纵坐标即可判断D.【详解】A. 因为k=-3,所以y随x的增大而减小,故此项不正确;B. 根据函数解析式y=-3x-2特点,函数图象经过第二、三、四象限,故此项正确;C. y=-3x-2与y轴的交点坐标(0,-2),那么在y轴上的截距为-2,故此项不正确;D. y=-3x-2与x轴交于点(23-,0),故此项不正确;故选B【点睛】本题考查了一次函数图象上点的坐标特征,一次函数的图象,一次函数的性质,正确掌握一次函数图象的增减性和一次函数的性质是解题的关键.3.B解析:B【分析】根据一次函数y kx b=+图像在坐标平面的位置,可先确定,k b的取值范围,在根据,k b的取值范围确定一次函数y bx k=+图像在坐标平面的位置,即可求解.【详解】根据一次函数y kx b=+经过一、二、四象限,则函数值y随x的增大而减小,可得0k<;图像与y轴的正半轴相交则0b>,因而一次函数y bx k=+的一次项系数0b>,y随x的增大而增大,经过一三象限,常数0k<,则函数与y轴的负半轴,因而一定经过一、三、四象限,故选:B.【点睛】本题考查了一次函数的图像与系数的关系,解题关键是根据已知函数图像的位置确定,k b 的取值范围.4.C解析:C【分析】根据题意得A,B两城相距300km,结合图表甲、乙两车消耗的总时间,可计算得甲、乙两车的速度,从而得到乙车追上甲车和在9:00时甲、乙两车的距离,从而得到答案.【详解】根据题意得:A,B两城相距300km,故选项A结论正确;根据题意得:甲车从A 城出发前往B 城共消耗5小时,乙车从A 城出发前往B 城共消耗3小时; 甲车的速度300==60km/h 5乙车的速度300==100km/h 3∴行程中甲、乙两车的速度比为603=1005,故答案B 结论正确; 设乙车出发x 小时后,乙车追上甲车得:()601100x x += ∴32x =∵乙车于6:00出发∴乙车于7:30追上甲车,故选项C 结论错误; ∵9:00时,甲车还有一个小时的到B 城∴9:00时,甲、乙两车相距60160km ⨯=,故选项D 结论正确; 故选:C . 【点睛】本题考查了函数图像和一元一次方程的知识;解题的关键是熟练掌握函数图像的性质,从而完成求解.5.A解析:A 【分析】根据函数解析式知函数图象过点(0,2),由一次函数y 随x 的增大而减小,得到函数图象经过第一、二、四象限,且第一、四象限内点的纵坐标小于2,第二象限内点的纵坐标大于2,即可得到答案. 【详解】∵一次函数2y kx =+,当x=0时y=2, ∴函数图象过点(0,2), ∵一次函数y 随x 的增大而减小,∴函数图象经过第一、二、四象限,且第一、四象限内点的纵坐标小于2,第二象限内点的纵坐标大于2, 故选:A . 【点睛】此题考查一次函数的性质,熟记一次函数的性质并熟练解决问题是解题的关键.6.A解析:A 【分析】直线l 和八个正方形的最上面交点为P ,过P 作PB ⊥OB 于B ,过P 作PC ⊥OC 于C ,易知OB=3,利用三角形的面积公式和已知条件求出点A 的坐标,根据待定系数法即可得到该直线l 的解析式. 【详解】解:如图,直线l 和八个正方形的最上面交点为P ,过P 作PB ⊥OB 于B ,过P 作PC ⊥OC 于C ,∵正方形的边长为1, ∴OB=3,∵经过P 点的一条直线l 将这八个正方形分成面积相等的两部分, ∴三角形ABP 面积是8÷2+1=5, ∴12BP•AB=5, ∴AB=2.5, ∴OA=3-2.5=0.5,由此可知直线l 经过(0,0.5),(4,3) 设直线方程为y=kx+b ,则1243b k b ⎧=⎪⎨⎪+=⎩, 解得5812k b ⎧=⎪⎪⎨⎪=⎪⎩.∴直线l 解析式为5182y x =+. 故选:A . 【点睛】本题考查了面积相等问题、用待定系数法求一次函数的解析式以及正方形的性质,此题难度较大,解题的关键是作PB ⊥y 轴,作PC ⊥x 轴,根据题意即得到:直角三角形ABP 面积是5,利用三角形的面积公式求出AB 的长.7.D解析:D 【分析】分别求出点P 在BA 上运动、点P 在AD 上运动、点P 在DC 上运动时的函数表达式,进【详解】解:由题意得:①当点P 在BA 上运动时()04x ≤≤,2111133cos sin 2222y BQ PQ BP B BP B x x x ,图象为二次函数; ②当点P 在AD 上运动时46x , 1134322y BQ CD BQ BQ ,图象为一次函数; ③当点P 在DC 上运动时, 11142222y BQ CP y BC CP CP CP ,图象为一次函数;所以符合题意的选项是D .故选:D .【点睛】本题考查的是动点图象问题,涉及到二次函数、一次函数、解直角三角形等知识,此类问题关键是,要弄清楚不同时间段,图象和图形的对应关系,进而求解.8.B解析:B【分析】由直线1l 与x 轴的交点为()10B ,可得直线1l 轴的表达式为y =kx−k ,则1l 与y 轴交点(0,−k ),再由直线()2:30l y mx m =-<在第三象限交于点M 得出(0,−k )在原点和点(0,−3)之间,即可求解.【详解】解:∵直线()1:0l y kx b k =+≠与x 轴的交点为B (1,0),∴k +b =0,则b =−k ,∴y =kx−k ,直线()2:30l y mx m =-<与y 轴的交点坐标为(0,−3),则1l 与y 轴交点(0,−k )在原点和点(0,−3)之间,即:−3<−k <0,解得:0<k <3,故选:B .【点睛】本题考查了一次函数与一元一次不等式,解题的关键是掌握一次函数的图象与性质并能利用数形结合的思想确定1l 与y 轴交点位置.9.B解析:B先根据二元一次方程组无解,得出k 的值,再利用一次函数图象与系数的关系可得出一次函数的图象经过第一、三、四象限,进而可得出一次函数322y x =-的图象不经过第二象限.【详解】解:∵(7)2(31)5y k x y k x =--⎧⎨=-+⎩ ∴(7-k )x-2=(3k-1)x+5(7-k )x-(3k-1)x=7(7-k-3k+1)x=7(8-4k)x=7∵二元一次方程组无解∴8-4k=0解得:k=2∴将k=2代入一次函数32y kx =-得322y x =- ∵k=2﹥0,b=32-<0 ∴一次函数322y x =-的图象不经过第二象限 故选:B【点睛】 本题考查了一次函数图象与系数的关系,牢记“k ﹥0,b <0⇔y =kx +b 的图象在一、三、四象限”是解题的关键.10.D解析:D【分析】先根据一次函数的增减性、与y 轴的交点可得一个关于p 的一元一次不等式组,再找出无解的不等式组即可得.【详解】A 、由图象知,0(3)0p p >⎧⎨-->⎩,解得03p <<,即它可能是关于x 的一次函数(3)y px p =--的图象,此项不符题意;B 、由图象知,0(3)0p p >⎧⎨--=⎩,解得3p =,即它可能是关于x 的一次函数(3)y px p =--的图象,此项不符题意;C、由图象知,(3)0pp<⎧⎨-->⎩,解得0p<,即它可能是关于x的一次函数(3)y px p=--的图象,此项不符题意;D、由图象知,(3)0pp<⎧⎨--<⎩,不等式组无解,即它不可能是关于x的一次函数(3)y px p=--的图象,此项符合题意;故选:D.【点睛】本题考查了一次函数的图象与性质、一元一次不等式组,熟练掌握一次函数的图象与性质是解题关键.11.A解析:A【分析】①根据平行线间的距离相等可知50天后植物的高度不变,也就是停止长高;②设直线AC的解析式为y=kx+b(k≠0),然后利用待定系数法求出直线AC线段的解析式,③把x=40代入②的结论进行计算即可得解;④把x=50代入②的结论进行计算即可得解.【详解】解:∵CD∥x轴,∴从第50天开始植物的高度不变,故①的说法正确;设直线AC的解析式为y=kx+b(k≠0),∵经过点A(0,6),B(30,12),∴30126k bb+=⎧⎨=⎩,解得156kb⎧=⎪⎨⎪=⎩,所以,直线AC的解析式为165y x=+(0≤x≤50),故②的结论正确;当x=40时,14065y=⨯+=14,即第40天,该植物的高度为14厘米;故③的说法正确;当x=50时,15065y=⨯+=16,即第50天,该植物的高度为16厘米;故④的说法错误.综上所述,正确的是①②③.故选:A.【点睛】本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,已知自变量求函数值,仔细观察图象,准确获取信息是解题的关键.12.B解析:B【分析】因为表中的数据主要涉及到弹簧的长度和所挂物体的重量,所以反映了所挂物体的质量和弹簧的长度之间的关系,所挂物体的质量是自变量;弹簧的长度是因变量;由已知表格得到弹簧的长度是y=10+2.5m,质量为mkg,y为弹簧长度;弹簧的长度有一定范围,不能超过.【详解】解:A.在没挂物体时,弹簧的长度为10cm,根据图表,当质量m=0时,y=10,故此选项正确,不符合题意;B、反映了所挂物体的质量和弹簧的长度之间的关系,所挂物体的质量是自变量;弹簧的长度是因变量,故此选项错误,符合题意;C、当物体的质量为mkg时,弹簧的长度是y=10+2.5m,故此选项正确,不符合题意;D、由C中y=10+2.5m,m=4,解得y=20,在弹簧的弹性范围内,故此选项正确,不符合题意;故选:B.【点睛】此题考查了函数的表示方法,列表法能具体地反映自变量与函数的数值对应关系,在实际生活中应用非常广泛;解析式法准确地反映了函数与自变量之间的对应规律,根据它可以由自变量的取值求出相应的函数值,反之亦然;图象法直观地反映函数值随自变量的变化而变化的规律.二、填空题13.【分析】由图像可知C点时正好甲车出现故障可求出甲车所走的路程为及时间为可求出甲车的速度进而可求出甲车返回A地时的速度D点为乙车遇到甲车并把货物搬运到乙车上可得乙车的行驶的总路程为和时间进而可求出乙车5.1,150解析:()【分析】由图像可知,C点时正好甲车出现故障,可求出甲车所走的路程为-=及时间为1.6h,可求出甲车的速度,进而可求出甲车返回A地时km km km20012080的速度,D点为乙车遇到甲车并把货物搬运到乙车上,可得乙车的行驶的总路程为120km和时间3.6 1.60.5 1.5h --=,进而可求出乙车的速度,根据甲乙两车返回A 地,B 地的时间为甲车大于乙车,故乙车先到B 地,点E 是乙车先到达B 地时甲乙两车相距的距离和对应的时间,进而可求出E 点坐标.【详解】由题可知;点C(1.6,120)时正好甲车出现故障停车,∴甲车走的路程为:20012080km km km -=,所用时间为:1.6h ,∴甲车的速度为:8050/1.6km v km h h==, ∴甲车返回A 地的速度为:250/20/5km h km h ⨯=, ∴甲车返回A 地的时间为:80420/km h km h=, 点D(3.6,0)为乙车遇到甲车并把货物搬运到乙车上,∴乙车走的路程为:20080120km km km -=,所用时间为:3.6 1.60.5 1.5h --=, ∴乙车的速度为:12080/1.5km v km h h==, 乙车返回B 地按原速度返回,∴乙车返回B 地时间为:1.5h ,可得乙车先返回到B 地点E 是乙车先到达B 地时甲乙两车相距的距离和对应的时间,设点E 的坐标为(,x y ),则 3.6 1.5 5.1x h =+=,甲乙两车各自返回1.5h 时相距的距离为:()20/80/ 1.5150y km h km h h km =+⨯=, 故答案为:(5.1,150 )【点睛】本题考查了一次函数的实际应用,读懂图像准确理解题意是解题关键14.(00)或(0)【分析】由OA 的长度确定A 点坐标代入解析式求得b 的值然后求得B 点坐标分情况讨论结合勾股定理列方程求解【详解】解:∵OA =2∴A 点坐标为(-20)将(-20)代入y =x +b 中×(-2)解析:(0,0)或(12,0) 【分析】由OA 的长度确定A 点坐标,代入解析式求得b 的值,然后求得B 点坐标,分情况讨论结合勾股定理列方程求解.【详解】解:∵OA =2,∴A 点坐标为(-2,0)将(-2,0)代入y =12x +b 中,12×(-2)+b=0,解得:b=1 ∴B 点坐标为(0,1),OB=1设C 点坐标为(x ,0)当∠ACB=90°时,点C 的坐标为(0,0)当∠ABC=90°时,22(2)AC x =+,2225AB AO BO =+=,2221BC x =+∴22(2)51x =+x ++,解得:12x =∴点C 的坐标为(12,0) 综上,△ABC 是直角三角形,满足这样条件的点C 的坐标是(0,0)或(12,0).【点睛】本题考查一次函数的应用及勾股定理,掌握相关性质定理,运用数形结合和分类讨论思想解题是关键.15.1325【分析】从图2的函数图象得知BD=x 的最大值为7即BC=7同时AC=y=13再由图2中(113)知BD=1时AD=13作AE ⊥BC 于E 利用等腰三角形的性质以及勾股定理即可求解【详解】由图2的解析:【分析】从图2的函数图象得知,BD=的最大值为7,即BC=,同时AC=y=,再由图2中(1,)知,BD=时,AD=,作AE ⊥BC 于E ,利用等腰三角形的性质以及勾股定理即可求解.【详解】由图2的函数图象可知,BD=的最大值为7,∴BC=,此时点C、D重合,对应AC=y=,再由图2中(1,)知,BD=时,AD=,如图:作AE⊥BC于E,∵AC=AD=,BD=,BC=,∴DE=CE=DC=(BC- BD)=3,∴AE=,在Rt△ABE中,∠AEB=90,AE,BE= BD + DE =,∴AB=.故答案为:,.【点睛】本题主要考查了动点问题的函数图象,等腰三角形的性质,勾股定理的应用等知识,正确理解D点运动到何处时BD长最大以及点(1,)的意义是关键,同时也考察了学生对函数图象的观察能力.16.3n-12n-2【分析】先根据一次函数方程求出B1点的坐标再根据B1点的坐标求出A2C1的坐标以此类推总结规律便可求出点Bn的坐标【详解】解:∵A1(20)∴B1(21)由正方形的性质可求A2(30解析:【分析】先根据一次函数方程求出点的坐标,再根据点的坐标求出,的坐标,以此类推总结规律便可求出点的坐标.【详解】解:,,由正方形的性质,可求,,,,,……, 点的横坐标为, 故答案为. 【点睛】本题考查一次函数的图像及性质,点的坐标规律;理解题意,结合一次函数的图像和正方形的性质,探索点的坐标规律是解题的关键.17.1【分析】根据给定点的坐标利用待定系数法可求出一次函数解析式再代入(m-5)求出m 的值即可【详解】解:设一次函数的解析式为y=kx+b (k≠0)将(-11)(0-2)代入y=kx+b 得:解得:∴一次解析:1【分析】根据给定点的坐标,利用待定系数法可求出一次函数解析式,再代入(m ,-5)求出m 的值即可.【详解】解:设一次函数的解析式为y=kx+b (k≠0),将(-1,1),(0,-2)代入y=kx+b ,得:12k b b -+⎧⎨-⎩==, 解得:32k b -⎧⎨-⎩==, ∴一次函数的解析式为y=-3x-2.当x=m 时,y=-3×m-2=-5,∴m=1.故答案为:1.【点睛】本题考查了待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,根据给定点的坐标,利用待定系数法求出一次函数解析式是解题的关键.18.【分析】根据正方形的性质得到点AC 关于直线OB 对称连接CD 交OB 于P 连接PAPD 则此时PD+AP 的值最小求得直线CD 的解析式为y=-x+2由于直线OB 的解析式为y=x 解方程组得到P ()即可【详解】解 解析:44,33⎛⎫ ⎪⎝⎭【分析】根据正方形的性质得到点A ,C 关于直线OB 对称,连接CD 交OB 于P ,连接PA ,PD ,则此时,PD+AP的值最小,求得直线CD的解析式为y=-12x+2,由于直线OB的解析式为y=x,解方程组得到P(43,43)即可.【详解】解:∵四边形ABCO是正方形,∴点A,C关于直线OB对称,连接CD交OB于P,连接PA,PD,则此时,PD+AP的值最小,∵OC=OA=AB=2,∴C(0,2),A(2,0),∵D为AB的中点,∴AD=12AB=1,∴D(2,1),设直线CD的解析式为:y=kx+b,∴212k bb+⎧⎨⎩==,∴122kb⎧=-⎪⎨⎪=⎩,∴直线CD的解析式为:y=-12x+2,∵直线OB的解析式为y=x,∴122y xy x⎧-+⎪⎨⎪⎩==,解得:x=y=43,∴P(43,43),故答案为:(43,43).【点睛】本题考查了正方形的性质,轴对称-最短路线问题,待定系数法求一次函数的解析式,正确求出直线CD 的解析式是解题的关键.19.【分析】利用点到直线的距离公式得到M 的坐标之间的关系式与直线联立解方程组即可得到界点值根据题目要求写出符合题意的范围即可【详解】设点M(mn)直线与坐标轴的交点为EA 与坐标轴的交点为EF 过点A 作AB解析:33m -<<【分析】利用点到直线的距离公式,得到M 的坐标之间的关系式,与直线2l 联立,解方程组即可得到界点值,根据题目要求,写出符合题意的范围即可.【详解】设点M(m ,n),直线1l 与坐标轴的交点为E ,A ,2l 与坐标轴的交点为E ,F ,过点A 作AB ⊥EF ,垂足为B ,过点M 作MC ⊥EA ,垂足为C ,过点M 作MD ⊥y 轴,垂足为D ,根据题意,得OE=5,OA=52,OF=15,AF=OF-OA=252, ∴=2, ∴1122EF AB AF OE ⋅=⋅,∴11255222AB ⨯=⨯⨯, ∴, ∴sin ∠AEB=AB AE=, ∴∠AEB=45°,∴MC=CE ,∴∴222MD ED ME +=,∴22(5)10m n +-=,∴221(55)103m m +--=, ∴29m =,∴3m =±,∵M 点到直线1l 5∴点M 的横坐标取值范围是33m -<<.故答案为33m -<<.【点睛】本题考查了交点坐标的确定,图形的面积,三角函数的定义,不等式解集的确定,熟记坐标与线段的关系,三角函数的定义是解题的关键.20.>【分析】由k =2>0利用一次函数的性质可得出y 随x 的增大而增大结合2>﹣1即可得出y1>y2【详解】解:∵k =2>0∴y 随x 的增大而增大又∵2>﹣1∴y1>y2故答案为:>【点睛】本题考查一次函数解析:>【分析】由k =2>0,利用一次函数的性质可得出y 随x 的增大而增大,结合2>﹣1即可得出y 1>y 2.【详解】解:∵k =2>0,∴y 随x 的增大而增大,又∵2>﹣1,∴y 1>y 2.故答案为:>.【点睛】本题考查一次函数的增减性,根据比例系数k 的正负,判断y 随x 的变化规律是解题关键.三、解答题21.(1)商店可以购买彩电60台,洗衣机40台. (2)共有四种进货方案. a =37时商店获得的最大利润为17400元.【分析】(1)根据题意商店购买彩电x 台,则购买洗衣机(100−x )台,列出一元一次方程,解方程即可得出答案;(2)根据题意设购买彩电和冰箱a 台,则购买洗衣机为(100−2a )台,列出不等式,解不等式得共有四种进货方案,进而计算出当a =37时,获得的利润最大.【详解】解:(1)设商店购买彩电x 台,则购买洗衣机(100−x )台.由题意,得2000x +1000(100−x )=160000,解得x =60,则洗衣机为:100−x =40(台),所以,商店可以购买彩电60台,洗衣机40台.(2)设购买彩电和冰箱各a 台,则购买洗衣机为(100−2a )台.根据题意,得2000a +1600a +1000(100−2a )≤160000,∴整理得:4a≤150,a≤37.5.∵100−2a≤a ,∴33 13≤a , 解得3313≤a≤37.5.因为a 是整数,所以a =34、35、36、37. 因此,共有四种进货方案.设商店销售完毕后获得的利润为w 元, 则w =(2200−2000)a +(1800−1600)a +(1100−1000)(100−2a ),=200a +10000,∵200>0,∴w 随a 的增大而增大,∴当a =37时,w 最大值=200×37+10000=17400,所以,商店获得的最大利润为17400元.【点睛】本题主要考查了一次函数的实际应用,解答一次函数的应用问题中,要注意自变量的取值范围还必须使实际问题有意义,属于中档题.22.(1)21y x =-;(2)△ABM 为直角三角形,见解析;(3)向下平移6个单位过点(-2,-3)【分析】(1)将y=0,x=2,分别代入直线解析式求出x 、y 的值,即求得点A 、B 的坐标,再利用待定系数法即可求解抛物线解析式;(2)令x=0,代入抛物线解析式求得M 坐标,利用两点间的距离公式求得AB 、AM 、BM ,再利用勾股定理的逆定理即可判定△ABM 为直角三角形;(3)设抛物线2=1y x -平移后的解析式为y=x 2-1+m ,将点(-2,-3)代入上式,得到关于m 的方程,解方程即可得出结论.【详解】(1)当y=0时,有x+1=0,则x=-1.∴A (-1,0),当x=2时,y=2+1=3,∴B (2,3),将A ,B 两点代入2=y ax c +中, 得0=34a c a c +⎧⎨=+⎩,解得=11a c ⎧⎨=-⎩, ∴抛物线的解析式为2=1y x -.(2)三角形ABM 为直角三角形,理由如下:在抛物线中,当x=0时,y=-1,∴M (0,-1),又∵A (-1,0),B (2,3), ∴=32AB ,=2AM =25BM ,又∵22220AM AB BM +==,∴三角形ABM 为直角三角形.(3)设抛物线2=1y x -沿y 轴平移后的解析式为2=1y x m -+,将点(-2,-3)代入上式,得m=-6,则向下平移6个单位过点(-2,-3).【点睛】本题考查待定系数法求解析式,一次函数图象上的坐标特征、两点间的距离公式及勾股定理的逆定理,解题的关键是(1)求出A 、B 的坐标,(2)求出求得AB 、AM 、BM 的长,(3)正确写出平移后的抛物线解析式,难度适中.23.(1)见解析;(2)(4,2)D 或42,33D ⎛⎫-⎪⎝⎭;(3)113k << 【分析】(1)把x=4代入函数关系求出y 的值即可;(2)先求出A ,B 的坐标,进而求出OA ,OB 的值,再设点D 的坐标为(,2)a a -,根根据2DOB DOA S S =,列出方程求解即可;(3)分别求出当直线24(0)y kx k k =+->经过点A ,B 时k 的值即可.【详解】解:(1)当4x =时,244242y kx k k k =+-=+-=∴点(4,2)在直线24(0)y kx k k =+->上.(2)∵直线2y x =--与x 轴相交于A 点,与y 轴相交于B 点∴(2,0)A -,(0,2)B -∴2OA OB ==设D 的坐标为(,2)a a -∵2DOB DOA S S =,∴2|2|a a =-,∴4a =或43a =, ∴(4,2)D 或42,33D ⎛⎫- ⎪⎝⎭ (3)当直线24(0)y kx k k =+->经过点A 时,0224k k =-+-,解之得,13k =当直线24(0)y kx k k =+->经过点B 时,有224k -=-,解之得,1k =∴若点C 在第三象限,则113k <<. 【点晴】 本题考查了一次函数与一元一次方程,是一次函数的综合题,利用数形结合进行分析是解题的关键.24.(1)3520y x =+;(2)300;(3)相应的深度是14km .【分析】(1)根据图表可知,深度每增加1km ,温度增加35℃,据此直接直接写出y 与x 之间的关系式即可;(2)根据(1)所得关系式,令x=8,求得y 的值即可;(3)根据(1)所得关系式,令y=510,求得x 的值即可.【详解】(1)由图表可知,深度每增加1km ,温度增加35℃,5535(1)y x ∴=+-553535x =+-3520x =+,即y 与x 之间的关系式为:3520y x =+;(2)由3520y x =+令8x =时,则35820300y =⨯+=;。
新人教版初中数学八年级数学下册第四单元《一次函数》测试(含答案解析)(1)

一、选择题1.点()1,A a y 、()22,B a y 都在一次函数0)(2y ax a a =-+≠的图象上,则1y 、2y 的大小关系是( )A .12y y >B .12y y =C .12y y <D .不确定 2.如图,一次函数y =2x 和y =ax +4的图象相交于点A (m ,3),则不等式0<ax +4<2x的解集是( )A .0<x <32B .32<x <6C .32<x <4D .0<x <3 3.已知点()1,4P 在直线2y kx k =-上,则k 的值为( ) A .43 B .43- C .4 D .4-4.将直线2y x =-向下平移后得到直线l ,若直线l 经过点(),a b ,且27a b +=-,则直线l 的解析式为( )A .22y x =--B .22y x =-+C .27y x =--D .27y x =-+ 5.关于x 的正比例函数y kx =与一次函数y kx x k =+-的大致图像不可能是( ) A . B .C .D.6.科学家就蟋蟀鸣叫的次数与室外温度的数量关系做了如下记录:蟋蟀每分钟鸣叫的次数温度/°F1447615278160801688217684如果这种数量关系不变,那么当室外温度为90°F时,蟋蟀每分钟鸣叫的次数是()A.178 B.184 C.192 D.2007.火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图像描述如图所示,有下列结论:①火车的速度为30米/秒;②火车的长度为120米;③火车整体都在隧道内的时间为35秒;④隧道长度为1200米.其中正确的结论是()A.①②③B.①②④C.③④D.①③④8.如图,直线443y x=+与x轴,y轴分别交于A,B两点,点C在OB上,若将ABC沿AC折叠,使点B恰好落在x轴上的点D处,则点C的坐标是()A.(0,1)B.20,3⎛⎫⎪⎝⎭C.30,2⎛⎫⎪⎝⎭D.(0,2)9.直线y kx b =+经过一、三、四象限,则直线y bx k =-的图象只能是图中的( ) A . B . C . D . 10.如图,边长为2的正方形ABCD 中,点P 从点A 出发沿路线A B C D →→→匀速运动至点D 停止,已知点P 的速度为1,运动时间为t ,以P .A .B 为项点的三角形面积为S ,则S 与t 之间的函数图象可能是( )A .B .C .D .11.A ,B 两地相距30km ,甲乙两人沿同一条路线从A 地到B 地.如图,反映的是两人行进路程()y km 与行进时间t(h)之间的关系,①甲始终是匀速行进,乙的行进不是匀速的;②乙用了5个小时到达目的地;③乙比甲迟出发0.5小时;④甲在出发5小时后被乙追上.以上说法正确的个数有( )A .1个B .2个C .3个D .4个 12.直线1y x 42=-与x 轴、y 轴分别相交于A ,B 两点,若点()1,2M m m +-在AOB 内部,则m 的取值范围为( )A .1433m <<B .17m -<<C .703m <<D .1123m << 二、填空题13.已知一次函数6y x =-+的图象上有两点()11,A y -,()22,A y ,则1y 与2y 的大小关系是______.14.如图1,在中,是边上一动点,设两点之间的距离为两点之间的距离为,表示与的函数关系的图象如图2所示.则线段的长为_____,线段的长为______.15.如果直线y=2x+3与直线y=3x ﹣2b 的交点在y 轴上,那么b 的值为___. 16.正方形A 1B 1C 1O 、A 2B 2C 2C 1、A 3B 3C 3C 2、…,按如图所示的方式放置.点A 1、A 2、A 3、…,和点C 1、C 2、C 3,…,分别在直线y =kx +b (k>0)和x 轴上,已知点B 1(1,1),B 2(3,2),则点B 2021的坐标是_________________.17.在平面直角坐标系中,有直线1l :25y x =+和直线2l :1y x 53=+,直线2l 的有一个点M ,当M 点到直线1l 5M 的横坐标取值范围是________. 18.已知直线22y x =-与x 轴交于A ,与y 轴交于B ,若点C 是坐标轴上的一点,且AC AB =,则点C 的坐标为________.19.如图,直线y =﹣43x +8与x 轴、y 轴分别交于点A 、B ,∠BAO 的角平分线与y 轴交于点M ,则OM 的长为_____.20.如图,平面直角坐标系xOy 中,()0,2A ,()2,0B ,C 为AB 的中点,P 是OB 上的一个动点,ACP ∆周长最小时,点P 的横坐标是______.三、解答题21.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y 1千米,出租车离甲地的距离为y 2千米,两车行驶的时间为x 小时,y 1、y 2关于x 的函数图象如图所示:(1)客车的速度是 千米/小时,出租车的速度为 千米/小时;y 1关于x 的函数关系式为 ;y 2关于x 的函数关系式为 .(2)求两车相遇的时间;(3)在两车的运动方式和客车行驶速度不变的情况下,求出租车为提前25分钟与客车相遇,应将速度提高为每小时多少千米.22.我市全民健身中心面向学生推出假期游泳优惠活动,活动方案如下.方案一:购买一张学生卡,每次游泳费用按六折优惠;方案二:不购买学生卡,每次游泳费用按八折优惠.设某学生假期游泳x (次),按照方案一所需费用为1y (元),且11y k x b =+;按照方案二所需费用为2y (元),且22y k x =.其函数图象如图所示.(1)求y 1关于x 的函数关系式,并直接写出单独购买一张学生卡的费用和购买学生卡后每次游泳的费用;(2)求打折前的每次游泳费用和k 2的值;(3)八年级学生小明计划假期前往全民健身中心游泳8次,应选择哪种方案所需费用更少?说明理由.23.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为1y 千米,出租车离甲地的距离为2y 千米,两车行驶的时间为x 小时,12,y y 关于x 的图象如图所示:(1)客车的速度是 千米/小时,出租车的速度是 千米小时:(2)根据图象,分别直接写出12,y y 关于x 的关系式;(3)求两车相遇的时间;(4)x 为何值时,两车相距100千米.24.如图1,在平面直角坐标系中,直线3:32AB y x =+与x 轴交于点A ,且经过点(2,)B m ,已知点(3,0)C . (1)求点,A B 的坐标和直线BC 的函数表达式.(2)在直线BC 上找一点D ,使ABO 与ABD △的面积相等,求点D 的坐标. (3)如图2,E 为线段AC 上一点,连结BE ,一动点F 从点B 出发,沿线段BE 以每秒1个单位运动到点E 再沿线段EA 以每秒2个单位运动到A 后停止,设点F 在整个运动过程中所用时间为t ,当t 取最小值时,求点E 的坐标.25.已知在平面直角坐标系中,直线()11140y k x k =+≠与直线()2220y k x k =≠交于点()6,12C ,直线1y 分别与x 轴,y 轴交于点A 和点B .(1)求直线1y 与2y 的表达式及点A ,点B 的坐标;(2)x 轴上是否存在点P ,使ACP ∆的面积为30,若存在,求出点P 的坐标;若不存在,说明理由;(3)x 轴上是否存在点Q ,使OCQ ∆为等腰三角形,若存在,请直接写出点Q 的坐标;若不存在,请说明理由.26.为了加强公民的节水意识,某地规定用水收费标准如下:每户每月用水量不超过36m 时,水费按每立方米1.1元收费,超过36m 时,超过部分每立方米按1.6元收费,设每户每月用水量为3m x ,应缴水费为y 元.(1)写出y 与x 之间的函数表达式;(2)如果有两户家庭某月份需缴纳水费为5.5元和9.8元时,求这两户家庭这个月的用水量分别是多少?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据题意,分别表示出1y ,2y ,再判断12y y -的正负性,即可得到答案.【详解】∵点()1,A a y 、()22,B a y 都在一次函数0)(2y ax a a =-+≠的图象上,∴212y a a =-+,224y a a =-+,∴22212(2)(4)2y y a a a a a -=-+--+=>0,∴12y y >,故选A .【点睛】本题主要考查一次函数图像上点的坐标特征,掌握作差法比较大小,是解题的关键. 2.B解析:B【分析】先求解A 的坐标,再求解一次函数的解析式及B 的坐标,结合函数图像解0<ax +4<2x 即可得到答案.【详解】 解: 一次函数y =2x 和y =ax +4的图象相交于点A (m ,3),23,m ∴=3,2m ∴= 3,3,2A ⎛⎫∴ ⎪⎝⎭3+4=32a ∴, 2,3a ∴=- 24,3y x ∴=-+ 令0,y = 则240,3x -+= 6,x ∴=()6,0,B ∴不等式0<ax +4,4y ax ∴=+的图像上的点在x 轴的上方,所以结合图像可得:x <6,ax +4<2x ,2y x ∴=的图像在4y ax =+的图像的上方, 3,3,2A ⎛⎫ ⎪⎝⎭x >32, 所以:不等式0<ax +4<2x 的解集是32<x <6. 故选:.B【点睛】本题考查的是利用待定系数法求解一次函数的解析式,利用一次函数的图像解不等式组,掌握利用图像解决问题是解题的关键.3.D解析:D【分析】根据一次函数图象上的点的坐标特征,将P (1,4)代入反比例函数的解析式2y kx k =-,然后解关于k 的方程即可.【详解】解:∵点P (1,4)在反比例函数2y kx k =-的图象上,∴4=k-2k ,解得,k=-4.故选:D .【点睛】本题考查了一次函数图象上点的坐标特征,图象上的点的坐标适合解析式是解题的关键. 4.C解析:C【分析】可设直线l 的解析式为y=-2x+c ,由题意可得关于a 、b 、c 的一个方程组,通过方程组消去a 、b 后可以得到c 的值,从而得到直线l 的解析式.【详解】解:设直线l 的解析式为y=-2x+c ,则由题意可得:227a c b a b -+=⎧⎨+=-⎩①②, ①+②可得:b+c=b-7,∴c=-7,∴直线l 的解析式为y=-2x-7,故选C .【点睛】本题考查用待定系数法求一次函数的解析式,设定一次函数解析式后再由题意得到含有待定系数的方程或方程组并由方程或方程组得到待定系数的值是解题关键.5.D解析:D【分析】分k>0、k<0两种情况找出函数y=kx及函数y=kx+x-k的图象经过的象限,以及图象的变化趋势对照四个选项即可得出结论.【详解】解:设过原点的直线为l1:y=kx,另一条为l2:y=kx+x-k,当k<0时,-k>0,|k|>|k+1|,l1的图象比l2的图象陡,当k<0,k+1>0时,l1:y kx=的图象经过二、四象限,l2:y=kx+x-k的图象经过一、二、三象限,故选项A正确,不符合题意;当k<0,k+1<0时,l1:y kx=的图象经过二、四象限,l2:y=kx+x-k的图象经过一、二、四象限,故选项B正确,不符合题意;当k>0,k+1>0,-k<0时,l1:y kx=的图象经过一、三象限,l2:y=kx+x-k的图象经过一、三、四象限,l1的图象比l2的图象缓,故选项C正确,不符合题意;而选项D中,,l1的图象比l2的图象陡,故选项D错误,符合题意;故选:D【点睛】本题考查了正比例函数的图象及一次函数的图象,分k>0、k<0两种情况找出两函数图象经过的象限以及|k|的大小与函数图象的缓陡的关系是解答此题的关键.6.D解析:D【分析】根据表中的数据可知,温度每升高2°F,蟋蟀每分钟鸣叫的次数增加8次,据此列式计算即可.【详解】解:由表中的数据可知,温度每升高2°F,蟋蟀每分钟鸣叫的次数增加8次,故当室外温度为90°F时,蟋蟀每分钟鸣叫的次数为:176+8×90-842=176+24=200(次),即当室外温度为90°F时,蟋蟀每分钟鸣叫的次数是200,故选:D.【点睛】本题主要考查了规律探究及函数的表示方法,理清题意正确列出算式是解答本题的关键.7.D解析:D【分析】根据函数的图象即可确定在BC段,所用的时间是5秒,路程是150米,则速度是30米/秒,进而即可确定其它答案.在BC 段,所用的时间是5秒,路程是150米,则速度是30米/秒.故①正确; 火车的长度是150米,故②错误;整个火车都在隧道内的时间是:45−5−5=35秒,故③正确;隧道长是:45×30−150=1200(米),故④正确.故选D .【点睛】本题主要考查了用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,是解题的关键.8.C解析:C【分析】先求得点A 、B 的坐标分别为:(﹣3,0)、(0,4),由此可求得AB =5,再根据折叠可得AD =AB =5,故OD =AD ﹣AO =2,设点C (0,m ),则OC =m ,CD =BC =4﹣m ,根据222CO OD CD +=列出方程求解即可.【详解】解:∵直线y =43x +4与x 轴、y 轴分别交于A 、B 两点, ∴当x =0时,y =4;当y =0时,x =﹣3,则点A 、B 的坐标分别为:A (﹣3,0)、B (0,4),∴AO =3,BO =4,∴在Rt ABC 中,AB =5, ∵折叠,∴AD =AB =5,CD =BC ,∴OD =AD ﹣AO =2,设点C (0,m ),则OC =m ,BC =4﹣m ,∴CD =BC =4﹣m ,在Rt COD 中,222CO OD CD +=,即2222(4)m m +=-,解得:m =32, 故点C (0,32), 故选:C .【点睛】本题考查的是一次函数图象上点的坐标特征,题目将图象的折叠和勾股定理综合考查,难度适中.9.D【分析】先根据直线y kx b =+经过一、三、四象限判断出k 和b 的正负,从而得到直线y bx k =-的图象经过的象限.【详解】解:∵直线y kx b =+经过第一、三、四象限,∴0k >,0b <,∴0k -<,∴直线y bx k =-经过第二、三、四象限.故选:D .【点睛】本题考查一次函数的图象和性质,解题的关键是掌握根据系数的正负判断函数图象经过的象限的方法.10.C解析:C【分析】需分0≤t≤2、2<t≤4、4<t≤6三种情况分别分析即可.【详解】解:当0≤t≤2时,P 在AB 上运动,P .A .B 为项点的三角形AB 边上的高为0,即面积s=0;当2<t≤4时,P 在BC 上运动,P .A .B 为项点的三角形AB 边上的高为逐渐增大,即面积s 逐渐增大;当4<t≤6时,P 在DC 上运动,P .A .B 为项点的三角形AB 边上的高恒为2,即面积s 为1222⨯⨯=2; 综上可以发现C 满足题意.故答案为C .【点睛】本题主要考查的是动点图象问题,弄清楚不同时间段、函数图象和图形的对应关系成为解答本题的关键.11.B解析:B【分析】根据题意和函数图象中的数据,可以判断各个小题中的结论是否正确,本题得以解决.【详解】解:由图象可得,甲始终是匀速行进,乙的行进不是匀速的,故①正确;乙用了50.5 4.5-=个小时到达目的地,故②错误;乙比甲迟出发0.5小时,故③正确;甲在出发不到5小时后被乙追上,故④错误;故选:B.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.12.D解析:D【分析】先求出直线1y x42=-与x轴、y轴分别相交于A,B坐标,由点()1,2M m m+-在AOB内部,列出不等式组0184201(1)22mmm m⎧⎪<+<⎪-<-<⎨⎪⎪+<-⎩①②③分别解每一个不等式,在数轴上表示解集,得出不等式组的解集即可.【详解】解:直线1y x42=-与x轴、y轴分别相交于A,B两点,当x=0,y=-4,B(0,-4),当y=0时,=-1x402,x=8,A(8,0),点()1,2M m m+-在AOB内部,满足不等式组0184201(1)22mmm m⎧⎪<+<⎪-<-<⎨⎪⎪+<-⎩①②③,解不等式①得:-17m<<,解不等式②得:26m<<,解不等式③得:113m<,在数轴上表示不等式①、②、③的解集,不等式组的解集为:1123m<<.故选择:D.【点睛】本题考查一次函数,不等式组的解法,掌握一次函数,不等式组的解法,关键是根据点M 在△AOB 内列出不等式组是解题关键.二、填空题13.【分析】一次函数中k=-1<0y 将随x 的增大而减小根据-1<2即可得出答案【详解】解:∵在一次函数中k=-1<0y 将随x 的增大而减小又∵-1<2∴y1>y2故答案为:y1>y2【点睛】本题考查一次函解析:12y y >【分析】一次函数6y x =-+中,k=-1<0,y 将随x 的增大而减小,根据-1<2即可得出答案.【详解】解:∵在一次函数6y x =-+中,k=-1<0,y 将随x 的增大而减小,又∵-1<2,∴y 1>y 2.故答案为:y 1>y 2.【点睛】本题考查一次函数的图象性质的应用,注意:一次函数y=kx+b (k 、b 为常数,k≠0),当k >0,y 随x 增大而增大;当k <0时,y 将随x 的增大而减小.14.1325【分析】从图2的函数图象得知BD=x 的最大值为7即BC=7同时AC=y=13再由图2中(113)知BD=1时AD=13作AE ⊥BC 于E 利用等腰三角形的性质以及勾股定理即可求解【详解】由图2的 解析:【分析】从图2的函数图象得知,BD=的最大值为7,即BC=,同时AC=y=,再由图2中(1,)知,BD=时,AD=,作AE ⊥BC 于E ,利用等腰三角形的性质以及勾股定理即可求解.【详解】由图2的函数图象可知,BD=的最大值为7,∴BC=,此时点C 、D 重合,对应AC=y=, 再由图2中(1,)知,BD=时,AD=, 如图:作AE ⊥BC 于E ,∵AC=AD=,BD=,BC=,∴DE=CE=DC=(BC- BD)=3,∴AE=,在Rt△ABE中,∠AEB=90,AE,BE= BD + DE =,∴AB=.故答案为:,.【点睛】本题主要考查了动点问题的函数图象,等腰三角形的性质,勾股定理的应用等知识,正确理解D点运动到何处时BD长最大以及点(1,)的意义是关键,同时也考察了学生对函数图象的观察能力.15.【分析】先求出y=2x+3与y轴交点坐标为(03)代入y=3x﹣2b即可求得答案【详解】令y=2x+3中x=0解得y=3∴直线y=2x+3与y轴交点为(03)将(03)代入y=3x﹣2b中得-2b=解析:3 2 -【分析】先求出y=2x+3与y轴交点坐标为(0,3),代入y=3x﹣2b,即可求得答案.【详解】令y=2x+3中x=0,解得y=3,∴直线y=2x+3与y轴交点为(0,3),将(0,3)代入y=3x﹣2b中,得-2b=3,解得b=32 -,故答案为:32 -.【点睛】此题考查一次函数与坐标轴的交点坐标,掌握交点坐标的计算方法是解题的关键.16.(22021-122020)【分析】首先利用待定系数法求得直线的解析式然后分别求得B1B2B3…的坐标可以得到规律:Bn(2n-12n-1)据此即可求解【详解】解:∵B1的坐标为(11)点B2的坐标解析:(22021-1,22020)【分析】首先利用待定系数法求得直线的解析式,然后分别求得B1,B2,B3…的坐标,可以得到规律:B n(2n-1,2n-1),据此即可求解.【详解】解:∵B1的坐标为(1,1),点B2的坐标为(3,2),∴正方形A1B1C1O1边长为1,正方形A2B2C2C1边长为2,∴A1的坐标是(0,1),A2的坐标是:(1,2),代入y=kx+b得:12 bk b⎧⎨+⎩==,解得:11 kb⎧⎨⎩==,则直线的解析式是:y=x+1.∵A1B1=1,点B2的坐标为(3,2),∴点A3的坐标为(3,4),∴A3C2=A3B3=B3C3=4,∴点B3的坐标为(7,4),∴B1的纵坐标是:1=20,B1的横坐标是:1=21-1,∴B2的纵坐标是:2=21,B2的横坐标是:3=22-1,∴B3的纵坐标是:4=22,B3的横坐标是:7=23-1,∴B n的纵坐标是:2n-1,横坐标是:2n-1,则B n(2n-1,2n-1).∴B2021的坐标是:(22021-1,22020),故答案为:(22021-1,22020).【点睛】此题主要考查了待定系数法求函数解析式和坐标的变化规律.此题难度较大,注意正确得到点的坐标的规律是解题的关键.17.【分析】利用点到直线的距离公式得到M的坐标之间的关系式与直线联立解方程组即可得到界点值根据题目要求写出符合题意的范围即可【详解】设点M(mn)直线与坐标轴的交点为EA与坐标轴的交点为EF过点A作AB解析:33m-<<【分析】利用点到直线的距离公式,得到M的坐标之间的关系式,与直线2l联立,解方程组即可得到界点值,根据题目要求,写出符合题意的范围即可.【详解】设点M(m,n),直线1l与坐标轴的交点为E,A,2l与坐标轴的交点为E,F,过点A作AB⊥EF,垂足为B,过点M作MC⊥EA,垂足为C,过点M作MD⊥y轴,垂足为D,根据题意,得OE=5,OA=52,OF=15,AF=OF-OA=252,∴=,∴1122EF AB AF OE ⋅=⋅,∴11255105222AB ⨯⨯=⨯⨯, ∴AB=510, ∴sin ∠AEB=AB AE=510455=22, ∴∠AEB=45°,∴MC=CE ,∴ME=10,∴222MD ED ME +=,∴22(5)10m n +-=,∴221(55)103m m +--=, ∴29m =,∴3m =±,∵M 点到直线1l 5∴点M 的横坐标取值范围是33m -<<.故答案为33m -<<.【点睛】本题考查了交点坐标的确定,图形的面积,三角函数的定义,不等式解集的确定,熟记坐标与线段的关系,三角函数的定义是解题的关键.18.【分析】利用待定系数法求出两点坐标利用勾股定理求出根据确定点坐标即可【详解】解:令得到令得到以为圆心长为半径作圆交坐标轴即为点或故答案为:【点睛】本题考查一次函数的应用等腰三角形的判定和性质等知识熟 解析:()15,0+()15,0-()0,2 【分析】利用待定系数法求出A 、B 两点坐标,利用勾股定理求出AB ,根据AC AB =,确定点C 坐标即可.【详解】解:令0x =,得到2y =-,(0,2)B ,令0y =,得到1x =,(1,0)A ∴,1OA ∴=,2OB =,22125AB ,以A 为圆心,AB 长为半径作圆,交坐标轴即为C 点,5ACAB , (15C ,0),(15,0)或(0,2), 故答案为:()15,0+、()15,0-、()0,2. .【点睛】本题考查一次函数的应用,等腰三角形的判定和性质等知识,熟练掌握待定系数法确定交点坐标是解题的关键.19.3【分析】过点M 作MH ⊥AB 于H 利用AAS 可证△AHM ≌△AOM 则由全等三角形的性质可得AH =AOHM =OM 根据一次函数的解析式可分别求出直线y =﹣x+8与两坐标轴的交点坐标并得OAOB 的长由勾股定解析:3【分析】过点M 作MH ⊥AB 于H ,利用AAS 可证△AHM ≌△AOM ,则由全等三角形的性质可得AH =AO ,HM =OM .根据一次函数的解析式可分别求出直线y =﹣43x +8与两坐标轴的交点坐标,并得OA 、OB 的长,由勾股定理可求AB .最后在Rt △BMH 中利用勾股定理即可求解OM 的长.【详解】解:如图,过点M 作MH ⊥AB 于H ,∴∠BHM =∠AHM =90°=∠AOM .∵AM 平分∠BOA ,∴∠HAM =∠OAM .在△AHM 和△AOM 中,AHM AOM HAM OAM AM AM ∠∠⎧⎪∠∠⎨⎪⎩=== , ∴△AHM ≌△AOM (AAS ).∴AH =AO ,HM =OM .将x =0代入y =﹣43x +8中,解得y =8, 将y =0代入y =﹣43x +8中,解得x =6, ∴A (6,0),B (0,8).即OA =6,OB =8.∴AB 2268+=10.∵AH =AO =6,∴BH =AB -AH =4.设HM =OM =x ,则MB =8-x ,在Rt △BMH 中,BH 2+HM 2=MB 2,即42+x 2=(8-x )2,解得x =3.∴OM =3.故答案为:3.【点睛】此题考查了一次函数的图象与性质、全等三角形的判定与性质等知识,熟练掌握一次函数的性质并能利用辅助线构造全等三角形与直角三角形模型是解本题的关键.20.【分析】根据中点坐标公式求得C 点坐标作点A 关于x 轴的对称点A′连接A′C 交x 轴于点P 此时△ACP 周长最小求直线A′C 的解析式然后求其与x 轴的交点坐标从而求解【详解】解:∵为的中点∴C 点坐标为(11) 解析:23 【分析】根据中点坐标公式求得C 点坐标,作点A 关于x 轴的对称点A′,连接A′C ,交x 轴于点P ,此时△ACP 周长最小,求直线A′C 的解析式,然后求其与x 轴的交点坐标,从而求解.【详解】解:∵()0,2A ,()2,0B ,C 为AB 的中点,∴C 点坐标为(1,1)作点A 关于x 轴的对称点A′,连接A′C ,交x 轴于点P ,此时△ACP 周长最小, 由对称的性质可得A′点坐标为(0,-2)设直线A′C 的解析式为y=kx+b ,将(0,-2),(1,1)代入解析式可得21b k b =-⎧⎨+=⎩,解得:2=3b k =-⎧⎨⎩∴直线A′C 的解析式为y=3x-2,当y=0时,3x-2=0,解得23x =∴点P 的坐标为(23,0) 故答案为:23.【点睛】本题考查一次函数与几何图形,掌握一次函数的性质,利用数形结合思想解题是关键.三、解答题21.(1)60,100,y 1=60x ,y 2=﹣100x+600;(2)154小时;(3)每小时120千米 【分析】(1)根据函数图象中的数据可以得到客车和出租车的速度,然后即可写出y 1、y 2关于x 的函数解析式;(2)根据题意和(1)中的函数关系式,可以求得两车相遇的时间;(3)根据题意,可以求得出租车为提前25分钟与客车相遇,应将速度提高为每小时多少千米.【详解】解:(1)由图象可得,客车的速度为:600÷10=60(千米/小时),出租车的速度为:600÷6=100(千米/小时),设客车的解析式为:1y kx =,把点(10,600)代入,则60010k =,∴60k =,∴y 1关于x 的函数关系式为y 1=60x ;设出租车的解析式为2y ax b =+,把点(0,600)和(6,0)代入,则 60060b a b =⎧⎨+=⎩, ∴100600a b =-⎧⎨=⎩, ∴y 2关于x 的函数关系式为y 2=﹣100x+600;故答案为:60,100;y 1=60x ,y 2=﹣100x+600;(2)令60x =﹣100x+600,解得x =154, 即154时两车相遇; (3)∵154时=3小时45分钟,出租车提前25分钟与客车相遇, ∴出租车出发的时间为3小时20分钟, ∵3小时20分钟=133小时,∴出租车的速度为:600÷133﹣60=120(千米/小时), 即出租车为提前25分钟与客车相遇,应将速度提高为每小时120千米.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.22.(1)1530y x =+,单独购买一张学生卡的费用为30元,购买学生卡后每次游泳的费用为15元;(2)打折前的每次健身费用为25元,k 2=20;(3)选择方案一所需费用更少,理由见解析【分析】(1)把点(0,30),(10,180)代入11y k x b =+,得到关于1k 和b 的二元一次方程组,求解即可,再利用1k 的含义可得答案;(2)根据方案一每次健身费用按六折优惠,可得打折前的每次健身费用,再根据方案二每次健身费用按八折优惠,求出2k 的值;(3)将x=8分别代入12,y y 关于x 的函数解析式,比较即可.【详解】解:(1)∵11y k x b =+过点(0,30),(10,180),∴13010180b k b =⎧⎨+=⎩, 解得:11530k b =⎧⎨=⎩, 11530,y x ∴=+由115k =可得:购买一张学生卡后每次健身费用为15元,b =30可得:购买一张学生卡的费用为30元;(2)由题意可得,打折前的每次健身费用为15÷0.6=25(元),则2250.820k =⨯=;220y x ∴=.(3)选择方案一所需费用更少.理由如下:由题意可知,11530y x =+,220y x =.当健身8次时,选择方案一所需费用:115830150y =⨯+=(元),选择方案二所需费用:2208160y =⨯=(元),∵150<160,∴选择方案一所需费用更少.【点睛】本题考查了一次函数的应用,解题的关键是理解两种优惠活动方案,求出12,y y 关于x 的函数解析式.23.(1)60,100;(2)y 1=60x (0≤x≤10),y 2=-100x+600(0≤x≤6);(3)两车相遇的时间为154小时;(4)258小时或358小时. 【分析】 (1)根据速度=路程÷时间,列式进行计算即可得解;(2)根据两函数图象经过的点的坐标,利用待定系数法求一次函数解析式解答即可; (3)由12y y =列出方程,求出即可;(4)由两车相距100千米,可得|y 1-y 2|=100,即可求解.【详解】解:(1)由图可知,甲乙两地间的距离为600km ,所以,客车速度=600÷10=60(km/h ),出租车速度=600÷6=100(km/h ),故答案为:60,100;(2)设客车的函数关系式为y 1=k 1x ,则10k 1=600,解得k 1=60,所以,y 1=60x (0≤x≤10),设出租车的函数关系式为y 2=k 2x+b ,则206600k b b +⎧⎨=⎩=, 解得2100600k b =-⎧⎨=⎩, 所以,y 2=-100x+600(0≤x≤6),故答案为:y 1=60x (0≤x≤10),y 2=-100x+600(0≤x≤6);(3)当出租车与客车相遇时,60x=-100x+600,解得x=154. 所以两车相遇的时间为154小时; (4)由题意可得:|-100x+600-60x|=100,∴x=258或358, 答:x 为258小时或358小时,两车相距100千米. 【点睛】 本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.24.(1)(2,0),(2,6),618A B y x -=-+;(2)1218,55⎛⎫ ⎪⎝⎭或842,55⎛⎫ ⎪⎝⎭;(3)(223,0)-.【分析】(1)令直线332y x =+中的0y =,得出点A 的坐标,再把x=2代入得出点B 的坐标,然后用待定系数法即可求解; (2)过点O 作直线m ,在点H 上方作直线n ,使直线m 、n 和直线AB 等距离,则直线m (n )和BC 的交点即为所求点,进而求解;(3)过点B 作BM ⊥x 轴于点M ,过点A 作直线AH 使∠CAH=30°,过点B 作BH ⊥AH 于点H ,交x 轴于点E ,则点E 为所求点,进而求解.【详解】(1)令直线332y x =+中的0y =,则3302x +=, 解得:2x =-,∴由题意得:(2,0)A -,将(2,)B m 代入直线332y x =+中得3232m ⨯+=, 6m =,(2,6)B ∴,设直线BC 为:y kx b =+,∴代入(2,6),(3,0)B C 可得,2630k b k b +=⎧⎨+=⎩, 解得:618k b =-⎧⎨=⎩, ∴直线BC 的函数表达式为:618y x =-+.(2)设直线AB 交y 轴于点H ,则点H (0,3),过点O 作直线m ,在点H 上方作直线n ,使直线m 、n 和直线AB 等距离,由AB的表达式知,直线m的表达式为32y x=直线n的表达式为362y x=+∴32618y xy x⎧=⎪⎨⎪=-+⎩,解得125,185xy⎧=⎪⎪⎨⎪=⎪⎩故点D的坐标为1218(,)553+62618y xy x⎧=⎪⎨⎪=-+⎩,解得85,425xy⎧=⎪⎪⎨⎪=⎪⎩点D′的坐标为842,55⎛⎫⎪⎝⎭故点D的坐标为为1218,55⎛⎫⎪⎝⎭或842,55⎛⎫⎪⎝⎭(3)过点B作BM⊥x轴于点M,过点A作直线AH使∠CAH=30°,过点B作BH⊥AH于点H,交x轴于点E,则点E为所求点,理由:∵∠CAH=30°,∴12EH AE=∴12=+=+=BE EAt BE EH BH为最小,∴∠EBM=∠BME-∠BEM=90°-∠BEM=90°-∠AEH=∠EAH=30°,设EM=x,则BE=2x,BM=6,∴BE2=EM2+BM2,即(2x)2=x2+36,解得23x=∴23,=-=-OE OM EM∴点E的坐标为(223,0)-.【点睛】本题考查的是一次函数综合运用,涉及到一次函数的性质、勾股定理的运用、最小距离问题等,有一定的综合性.25.(1)1443y x =+,22y x =,()30A -,,()0,4B ;(2)存在,()12,0P ,()28,0P -;(3)存在,1Q ,2(Q -,3(12,0)Q ,4(15,0)Q【分析】(1)把()6,12C 代入直线表达式即求出1y 与2y 的表达式,从而可求得B 的坐标; (2)由三角形面积可得到AP 的长,要注意P 点可能在A 点的左侧或右侧;(3)分OC=OQ ,OC=CQ ,CQ=OQ 三种情况讨论即可.【详解】解:(1)把()6,12C 代入114y k x =+中,得11264k =+, 解,得143k =, 1443y x ∴=+. 把()6,12C 代入22y k x =,得2126k =,解,得22k =,22y x ∴=.把0y =代入1443y x =+,得3x =-, ()3,0A ∴-, 把0x =代入1443y x =+,得4y =, ()0,4B ∴.(2)存在. P 在x 轴上,30ACP S ∆=,点C 的纵坐标为12,12302ACP AP S ∆⋅∴==, 解得5AP =,点P 可以在A 点的左边,也可以在A 点的右边,()12,0P ∴,()28,0P -.(3)存在1Q ,2(Q -,3(12,0)Q ,4(15,0)Q .若OC=OQ 时,OC =,∴OQ =∴1Q ,2(Q -,若OC=CQ 时,根据等腰三角形“三线合一”可知OQ=12,∴3(12,0)Q ,若OQ=CQ 时,()2222612OQ CQ OQ -+==,解得OQ=15,∴4(15,0)Q ,综上所述,1Q ,2(Q -,3(12,0)Q ,4(15,0)Q .【点睛】本题考查了一次函数的解析式,等腰三角形的性质,注意分类讨论是解题的关键. 26.(1) 1.1(06)1.63(6)x x y x x ≤≤⎧=⎨->⎩;(2)这两户家庭这个月的用水量分别为35m 和38m 【分析】(1)由题意可分06x ≤≤,x>6两种情况写出y 与x 之间的函数表达式;(2)首先判断消费是否大于1.1×6,若不大于,则采用(1)中06x ≤≤的函数关系式求解,若大于,则采用x>6的函数关系式求解.【详解】解:(1)当06x ≤≤时, 1.1y x =;当6x >, 1.16 1.6(6)y x =⨯+⨯-即 1.63y x =-,所以y 与x 之间的函数表达式为 1.1(06)1.63(6)x x y x x ≤≤⎧=⎨->⎩, (2)因为5.5 1.16<⨯所以用水量不超过6立方米,所以当 5.5y =时,5.5 1.1x =,解得5x =.因为9.8 1.16>⨯所以用水量超过6立方米,所以当9.8y =时,9.8 1.63x =-,解得8x =.答:这两户家庭这个月的用水量分别为35m 和38m【点睛】本题考查一次函数的应用,熟练掌握分段函数的特点和解决方法是解题关键 .。
人教版初中数学八年级数学下册第四单元《一次函数》检测题(答案解析)(1)

一、选择题1.若关于x 的不等式组20210x x a ->⎧⎨-+<⎩有解,则一次函数()32y a x =-+的图象一定不经过的象限是( ) A .第一象限 B .第二象限C .第三象限D .第四象限 2.已知函数y kx b =+的图象如图所示,则函数y bx k =-的图象大致是( )A .B .C .D . 3.若实数k 、b 满足0k b +=,且k b >,则一次函数y kx b =+的图象可能是( ) A . B . C . D . 4.如图1,四边形ABCD 是轴对称图形,对角线AC ,BD 所在直线都是其对称轴,且AC ,BD 相交于点E .动点P 从四边形ABCD 的某个顶点出发,沿图1中的线段匀速运动.设点P 运动的时间为x ,线段EP 的长为y ,图2是y 与x 的函数关系的大致图象,则点P 的运动路径可能是( )A .CB A E →→→B .CDE A →→→ C .A E C B →→→ D .A E D C →→→5.某游泳馆新推出了甲、乙两种消费卡,设游泳次数为x 时两种消费卡所需费用分别为y 甲,y 乙元,y 甲,y 乙与x 的函数图象如图所示,当游泳次数为30次时选择哪种消费卡更合算( )A .甲种更合算B .乙种更合算C .两种一样合算D .无法确定 6.已知一次函数(6)1y a x =-+经过第一、二、三象限,且关于x 的不等式组1()0232113a x x x ⎧-->⎪⎪⎨+⎪+≥⎪⎩恰有 4 个整数解,则所有满足条件的整数a 的值的和为( ) A .9B .11C .15D .18 7.若点(-2,y 1),(3,y 2)都在函数y =-2x +b 的图像上,则y 1与y 2的大小关系是( )A .y 1>y 2B .y 1=y 2C .y 1<y 2D .无法确定 8.下表反映的是某地区用电量x (千瓦时)与应交电费y (元)之间的关系: 用电量x (千瓦时)1 2 3 4 ······ 应交电费y (元) 0.55 1.1 1.65 2.2 ······ x y x y x ②用电量每增加1千瓦时,应交电费增加0.55元;③若用电量为8千瓦时,则应交电费4.4元;④若所交电费为2.75元,则用电量为6千瓦时,其中正确的有( )A .4个B .3个C .2个D .1个9.某水电站蓄水池有2个进水口,1个出水口,每个进水口进水量1y 与时间x 的关系为1y x =,出水口出水量2y 与时间x 的关系为22y x =,已知某天0点到6点,进行机组试运行,试机时至少打开1个水口,且水池的蓄水量V 与时间的关系.如图所示:给出以下判断:①0到3点只进水不出水;②3点到4点,不进水只出水;③4点到6点不进水也不出水.则上述判断中一定正确的是( )A .①B .②C .②③D .①③ 10.圆的周长公式是2C r π=,那么在这个公式中,关于变量和常量的说法正确的是( )A .2是常量,C 、π、r 是变量B .2、π是常量,C 、r 是变量 C .2是常量,r 是变量D .2是常量,C 、r 是变量 11.直线1y x 42=-与x 轴、y 轴分别相交于A ,B 两点,若点()1,2M m m +-在AOB 内部,则m 的取值范围为( )A .1433m <<B .17m -<<C .703m <<D .1123m << 12.若函数y =(k ﹣3)x+k 2﹣9是正比例函数,则( ) A .k≠3 B .k =±3 C .k =3 D .k =﹣3二、填空题13.一次函数y 1=kx +b 与y 2=x +a 的图象如图,则下列结论:①k <0;②a >0;③当x <3时,y 1<y 2正确的是_____.14.函数1y x =-中自变量x 的取值范围是________. 15.已知y 是x 的一次函数,下表中列出了部分对应值,则m 的值是________. x -1 0m y1 -2 -5 16.如图,已知,,a b c 分别是Rt ABC △的三条边长,90C ∠=︒,我们把关于x 的形如a b y x c c =+的一次函数称为“勾股一次函数”;若点351,P ⎛⎫ ⎪ ⎪⎝⎭在“勾股一次函数”的图象上,且Rt ABC △的面积是10,则c 的值是_________.17.如图,直线22y x =-+与两坐标轴分别交于A 、B 两点,将线段OA 分成n 等份,分点分别为1231,,,,n P P P P -,过每个分点作x 轴的垂线分别交直线AB 于点1231,,,,n T T T T -,用1231,,,,n S S S S -分别表示11212121Rt ,Rt ,,Rt n n n T OP T PP T P P ---△△△的面积,则当n=4时,121n S S S -+++=_______;当n=2020时,1231n S S S S -++++=______.18.已知直线y =x+b 和y =ax ﹣3交于点P (2,1),则关于x 的方程x+b =ax ﹣3的解为________.19.如图,直线y =﹣43x +8与x 轴、y 轴分别交于点A 、B ,∠BAO 的角平分线与y 轴交于点M ,则OM 的长为_____.20.某一列动车从A 地匀速开往B 地,一列普通列车从B 地匀速开往A 地,两车同时出发,设普通列车行驶的时间为x (小时),两车之间的距离为y (千米),如图中的折线表示y 与x 之间的函数关系.根据图像进行探究,图中t 的值是__.三、解答题21.小明用的练习本在甲、乙两个商店都能买到,两个商店的标价都是每本1元,甲商店的优惠条件是:购买10本及以上,从第11本开始按标价的七折销售;乙商店的优惠条件是从第1本开始就按标价的八五折销售.(1)求在甲、乙两个商店购买这种练习本分别应付的金额y 甲元、y 乙元与购买本数x (x >10)本之间的函数关系式;(2)小明现有24元,最多可以买多少本练习本?22.已知1y +与3x -成正比例,且5x =时,8y =,(1)求y 与x 之间的函数解析式;(2)当6y =-时,求x 的值.23.在平面直角坐标系中,()1,5C -,()3,1D -,经过原点的直线m 上有一点()3,2,平移线段CD ,对应线段为EF (C 对应E ),若点E 、F 分别恰好在直线m 和x 轴上,则E 点坐标为_______.24.书籍是人类进步的台阶.为了鼓励全民阅读,某图书馆开展了两种方式的租书业务:一种是使用租书卡,另一种是使用会员卡,图中1l ,2l 分别表示使用租书卡和会员卡时每本书的租金y (元)与租书时间x (天)之间的关系.(1)直接写出用租书卡和会员卡时每本书的租金y (元)与租书时间x (天)之间的函数关系式;(2)小红准备租某本名著50天,选择哪种租书方式比较合算?小明准备花费90元租书,选择哪种租书方式比较合算?25.如图,正比例函数3y x =-与一次函数y kx b =+相交于点(),3A a -,并且一次函数y kx b =+经过x 轴上的点0()6,B -.(1)求一次函数y kx b =+的表达式;(2结合函数图像,求关于x ,y 的二元一次方程组30x y kx y b +=⎧⎨-=-⎩的解; (3)结合函数图像,求关于x 的不等式(3)0k x b ++≥的解集.26.某农户种植一种经济作物,总用水量y (米3)与种植时间x (天)之间的函数关系式如图所示.(1)第20天的总用水量为多少米3?(2)当20x ≥时,求y 与x 之间的函数关系式;(3)种植时间为多少天时,总用水量达到3500米3.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】先解不等式组,根据不等式组有解,求得a 的取值范围,即可判断一次函数()32y a x =-+的图象一定不经过的象限.【详解】∵20210x x a ->⎧⎨-+<⎩, ∴212x a x >⎧⎪⎨-<⎪⎩, ∵不等式组有解, ∴122->a , ∴5a >, ∴30a ->,∴()32y a x =-+经过第一、二、三象限,不经过第四象限,故选:D .【点睛】本题考查了一次函数的性质、解一元一次不等式组,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.2.B解析:B【分析】根据函数y kx b =+在坐标系中得位置可知0,0k b >>,然后根据系数的正负即可判断函数y bx k =-的位置.【详解】函数y kx b =+的图像经过一、二、三象限,0,0k b ∴>>,0k -<∴∴函数y bx k =-的图像经过一、三、四象限,故选:B .【点睛】本题考查了一次函数与系数的关系,根据函数在坐标系中的位置得出系数的正负是解题关键.3.A解析:A【分析】根据0k b +=,且k b >确定k ,b 的符号,从而求解.【详解】解:因为实数k 、b 满足k+b=0,且k >b ,所以k>0,b<0,所以它的图象经过一、三、四象限,故选:A.【点睛】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b <0时,直线与y轴负半轴相交.4.D解析:D【分析】根据图像,以及点的运动变化情况,前两段是y关于x的一次函数图像,判断y随x的增减变化趋势,第一段的最高值与第二段的最高值不相等,即可排除A,B,C选项.【详解】根据图像,前端段是y关于x的一次函数图像,∴应在AC,BD两段活动,故A,B错误,第一段y随x的增大而减小,第二段y随x增大而增大,第一段的最高值与第二段的最高值不相等,∵AE=EC∴C错误故选:D【点睛】本题考查函数的图像,比较抽象,解题的关键是根据图像判断函数值随自变量的值的增减变化情况,以及理解分段函数的最值是解题的关键.5.B解析:B【分析】根据一次函数的图象,哪个函数图象在上面,哪个就大,直接得出答案即可.【详解】解:利用图象,当游泳次数大于10次时,y在y乙上面,即y甲>y乙,甲∴当游泳次数为30次时,选择乙种方式省钱.故选:B.【点睛】此题主要考查了一次函数的应用以及利用函数图象比较函数大小,利用数形结合得出是解题关键.6.A解析:A【分析】根据关于x 的不等式组10232113a x x x ⎧⎛⎫--> ⎪⎪⎪⎝⎭⎨+⎪+≥⎪⎩恰有4个整数解以及一次函数(6)1y a x =-+经过第一、二、三象限,可以得到a 的取值范围,然后即可得到满足条件的a 的整数值,从而可以计算出满足条件的所有整数a 的和,本题得以解决.【详解】 解:由不等式组10232113a x x x ⎧⎛⎫--> ⎪⎪⎪⎝⎭⎨+⎪+≥⎪⎩,解得23a x -≤<, ∵不等式组恰有4个整数解, ∴123a <≤, ∴36a <≤,∵一次函数(6)1y a x =-+的图象经过第一、二、三象限, ∴60a ->,∴6a <,∴36a <<,又∵a 为整数,∴a=4或5,∴满足条件的所有整数a 的和为4+5=9,故选:A .【点睛】本题考查一次函数的性质、一元一次不等式组的整数解,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.7.A解析:A【分析】根据一次函数的性质得出y 随x 的增大而减小,进而求解.【详解】由一次函数y=-2x+b 可知,k=-2<0,y 随x 的增大而减小,∵-2<3,∴12y y >,故选:A .【点睛】本题考查一次函数的性质,熟知一次函数y=kx+b (k≠0),当k <0时,y 随x 的增大而减小是解题的关键.8.B解析:B【分析】根据一次函数的定义,由自变量的值求因变量的值,以及由因变量的值求自变量的值,判断出选项的正确性.【详解】解:通过观察表格发现:每当用电量增加1千瓦时,电费就增加0.55,∴y 是x 的一次函数,故①正确,②正确,设y kx b =+,根据表格,当1x =时,0.55y =,当2x =时, 1.1y =,0.552 1.1k b k b +=⎧⎨+=⎩,解得0.550k b =⎧⎨=⎩, ∴0.55y x =,当8x =时,0.558 4.4y =⨯=,故③正确,当 2.75y =时,0.55 2.75x =,解得5x =,故④错误.故选:B .【点睛】本题考查一次函数的应用,解题的关键是掌握一次函数的实际意义和对应函数值的求解. 9.A解析:A【分析】根据题意可以得出进水速度和出水速度,再根据图象中的折线走势,判断进水、出水状态解答即可.【详解】解:根据题意,每个进水口速度是每小时1万立方米,出水速度是每小时2万立方米, 由图象可知,①在0到3点,蓄水量每小时增加2万立方米,即0到3点只进水不出水,正确; ②在3点到4点,蓄水量每小时减少1万立方米,即打开一个进水口和一个出水口,错误;③在4点到6点,需水量没发生变化,即打开两个进水口和一个出水口,错误, 故选:A .【点睛】本题考查一次函数的图象与性质,能根据函数图象获取有效数据和所需条件是解答的关键.10.B解析:B【分析】常量就是在变化过程中不变的量,变量是指在变化过程中随时可以发生变化的量.解:圆的周长计算公式是c=2πr,C和r是变量,2、π是常量,故选:B.【点睛】本题主要考查了常量,变量的定义,识记的内容是解题的关键.11.D解析:D【分析】先求出直线1y x42=-与x轴、y轴分别相交于A,B坐标,由点()1,2M m m+-在AOB内部,列出不等式组0184201(1)22mmm m⎧⎪<+<⎪-<-<⎨⎪⎪+<-⎩①②③分别解每一个不等式,在数轴上表示解集,得出不等式组的解集即可.【详解】解:直线1y x42=-与x轴、y轴分别相交于A,B两点,当x=0,y=-4,B(0,-4),当y=0时,=-1x402,x=8,A(8,0),点()1,2M m m+-在AOB内部,满足不等式组0184201(1)22mmm m⎧⎪<+<⎪-<-<⎨⎪⎪+<-⎩①②③,解不等式①得:-17m<<,解不等式②得:26m<<,解不等式③得:113m<,在数轴上表示不等式①、②、③的解集,不等式组的解集为:1123m<<.故选择:D.本题考查一次函数,不等式组的解法,掌握一次函数,不等式组的解法,关键是根据点M 在△AOB 内列出不等式组是解题关键.12.D解析:D【分析】形如(0)y kx k =≠的函数是正比例函数,根据定义解答.【详解】解:∵y =(k ﹣3)x+k 2﹣9是正比例函数,∴k 2﹣9=0,且k ﹣3≠0,解得:k =﹣3,故选:D.【点睛】此题考查正比例函数的定义:形如(0)y kx k =≠的函数是正比例函数,熟记定义是解题的关键.二、填空题13.①【分析】根据一次函数的图象和性质即可判断出k 和a 的取值范围;由图象的交点横坐标即可得到③的结论【详解】解:①y1=kx +b 的图象过一二四象限则k <0;故此选项正确;②y2=x +a 的图象过一三四象限解析:①【分析】根据一次函数的图象和性质即可判断出k 和a 的取值范围;由图象的交点横坐标即可得到③的结论.【详解】解:①y 1=kx +b 的图象过一、二、四象限,则k <0;故此选项正确;②y 2=x +a 的图象过一、三、四象限,则a <0;故此选项错误;③由于两函数图象交点横坐标为3,则当x <3时,y 1>y 2;故此选项错误.故答案为:①.【点睛】此题考查一次函数图象,一次函数图象的性质,一次函数图象与系数的符号关系,根据一次函数交点判定函数值的大小,熟记一次函数的性质是解题的关键.14.且【分析】根据二次根式的性质和分式的意义被开方数大于或等于0分母不等于0可以求出x 的范围【详解】根据题意得:x≥0解得:且故答案为:且【点睛】本题考查了函数自变量的取值范围问题函数自变量的范围一般从 解析:0x ≥且1x ≠【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x 的【详解】y =, 根据题意得:x≥010≠,解得:0x ≥且1x ≠.故答案为:0x ≥且1x ≠.【点睛】本题考查了函数自变量的取值范围问题,函数自变量的范围一般从三个方面考虑: (1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.15.1【分析】根据给定点的坐标利用待定系数法可求出一次函数解析式再代入(m-5)求出m 的值即可【详解】解:设一次函数的解析式为y=kx+b (k≠0)将(-11)(0-2)代入y=kx+b 得:解得:∴一次解析:1【分析】根据给定点的坐标,利用待定系数法可求出一次函数解析式,再代入(m ,-5)求出m 的值即可.【详解】解:设一次函数的解析式为y=kx+b (k≠0),将(-1,1),(0,-2)代入y=kx+b ,得:12k b b -+⎧⎨-⎩==, 解得:32k b -⎧⎨-⎩==, ∴一次函数的解析式为y=-3x-2.当x=m 时,y=-3×m-2=-5,∴m=1.故答案为:1.【点睛】本题考查了待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,根据给定点的坐标,利用待定系数法求出一次函数解析式是解题的关键.16.【分析】依据题意得到三个关系式:a+b=cab=10a2+b2=c2运用完全平方公式即可得到c 的值【详解】解:∵点在勾股一次函数的图象上把代入得:即∵分别是的三条边长的面积为10∴故∴∴故解得:故答解析:依据题意得到三个关系式:c ,ab=10,a 2+b 2=c 2,运用完全平方公式即可得到c 的值.【详解】解:∵点(1P 在“勾股一次函数”a b y x c c =+的图象上,把(1P 代入得:a b c c=+,即5a b c +=, ∵,,a b c 分别是Rt ABC 的三条边长,90C ∠=︒,Rt ABC 的面积为10, ∴1102ab =,222+=a b c ,故20ab =, ∴22()2a b ab c +-=,∴222205c ⎛⎫-⨯= ⎪ ⎪⎝⎭,故24405c =,解得:c =.故答案为:【点睛】此类考查了一次函数图象上点的坐标特征以及勾股定理的应用,根据题目中所给的材料结合勾股定理和乘法公式是解答此题的关键. 17.【分析】根据图象上点的坐标性质得出点各点纵坐标进而利用三角形的面积得出继而得到规律据此解题即可【详解】解:是轴上的点且分别过点作轴的垂直交直线于点的横坐标为:纵坐标为:同理可得:的横坐标为:纵坐标为 解析:3820194040【分析】 根据图象上点的坐标性质得出点12321,,,,n n T T T T T --各点纵坐标,进而利用三角形的面积得出1231n S S S S -、、,继而得到规律1111n n S n n --⎛⎫=- ⎪⎝⎭,据此解题即可. 【详解】解:1231,,,,n P P P P +,是x 轴上的点且11223211n n OP PP P P P P n --=====, 分别过点12321,,,,,n n P P P P P --作x 轴的垂直交直线22y x =-+于点12321,,,,n n T T T T T --,1T ∴的横坐标为:1n ,纵坐标为:22n-, 111211212S n n n n ⎛⎫⎛⎫∴=⨯-=- ⎪ ⎪⎝⎭⎝⎭, 同理可得:2T 的横坐标为:2n ,纵坐标为:42n-, 2121S n n ⎛⎫∴=- ⎪⎝⎭, 3T 的横坐标为:3n ,纵坐标为:62n-, 3131S n n ⎛⎫∴=- ⎪⎝⎭, 4T 的横坐标为:4n ,纵坐标为:82n-, 以此规律可得:1111n n S n n --⎛⎫=- ⎪⎝⎭, 12311111(1)22n n S S S S n n n n --⎡⎤∴++++=---=⎢⎥⎣⎦, ∴当4n =时,1234413248S S S S -+++==⨯, 当2020n =时,1232019202012019220204040S S S S -++++==⨯. 故答案为:38;20194040. 【点睛】本题考查一次函数图象上点的坐标特征,是重要考点,难度一般,掌握相关知识是解题关键.18.x =2【分析】交点坐标同时满足两个函数的解析式而所求的方程组正好是由两个函数的解析式所构成因此两函数的交点坐标即为方程组的解【详解】∵直线y =x+b 和y =ax ﹣3交于点P (21)∴当x =2时x+b =解析:x =2【分析】交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【详解】∵直线y =x+b 和y =ax ﹣3交于点P (2,1),∴当x =2时,x+b =ax ﹣3=1,∴关于x 的方程x+b =ax ﹣3的解为x =2.故答案为:x =2.【点睛】本题考查了一次函数与二元一次方程(组):熟练掌握交点坐标同时满足两个函数的解析式是解题关键.19.3【分析】过点M 作MH ⊥AB 于H 利用AAS 可证△AHM ≌△AOM 则由全等三角形的性质可得AH =AOHM =OM 根据一次函数的解析式可分别求出直线y =﹣x+8与两坐标轴的交点坐标并得OAOB 的长由勾股定解析:3【分析】过点M 作MH ⊥AB 于H ,利用AAS 可证△AHM ≌△AOM ,则由全等三角形的性质可得AH =AO ,HM =OM .根据一次函数的解析式可分别求出直线y=﹣43x +8与两坐标轴的交点坐标,并得OA 、OB 的长,由勾股定理可求AB .最后在Rt △BMH 中利用勾股定理即可求解OM 的长.【详解】解:如图,过点M 作MH ⊥AB 于H ,∴∠BHM =∠AHM =90°=∠AOM .∵AM 平分∠BOA ,∴∠HAM =∠OAM .在△AHM 和△AOM 中,AHM AOM HAM OAM AM AM ∠∠⎧⎪∠∠⎨⎪⎩=== , ∴△AHM ≌△AOM (AAS ).∴AH =AO ,HM =OM .将x =0代入y =﹣43x +8中,解得y =8, 将y =0代入y =﹣43x +8中,解得x =6, ∴A (6,0),B (0,8).即OA=6,OB=8.∴AB=10.∵AH=AO=6,∴BH=AB-AH=4.设HM=OM=x,则MB=8-x,在Rt△BMH中,BH2+HM2=MB2,即42+x2=(8-x)2,解得x=3.∴OM=3.故答案为:3.【点睛】此题考查了一次函数的图象与性质、全等三角形的判定与性质等知识,熟练掌握一次函数的性质并能利用辅助线构造全等三角形与直角三角形模型是解本题的关键.20.4【分析】根据题意和函数图象中的数据:AB两地相距900千米两车出发后3小时相遇普通列车全程用12小时即可求得普通列车的速度和两车的速度和进而求得动车的速度解答即可【详解】由图象可得:AB两地相距9解析:4【分析】根据题意和函数图象中的数据:AB两地相距900千米,两车出发后3小时相遇,普通列车全程用12小时,即可求得普通列车的速度和两车的速度和,进而求得动车的速度,解答即可.【详解】由图象可得:AB两地相距900千米,两车出发后3小时相遇,普通列车的速度是:90012=75千米/小时,动车从A地到达B地的时间是:900÷(9003-75)=4(小时),故填:4.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.三、解答题21.(1)y甲=0.7x+3(x>10),y乙=0.85x(x>10);(2)30本【分析】(1)根据题意,可以分别写出y甲元、y乙元与购买本数x(x>10)本之间的函数关系式;(2)将y=24分别代入甲和乙的函数解析式,求出相应的x的值,然后比较大小,即可得到最多可以买多少本练习本.【详解】解:(1)由题意可得,y 甲=10×1+(x ﹣10)×1×0.7=0.7x+3,y 乙=x×1×0.85=0.85x ,即y 甲=0.7x+3(x >10),y 乙=0.85x (x >10);(2)当y 甲=24时,24=0.7x+3,解得x =30,当y 乙=24时,24=0.85x ,解得x≈28,∵30>28,∴小明现有24元,最多可以买30本练习本.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答. 22.(1)92922y x =-;(2)179 【分析】(1)设1(3)(0)y k x k +=-≠,利用待定系数法求k ,从而确定函数关系式; (2)将y=-6代入解析式求x 的值.【详解】解设1(3)(0)y k x k +=-≠(1)将58x y =⎧⎨=⎩代入,得 81(53)k +=- 即92=k ∴92922y x =- (2)当6y =-时929622x -=- 179x = 【点睛】本题考查待定系数法求函数解析式,掌握待定系数法计算步骤,正确计算是解题关键. 23.()6,4--或()6,4【分析】先求出直线m 的解析式为23y x =,由题意得:C ,D ,E ,F 构成以CD 为边的平行四边形,再分以CE 是平行四边形对角线时和以CF 为平行四边形对角线时分别求解即可.【详解】设m 的解析式为:y kx =,把()3,2代入得:23k=, m ∴的解析式为:23y x =, 由题意得:C ,D ,E ,F 构成以CD 为边的平行四边形,设2,3E a a ⎛⎫ ⎪⎝⎭,(),0F b , 则①以1CE 为平行四边形对角线时,由中点坐标公式可得1111C E D F CE DF x x x x y y y y +=+⎧⎪⎨+=+⎪⎩, 即1325103a b a -+=-+⎧⎪⎨+=+⎪⎩, 解得:64a b =-⎧⎨=-⎩, 即()16,4E --;②以2CF 为平行四边形对角线时,同理可得1325013b a a -+=-+⎧⎪⎨+=+⎪⎩, 解得64a b =⎧⎨=⎩, 即()26,4E ,综上所述:()16,4E --或()26,4E .故答案为:()6,4--或()6,4.【点睛】本题考查坐标与图形变化−平移,解题的关键是理解题意,利用一次函数与平行四边形的性质进行求解.24.(1)10.3y x =,2200.2y x =+;(2)当50x =时,选择使用租书卡比较合算,当90y =时,选择会员卡比较合算.【分析】(1)利用待定系数进行求解即可;(2)分别算出当50x =时y 的值,与当90y =时x 的值,然后选择符合题意的即可.【详解】(1)设l 1的函数解析式为y 1=k 1x ,将x=200,y=60代入y 1=k 1x 得:60=200k 1,解得k 1=0.3,∴设l 1的函数解析式为:10.3y x =,设l 2的函数解析式为y 2=k 2x+b 2,将x=0,y=20与x=200,y=60分别代入y 2=k 2x+b 2得:2222020060b k b =⎧⎨+=⎩, 解得220.220k b =⎧⎨=⎩, ∴l 2的函数解析式为2200.2y x =+;(2)当50x =时,10.35015y =⨯=,2200.25030y =+⨯=,∴12y y <,∴选择使用租书卡比较合算;当90y =时,1300x =,2350x =,∴12x x <,∴选择会员卡比较合算.【点睛】本题主要考查一次函数的实际应用,解此题的关键在于根据一次函数图象利用待定系数法确定函数关系式.25.(1)31877y x =--;(2)13x y =⎧⎨=-⎩;(3)x >1 【分析】(1)将A 代入正比例函数表达式,求出a 值,可得点A 坐标,结合点B 坐标,利用待定系数法求解;(2)将方程组转化为3y x y kx b =-⎧⎨=+⎩,再根据正比例函数与一次函数的交点A 的坐标可得结果;(3)将不等式转化为3kx b x +≥-,再根据图像得到一次函数图像在正比例函数图像上方的部分对应的x 的范围即可.【详解】解:(1)∵正比例函数3y x =-过点A (a ,-3),∴-3=-3a ,解得:a=1,∵直线y=kx+b 过点A 和点B ,则306k b k b -=+⎧⎨=-+⎩,解得:37187k b ⎧=-⎪⎪⎨⎪=-⎪⎩, ∴直线的表达式为:31877y x =--; (2)30x y kx y b +=⎧⎨-=-⎩变形为3y x y kx b=-⎧⎨=+⎩, 即正比例函数与一次函数的交点A 的坐标,∴二元一次方程组30x y kx y b +=⎧⎨-=-⎩的解为13x y =⎧⎨=-⎩; (3)不等式(3)0k x b ++≥变形为:3kx b x +≥-,即一次函数值大于正比例函数值,即一次函数图像在正比例函数图像上方的部分对应的x 的范围,由图可知:当x >1时,3kx b x +≥-.【点睛】本题考查了一次函数和正比例函数的图像,求函数表达式,函数与方程、不等式的关系,解题的关键是正确利用数形结合的思想解决问题.26.(1)500米3;(2)y=150x-2500;(3)40天【分析】(1)看x=20时,所对应的函数值是多少即可;(2)设出一次函数解析式,把(20,500),(30,2000)代入一次函数解析式,求得k ,b 的值即可;(3)把y=3500代入(2)得到的一次函数解析式,求得x 的值即可.【详解】解:(1)当x=20时,y=500,所以,第20天的总用水量为500米3;(2)设所求的函数解析式为y=kx+b ,把(20,500),(30,2000)代入一次函数解析式得:20500302000k b k b +⎧⎨+⎩==, 解得:1502500k b ⎧⎨-⎩==, ∴y=150x-2500;(3)当y=3500时,150x-2500=3500,解得,x=40答:时间为40天时,总用水量达到3500米3.【点睛】考查一次函数的应用;用待定系数法求得一次函数解析式是常用的解题方法.。
上海市八年级数学下册第四单元《一次函数》测试题(有答案解析)

一、选择题1.若关于x 的不等式组20210x x a ->⎧⎨-+<⎩有解,则一次函数()32y a x =-+的图象一定不经过的象限是( ) A .第一象限 B .第二象限C .第三象限D .第四象限 2.甲、乙两车分别从A 地出发匀速行驶到B 地,在整个行驶过程中,甲、乙两车离开A 城的距离(km)y 与甲车行驶的时间(h)t 之间的关系如图所示,则下列结论中正确的个数为( )①,A B 两地相距480km ;②乙车比甲车晚出发1小时,却比甲车早到1小时;③乙车出发后4小时时追上甲车;④甲,乙两车相距50km 时, 3.5t =或4.5.A .1B .2C .3D .43.下列图象中,不表示y 是x 的函数的是( )A .B .C .D .4.如图,直线y =-2x +2与x 轴和y 轴分别交与A 、B 两点,射线AP ⊥AB 于点A .若点C是射线AP 上的一个动点,点D 是x 轴上的一个动点,且以C 、D 、A 为顶点的三角形与△AOB 全等,则OD 的长为( )A .2或5+1B .3或5C .2或5D .3或5+1 5.下列图形中,表示一次函数y =mx +n 与正比例函数y =mnx (m ,n 为常数,且mn≠0)的图象的是( )A .B .C .D .6.如图,一次函数y kx b =+(,k b 为常数,且0k ≠)的图像经过点(3,2)-,则关于x 的不等式2kx b +<的解集为( )A .3x >-B .3x <-C .2x >D .2x <7.已知点()11,P y -、点()23,Q y 在一次函数(21)2y m x =-+的图像上,且12y y >,则m 的取值范围是( )A .12m <B .12m >C .m 1≥D .1m <8.如图,在Rt ABC △中,90ACB ∠=︒,2AC BC ==,AB 的中点为D .以C 为原点,射线CB 为x 轴的正方向,射线CA 为y 轴的正方向建立平面直角坐标系.P 是BC 上的一个动点,连接AP 、DP ,则AP DP +最小时,点P 的坐标为( ).A .2,03⎛⎫ ⎪⎝⎭B .2,0⎛⎫ ⎪ ⎪⎝⎭C .10,0⎛⎫ ⎪ ⎪⎝⎭D .1,010⎛⎫ ⎪⎝⎭9.对函数22y x =-+的描述错误是( )A .y 随x 的增大而减小B .图象经过第一、三、四象限C .图象与x 轴的交点坐标为(1,0)D .图象与坐标轴交点的连线段长度等于5 10.在某大国的技术封锁下,华为公司凭借自身强大的创造力和凝聚力,华为概念指数从年初至今涨幅连连翻倍,比如硕贝德股票涨幅接近200%(如图AB 段),小丽在图片中建立了坐标系,将AB 段看作一次函数y kx b =+图象的一部分,则k ,b 的取值范围是( )A .0k >,0b <B .0k >,0b >C .0k <,0b <D .0k <,0b > 11.已知,整数x 满足1266,1,24x y x y x -≤≤=+=-+,对任意一个x ,p 都取12,y y 中的大值,则p 的最小值是( )A .4B .1C .2D .-512.下列命题中,①()1,2A -关于y 轴的对称点为()1,2--;②162±;③2y x =-+与x 轴交于点()2,0;④22x y =-⎧⎨=⎩是二元一次方程23x y +=-的一个解.其中正确的个数有( )A .1B .2C .3D .4 二、填空题13.已知直线11:n n l y x n n+=-+(n 是不为零的自然数).当1n =时,直线1:21l y x =-+与x 轴和y 轴分别交于点1A 和1B ,设11AOB (其中0是平面直角坐标系的原点)的面积为1S ;当2n =时,直线2l :3122y x =-+与x 轴和y 轴分别交于点2A 和2B ,设22A OB 的面积为2S ;……依此类推,直线n l 与x 轴和y 轴分别交于点n A 和n B ,设n n A OB 的面积为n S .则1S =________,123n S S S S +++⋅⋅⋅+=________. 14.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶,设行驶的时间为x (时),两车之间的距离为y (千米),图中的折线表示从两车出发至快车到达乙地过程中y 与x 之间的函数关系,已知两车相遇时快车比慢车多行驶40千米,快车到达乙地时,慢车还有______千米到达甲地.15.直线1:l y kx =与直线2:l y ax b =+在同一平面直角坐标系中的图形如图所示,两条直线相交于点A ,直线x m =分别与两条直线交于M ,N 两点,若AMN 的面积不小于12时,则m 的取值范围是_______.16.下列函数:①3x y =,②2y x =,③1y x =,④23y x =-,⑤()2221y x x x =--+其中是一次函数的有_____.(填序号)17.如图,在平面直角坐标系中,点A 、C 分别在x 轴、y 轴上,四边形ABCO 是边长为2的正方形,点D 为AB 的中点,点P 为OB 上的一个动点,连接DP 、AP ,当点P 满足DP AP +的值最小时,则点P 的坐标为______.18.函数1y x=-的定义域是______. 19.如图,直线y ax b =+与x 轴交于A 点(4,0),与直线y mx =交于B 点(2,)n ,则关于x 的一元一次方程ax b mx -=的解为___________.参考答案20.如图,经过点B (﹣4,0)的直线y =kx +b 与直线y =mx 相交于点A (﹣2,﹣4),则关于x 不等式mx <kx +b <0的解集为______.三、解答题21.如图,直线22y x =-+与x 轴、y 轴分别交于点A 、B .(1)求A 、B 两点的坐标;(2)在x 轴上有一点P ,使得PAB △的面积为5,求P 点的坐标.22.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x (h ),两车之间的距离为y ,图中的折线表示y 与x 之间的函数关系.(1)甲,乙两地之间的距离为 千米;图中点B 的实际意义是 ;(2)求线段BC 所表示的y 与x 之间的函数关系式,并写出自变量x 的取值范围;(3)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇.求第二列快车比第一列快车晚出发多少小时?23.已知如图,直线113:4l y x m =-+与y 轴交于A(0,6),直线22:1l y kx =+分别与x 轴交于点B(-2,0),与y 轴交于点C .两条直线相交于点D ,连接AB .求:(1)直线12l l 、的解析式;(2)求△ABD 的面积;(3)在x 轴上是否存在一点P ,使得43ABP ABD S S =△△,若存在,求出点P 的坐标;若不存在,说明理由.24.已知1y +与3x -成正比例,且5x =时,8y =,(1)求y 与x 之间的函数解析式;(2)当6y =-时,求x 的值.25.某校801班师生共45人前往某景区游览,该景区窗口票价标明:成人票每张30元,学生票享受六折优惠.(1)若老师有x 名,801班师生景区游览的门票总费用为y 元,请用x 的代数式表示y . (2)若师生门票总费用y 不超过858元,问至少有几名学生.26.如图,一次函数y kx b =+的图象与x 轴、y 轴分别相交于E ,F 两点,点E 的坐标为()6,0-,3OF =,其中P 是直线EF 上的一个动点.(1)求k 与b 的值;(2)若POE △的面积为6,求点P 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】先解不等式组,根据不等式组有解,求得a 的取值范围,即可判断一次函数()32y a x =-+的图象一定不经过的象限.【详解】∵20210x x a ->⎧⎨-+<⎩, ∴212x a x >⎧⎪⎨-<⎪⎩, ∵不等式组有解,∴122->a , ∴5a >, ∴30a ->,∴()32y a x =-+经过第一、二、三象限,不经过第四象限,故选:D .【点睛】本题考查了一次函数的性质、解一元一次不等式组,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.2.B解析:B【分析】观察图象可判断A 、B ,由图象所给数据可求得甲、乙两车离开A 城的距离y 与时间t 的关系式,可求得两函数图象的交点,可判断C ,分四种情况讨论,求得t ,可判断④,继而解题.【详解】①由图象可知,A 、B 两城市之间的距离为480km ,故①正确;②甲行驶的时间为8小时,而乙是在甲出发1小时后出发的,且用时6小时,即比甲早到1小时,故②正确;③设甲车离开A 城的距离y 与t 的关系式为=y kt 甲,把(8,480)代入可求得=60k ,=60y t ∴甲设乙车离开A 城的距离y 与t 的关系式为=m y t n +乙,把(10)(7480),、,代入可得 07480m n m n +=⎧⎨+=⎩解得8080m n =⎧⎨=-⎩=8080y t -乙,令=y 甲y 乙可得:60=t 8080t -,解得=4t ,即甲、乙两直线的交点横坐标为=4t ,此时乙出发时间为3小时,即乙车出发3小时后追上甲车,故③不正确;④当=50y 甲时,此时5=6t ,乙还没出发, 又当乙已经到达B 城,甲距离B 城50km 时,43=6t , 当=50y y -甲乙,可得60808050t t -+=,即802050t -=,当802050t -=时,可解得3=2t ,当802050t -=-时,可解得13=2t , 综上可知当t 的值为56或436或32或132,故④不正确,综上所述,正确的有①②,共2个,故选:B.【点睛】本题考查了一次函数的应用,掌握一次函数的意义是解题的关键,学会构建一次函数,利用方程组求两个函数的交点坐标,是中考常见考点,难度较易.3.A解析:A【分析】依据函数的定义,x取一个值,y有唯一值对应,可直接得出答案.【详解】解:A、根据图象知给自变量一个值,可能有2个函数值与其对应,故A选项不是函数,B、根据图象知给自变量一个值,有且只有1个函数值与其对应,故B选项是函数,C、根据图象知给自变量一个值,有且只有1个函数值与其对应,故C选项是函数,D、根据图象知给自变量一个值,有且只有1个函数值与其对应,故D选项是函数,故选:A.【点睛】此题主要考查了函数概念,任意画一条与x轴垂直的直线,始终与函数图象有一个交点,那么y是x的函数.4.D解析:D【分析】利用一次函数与坐标轴的交点求出△AOB的两条直角边,并运用勾股定理求出AB.根据已知可得∠CAD=∠OBA,分别从∠ACD=90°或∠ADC=90°时,即当△ACD≌△BOA时,AD =AB,或△ACD≌△BAO时,AD=OB,分别求得AD的值,即可得出结论.【详解】解:∵直线y=-2x+2与x轴和y轴分别交与A、B两点,当y=0时,x=1,当x=0时,y=2,∴A(1,0),B(0,2).∴OA=1,OB=2.∴AB==.∵AP⊥AB,点C是射线AP上,∴∠BAC=90°,即∠OAB+∠CAD=90°,∵∠OAB+∠OBA=90°,∴∠CAD=∠OBA,若以C、D、A为顶点的三角形与△AOB全等,则∠ACD=90°或∠ADC=90°,即△ACD≌△BOA或△ACD≌△BAO.如图1所示,当△ACD≌△BOA时,∠ACD=∠AOB=90°,AD=AB,∴OD=AD+OA=5+1;如图2所示,当△ACD≌△BAO时,∠ADC=∠AOB=90°,AD=OB=2,∴OD=OA+AD=1+2=3.综上所述,OD的长为351.故选:D.【点睛】此题考查了一次函数的应用、全等三角形的判定和性质以及勾股定理等知识,掌握一次函数的图象与性质是解题的关键.5.A解析:A【分析】根据“两数相乘,同号得正,异号得负”分两种情况讨论mn的符号,然后根据m、n同正时,同负时,一正一负或一负一正时,利用一次函数的性质进行判断.【详解】解:①当mn>0,m,n同号,同正时y=mx+n过1,3,2象限,同负时过2,4,3象限;②当mn <0时,m ,n 异号,则y =mx +n 过1,3,4象限或2,4,1象限.故选:A .【点睛】此题主要考查一次函数与正比例函数的图象判断,解题的关键是熟知一次函数的图象与性质.6.A解析:A【分析】根据图像的意义当x=-3时,kx+b=2,根据一次函数的性质求解即可.【详解】∵当x=-3时,kx+b=2,且y 随x 的增大而减小,∴不等式2kx b +<的解集3x >-,故选A.【点睛】本题考查了一次函数与不等式的关系,一次函数图像的性质,灵活运用数形结合思想确定不等式的解集是解题的关键.7.A解析:A【分析】由题目条件可判断出一次函数的增减性,则可得到关于m 的不等式,可求得m 的取值范围.【详解】解:∵点P (-1,y 1)、点Q (3,y 2)在一次函数y=(2m-1)x+2的图象上,∴当-1<3时,由题意可知y 1>y 2,∴y 随x 的增大而减小,∴2m-1<0,解得m <12, 故选:A .【点睛】本题主要考查了一次函数的性质,得出一次函数的增减性是解题的关键. 8.A解析:A【分析】作点A 关于x 轴的对称点A',连接A'P ,则AP=A'P ,当A',P ,D 在同一直线上时,AP+DP 的最小值等于A'D 的长,依据待定系数法即可得到直线A'D 的解析式,进而得出点P 的坐标为2,03⎛⎫ ⎪⎝⎭. 【详解】解:如图所示,作点A 关于x 轴的对称点A',连接A'P ,则AP=A'P ,∴AP+DP=A'P+DP ,当A',P ,D 在同一直线上时,AP+DP 的最小值等于A'D 的长,∵AC=BC=2,AB 的中点为D ,∴A (0,2),B (2,0),D (1,1),A'(0,-2),设直线A'D 的解析式为y=kx+b (k≠0),则12k b b =+⎧⎨-=⎩, 解得:32k b =⎧⎨=-⎩, ∴y=3x -2, 当y=0时,x=23, ∴点P 的坐标为(23,0), 故选:A .【点睛】本题主要考查了最短路线问题以及等腰直角三角形的性质,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.9.B解析:B【分析】根据一次函数的图象与性质即可判断A 、B 两项,求出直线与x 轴的交点即可判断C 项,求出直线与y 轴的交点,再根据勾股定理即可求出图象与坐标轴交点的连线段长度,进而可判断D 项,于是可得答案.【详解】解:A 、因为﹣2<0,所以y 随x 的增大而减小,故本选项说法正确,不符合题意; B 、函数22y x =-+的图象经过第一、二、四象限,故本选项说法错误,符合题意; C 、当y=0时,220x -+=,所以x=1,所以图象与x 轴的交点坐标为(1,0),故本选项说法正确,不符合题意;D 、图象与x 轴的交点坐标为(1,0),与y 轴的交点坐标为(0,2),所以图象与坐标轴交点的连线段长度等于22125+=,故本选项说法正确,不符合题意;故选:B .【点睛】本题考查了一次函数的图象与性质、一次函数与坐标轴的交点以及勾股定理等知识,属于基础题目,熟练掌握一次函数的基本知识是解题的关键.10.A解析:A【分析】根据题意和题目中函数图象,可以延长,得到该函数图象经过的象限,从而可以得到k 、b 的正负情况,本题得以解决.【详解】解:由图象可得,该函数经过第一、三、四象限,0k ∴>,0b <,故选:A .【点睛】本题考查了一次函数的应用,一次函数的图象与系数的关系,解答本题的关键是明确题意,利用数形结合思想解答.11.C解析:C【分析】先画出两个函数的图象,然后联立解析式即可求出两个函数的交点坐标,然后根据图象对x 分类讨论,分别求出对应p 的取值范围,即可求出p 的最小值.【详解】11y x =+,224y x =-+的图象如图所示联立124y x y x =+⎧⎨=-+⎩,解得:12x y =⎧⎨=⎩∴直线11y x =+与直线224y x =-+的交点坐标为(1,2),∵对任意一个x ,p 都取1,y 2y 中的较大值由图象可知:当61x -≤<时,1y <2y ,2y >2∴此时p=2y >2;当x=1时,1y =2y =2,∴此时p=1y =2y =2;当16x <≤时,1y >2y ,1y >2∴此时p=1y >2.综上所述:p≥2∴p 的最小值是2.故选:C .【点睛】此题考查的是画一次函数的图象、求两个一次函数的交点坐标和比较函数值的大小,掌握一次函数的图象的画法、联立函数解析式求交点坐标、根据图象比较函数值大小是解决此题的关键.12.A解析:A【分析】根据关于y 轴对称的坐标特征判断①;根据平方根定义判断②;根据直线与x 轴交点坐标判断③;根据方程的解的定义判断④.【详解】解:①()1,2A -关于y 轴的对称点为(1,2); ②1622±;③2y x =-+与x 轴交于点(2,0);④21xy=-⎧⎨=⎩是二元一次方程23x y+=-的一个解.∴正确的是:③,1个故选:A【点睛】本题考查关于y轴对称的坐标特征、平方根定义、直线与x轴交点坐标、方程的解,考查学生的辨析能力,熟知以上知识点是解答此题的关键.二、填空题13.【分析】首先求得S1S2Sn的值然后由规律:×=−求解即可求得答案【详解】当n=1时直线l1:y=−2x+1与x轴和y轴分别交于点A1和B1则A1(0)B1(01)∴S1=××1=∵当n=2时直线l解析:1422nn+【分析】首先求得S1,S2,S n的值,然后由规律:11n+×1n=1n−11n+求解即可求得答案.【详解】当n=1时,直线l1:y=−2x+1与x轴和y轴分别交于点A1和B1,则A1(12,0),B1(0,1),∴S1=12×12×1=14,∵当n=2时,直线l2:y=−32x+12与x轴和y轴分别交于点A2和B2,则A2(13,0),B2(0,12),∴S2=12×13×12,∴直线l n与x轴和y轴分别交于点A n和B n,△A n OB n的面积为S n=12×11n+×1n,∴S1+S2+S3+…+S n=12×12×1+12×13×12+…+12×11n+×1n=12×(1−12+12−13+…+1n−11n+)=12×(1−11n+)=22n n +. 故答案为:14,22n n +. 【点睛】此题考查了一次函数的应用.解题的关键是找到规律:△A n OB n 的面积为S n =12×11n +×1n 与11n +×1n =1n −11n +. 14.70【分析】利用待定系数法求出相遇前y 与x 的关系式确定出甲乙两地的距离进而求出两车的速度即可确定出所求【详解】解:设线段AB 的解析式为把与代入得:解得即令则即甲乙两地相距280千米设两车相遇时慢车行 解析:70【分析】利用待定系数法求出相遇前y 与x 的关系式,确定出甲乙两地的距离,进而求出两车的速度,即可确定出所求.【详解】解:设线段AB 的解析式为y kx b =+,把()1.5,70与()2,0代入得: 1.57020k b k b +=⎧⎨+=⎩, 解得140280k b =-⎧⎨=⎩, 即140280y x =-+,令0x =,则280y =,即甲乙两地相距280千米,设两车相遇时,慢车行驶了x 千米,则快车行驶了()40x +千米,根据题意得:40280x x ++=,解得:120x =,即两车相遇时,慢车行驶了120千米,则快车行驶了160千米,∴快车的速度为80千米/时,慢车速度为60千米/时,根据题意得:()28016080 1.5-÷=(小时),1.56090⨯=(千米),2801209070--=(千米),则快车到达乙地时,慢车还有70千米到达甲地.【点睛】本题考查一次函数的应用,解题的关键是能看懂函数图象,利用数形结合的思想将图象与已知条件联系在一起,灵活变化,找出所求问题需要的条件.15.或【分析】把点A (12)代入直线方程先求出两条直线的解析式然后求出点MN 的坐标再求出MN 的长度利用三角形的面积公式即可求出答案【详解】解:由图可知点A 为(12)直线与y 轴的交点为(01)把点A (12解析:0m ≤或2m ≥【分析】把点A (1,2)代入直线方程,先求出两条直线的解析式,然后求出点M 、N 的坐标,再求出MN 的长度,利用三角形的面积公式,即可求出答案.【详解】解:由图可知,点A 为(1,2),直线2:l y ax b =+与y 轴的交点为(0,1),把点A (1,2)代入1:l y kx =,则2k =;∴12:l y x =;把点A (1,2)和点(0,1)代入2:l y ax b =+,21a b b +=⎧⎨=⎩,解得:11a b =⎧⎨=⎩; ∴2:1=+l y x ;把x m =分别代入两条直线方程,则12y m =,21y m =+,∴点M 的坐标为(m ,2m ),点N 的坐标为(m ,m+1), ∴2(1)1MN m m m =-+=-,∴△AMN 边MN 上的高为:1m - ∵1112AMN S m m ∆=•-•-, 当AMN 的面积等于12时,则 211111(1)222AMN S m m m ∆=•-•-=-=, ∴2m =或0m =,结合AMN 的面积不小于12, ∴0m ≤或2m ≥; 故答案为:0m ≤或2m ≥.【点睛】本题考查了一次函数的性质,解一元一次不等式,求一次函数的解析式,解题的关键是正确的理解题意,掌握一次函数的性质进行解题.16.①②④⑤【分析】根据一次函数的定义进行一一判断【详解】①是一次函数;②是一次函数③不是一次函数④是一次函数⑤是一次函数故答案为:①②④⑤【点睛】考查了一次函数的定义解题关键是熟记:一般地形如y=kx解析:①②④⑤【分析】根据一次函数的定义进行一一判断.【详解】①3x y =是一次函数;②y =是一次函数,③1y x =不是一次函数,④23y x =-是一次函数,⑤()222121y x x x x =--+=+是一次函数.故答案为:①②④⑤.【点睛】考查了一次函数的定义,解题关键是熟记:一般地,形如y=kx+b (k≠0,k 、b 是常数)的函数,叫做一次函数. 17.【分析】根据正方形的性质得到点AC 关于直线OB 对称连接CD 交OB 于P 连接PAPD 则此时PD+AP 的值最小求得直线CD 的解析式为y=-x+2由于直线OB 的解析式为y=x 解方程组得到P ()即可【详解】解 解析:44,33⎛⎫ ⎪⎝⎭【分析】根据正方形的性质得到点A ,C 关于直线OB 对称,连接CD 交OB 于P ,连接PA ,PD ,则此时,PD+AP 的值最小,求得直线CD 的解析式为y=-12x+2,由于直线OB 的解析式为y=x ,解方程组得到P (43,43)即可. 【详解】解:∵四边形ABCO 是正方形,∴点A ,C 关于直线OB 对称,连接CD 交OB 于P ,连接PA ,PD ,则此时,PD+AP 的值最小,∵OC=OA=AB=2,∴C(0,2),A(2,0),∵D为AB的中点,∴AD=12AB=1,∴D(2,1),设直线CD的解析式为:y=kx+b,∴212k bb+⎧⎨⎩==,∴122kb⎧=-⎪⎨⎪=⎩,∴直线CD的解析式为:y=-12x+2,∵直线OB的解析式为y=x,∴122y xy x⎧-+⎪⎨⎪⎩==,解得:x=y=43,∴P(43,43),故答案为:(43,43).【点睛】本题考查了正方形的性质,轴对称-最短路线问题,待定系数法求一次函数的解析式,正确求出直线CD的解析式是解题的关键.18.x<1【分析】根据被开方数大于等于0分母不等于0列式进行计算即可求解【详解】解:根据题意得1-x>0解得x<1故答案是:x<1【点睛】本题考查了自变量的取值范围使函数解析式有意义列式求解即可是基础题解析:x<1.【分析】根据被开方数大于等于0,分母不等于0列式进行计算即可求解.【详解】解:根据题意得,1-x >0,解得x <1.故答案是:x <1.【点睛】本题考查了自变量的取值范围,使函数解析式有意义列式求解即可,是基础题,比较简单.19.【分析】首先根据两直线交于点B 可联立方程组求出x 的值在通过求得x 即可得解;【详解】∵∴解得:∵直线与直线交于点∴由得:∴∴关于x 的一元一次方程的解为:故答案是:【点睛】本题主要考查了一次函数的图像性 解析:2x =-【分析】首先根据两直线交于点B ,可联立方程组求出x 的值,在通过ax b mx -=求得x ,即可得解;【详解】 ∵y ax b y mx =+⎧⎨=⎩, ∴ax b mx +=, 解得:b x m a=-, ∵直线y ax b =+与直线y mx =交于B 点(2,)n , ∴2bm a =-,由ax b mx -=,得:b x m a =--, ∴2bx m a =-=--, ∴关于x 的一元一次方程ax b mx -=的解为:2x =-.故答案是:2x =-.【点睛】 本题主要考查了一次函数的图像性质,准确分析计算是解题的关键.20.【分析】由mx <kx+b 可得函数图像上的点在函数的图像上的点的上方由kx+b <0函数图像上的点在轴的下方再结合与函数图像可得答案【详解】解:mx <kx+b 函数图像上的点在函数的图像上的点的上方结合图解析:4 2.x -<<-【分析】由mx <kx +b ,可得函数y kx b =+图像上的点在函数y mx =的图像上的点的上方,由 kx+b <0,函数y kx b =+图像上的点在x 轴的下方,再结合()()2,4,4,0A B ---与函数图像可得答案.【详解】 解: mx <kx +b ,∴ 函数y kx b =+图像上的点在函数y mx =的图像上的点的上方,()24A --,,∴ 结合图像可得:x <2,-kx+b <0,∴ 函数y kx b =+图像上的点在x 轴的下方,()40B -,,∴ 结合函数图像可得:x >4,-从而可得关于x 不等式mx <kx +b <0的解集为4 2.x -<<-故答案为:4 2.x -<<-【点睛】本题考查的是一次函数的图像与不等式组的联系,掌握利用图像法求不等式组的解集是解题的关键.三、解答题21.(1)(1,0)A ,(0,2)B ;(2)(6,0)P 或(4,0)-.【分析】(1)分别令0y =和0x =即可;(2)设P 的坐标(,0)a ,根据题目条件列出等量关系即可求出a ;【详解】解:(1)把0y =代入,220x -+=,1x =,(1,0)A ∴,把0x =代入,2y =,(0,2)B ∴;(2)设P 的坐标(,0)a ,152PA OB ⨯=, 5PA =,|1|5a -=,6a =或者4-,(6,0)P ∴或者(4,0)-;【点睛】本题主要考查了一次函数的图像性质,准确分析计算是解题的关键.22.(1)900km ,4小时两车相遇;(2)()22590046y x x =-≤≤; (3)0.75小时【分析】(1)根据观察图象可得甲乙两地间的距离,根据图象中的点的实际意义即可得到答案; (2)根据观察图象先求得B 、C 两点的坐标,然后利用待定系数法求线段BC 的函数解析式即可;(3)求得第二列快车与慢车相遇所用的时间和此时第一列快车行驶的时间,即可求得第二列快车比第一列快车晚出发的时间.【详解】解:(1)由图象可知,甲乙两地间的距离是900km ;图中点B 的实际意义是:4小时两车相遇.(2)∵观察图象可得:慢车速度为9001275/km h ÷=;两车的速度和为9004225/km h ÷=∴快车的速度为22575150/km h -=∴两车相遇后快车到达乙地所用时间为90015042h ÷-=∴相遇后两小时两车行驶的距离和为2252450km ⨯=∴()4,0B ,()6,450C∴设线段BC 的解析式为:y kx b =+∴406450k b k b +=⎧⎨+=⎩ ∴225900k b =⎧⎨=-⎩∴线段BC 所表示的y 与x 之间的函数关系式为:()22590046y x x =-≤≤. (3)130min h 2=∵相遇时快车行驶的路程为1504600km ⨯=∴第二列快车与慢车相遇时行驶的路程为160075562.52km -⨯= ∴第二列快车与慢车相遇时所用时间为562.5150 3.75h ÷=,此时快车行驶了14 4.52h += ∴4.5 3.750.75h -= ∴第二列快车比第一列快车晚出发了0.75小时.【点睛】本题主要考查了用一次函数模型解决实际问题的能力和读图能力,会根据图象得出所需要的信息是解题的关键.23.(1)1364y x =-+,21y 12x =+;(2)15;(3)存在,理由见解析. 【分析】(1)直接把点A (0,6)代入l 1解析式中,求出m 的值;把点B (-2,0)代入直线l 2,求出k 的值即可;(2)首先求出点C 的坐标,然后求出点D 坐标,进而根据S △ABD =S △ACB +S △ACB 求出答案; (3)分点P 在点B 的左边和右边两种情况进行讨论,利用三角形面积公式求出点P 的坐标.【详解】解:(1)∵直线113:4l y x m =-+与y 轴交于A (0,6), ∴m =6, ∴1364y x =-+, ∵22:1l y kx =+分别与x 轴交于点B (−2,0),∴−2k +1=0,∴k =12, ∴21y 12x =+; (2)令21y 12x =+中x =0,求出y =1, ∴点C 坐标为(0,1), 联立364112y x y x ⎧=-+⎪⎪⎨⎪=+⎪⎩ , 解得x =4,y =3∴点D 的坐标为(4,3),∴11(61)2522ACB S AC BO =⨯=⨯-⨯=△ 154102ACD S =⨯⨯=△ ∴51015ABD ACD ACD S S S =+=+=△△△;(3)设点P 坐标为(m ,0),当点P 在B 点的右侧时,BP =m +2,114(2)615223ABP S BP AO m =⨯=⨯+⨯=⨯△, 解得m =143, 则点P 坐标为(143,0), 当点P 在B 点的左侧时,BP =−2−m , 114(2)615223ABP S BP AO m =⨯=⨯--⨯=⨯△, 解得m =−263, 则点P 坐标为(−263,0), 综上点P 的坐标为(143,0)或(−263,0). 【点睛】本题考查了一次函数综合题的知识,本题涉及到求一次函数解析式、两直线交点问题,三角形面积等知识,解本题(2)的关键是求出D 点的坐标,解答(3)的关键是进行分类讨论.24.(1)92922y x =-;(2)179 【分析】(1)设1(3)(0)y k x k +=-≠,利用待定系数法求k ,从而确定函数关系式; (2)将y=-6代入解析式求x 的值.【详解】解设1(3)(0)y k x k +=-≠(1)将58x y =⎧⎨=⎩代入,得 81(53)k +=-即92=k ∴92922y x =- (2)当6y =-时929622x -=- 179x = 【点睛】本题考查待定系数法求函数解析式,掌握待定系数法计算步骤,正确计算是解题关键. 25.(1)y=12x+810;(2)至少有41名学生【分析】(1)根据总费用=老师费用+学生费用列出关系式即可;(2)根据总费用不超过858元列出不等式,求解即可解答.【详解】(1)根据题意得:y=30x+30×0.6×(45﹣x )=12x+810,故总费用y=12x+810;(2)由题意得:12x+810≤858,解得:x≤4,则45﹣x≥41,故至少有41名学生.【点睛】本题考查了一次函数的应用、一元一次不等式的应用,理解题意,正确列出函数关系式是解答的关键.26.(1)12k =,3b =;(2)点P 的坐标为()2,2-,()10,2--. 【分析】(1)求出F 的坐标,将E ,F 代入解析式求解即可;(2)确定直线关系式,根据POE △的面积为6,得到点P 的纵坐标,代入关系式即可求解;【详解】(1)∵3OF =,∴点()0,3F ,将点()6,0E -,点()0,3F 分别代入到3y kx =+中,得:3b =,60k b -+=,解得:12k =,3b =, (2)∵12k =,∴直线EF 的解析式为:132y x =+. ∵点E 的坐标为()6,0-, ∴6OE =, ∴116622OPE p p S OE y y =⋅=⨯⨯=△, ∴2p y =. 令132y x =+中2y =,则1232x =+, 解得:2x =-.∴点P 的坐标为()2,2-, 令132y x =+中2y =-,则1232x -=+, 解得:10x =-.∴点P 的坐标为()2,2-,()10,2--.【点睛】本题主要考查了一次函数图像上点的坐标特征,准确分析计算是解题的关键.。
20.1 一次函数的概念(作业)解析版

20.1 一次函数的概念(作业)一、单选题1.(2019·上海普陀区·八年级期末)下列函数中,一次函数是().A.B.C. D.【答案】A【分析】根据一次函数的定义分别进行判断即可.【详解】解:.是一次函数,故正确;.当时,、是常数)是常函数,不是一次函数,故错误;.自变量的次数为,不是一次函数,故错误;.属于二次函数,故错误.故选:.【点睛】本题主要考查了一次函数的定义,一次函数的定义条件是:、为常数,,自变量次数为1.2.(2020·上海市静安区实验中学八年级课时练习)下列说法中不成立的是()A.在y=3x﹣1中y+1与x成正比例B.在y=﹣中y与x成正比例C.在y=2(x+1)中y与x+1成正比例D.在y=x+3中y与x成正比例【答案】D【详解】解:A.∵y=3x−1,∴y+1=3x,∴y+1与x成正比例,故本选项正确;B.∵∴y与x成正比例,故本选项正确;C.∵y=2(x+1),∴y与x+1成正比例,故本选项正确;D.∵y=x+3,不符合正比例函数的定义,故本选项错误.故选:D.3.(2020·上海市南汇第四中学八年级月考)下列函数:(1);(2);(3);(4);(5),(6)(是常数),其中一次函数的个数是()A.0个B.1个C.2个D.3个【答案】C【分析】根据一次函数的定义分析即可.【详解】解:(1),(4)是一次函数;(6)当k=0时,(是常数)不是一次函数;(2)的自变量在分母上,不是一次函数;(3),(5)的自变量的次数是2,不是一次函数.故选C.【点睛】本题考查了一次函数的定义,熟练掌握一次函数的定义是解答本题的关键.一般地,形如y=kx+b(k为常数,k≠0)的函数叫做一次函数.4.(2019·上海市敬业初级中学八年级月考)下列命题错误的是()A.正比例函数是一次函数B.反比例函数不是一次函数C.如果和成正比例,那么是的一次函数D.一次函数也是正比例函数【答案】D【分析】直接利用正比例函数与一次函数的定义判断得出即可.【详解】解:A、正比例函数是一次函数,此选项正确;B、反比例函数不是一次函数,故此选项正确;C、如果和成正比例,则y-1=kx,即y=kx+1,那么是的一次函数,故此选项正确;D、一次函数可能是正比例函数,也可能不是正比例函数,故此选项错误;故选:D.【点睛】此题主要考查了正比例函数与一次函数的定义,正确把握它们的区别与联系是解题关键.5.(2020·上海市静安区实验中学八年级课时练习)若函数y=(2m+6)x2+(1﹣m)x 是正比例函数,则m的值是()A.m=﹣3 B.m=1 C.m=3 D.m>﹣3【答案】A【详解】由题意可知:,∴m=-3,故选:A二、填空题6.(2018·上海民办浦东交中初级中学八年级月考)己知一次函数的图像经过,则_______.【答案】【分析】将点代入一次函数的表达式中,得到一个关于m的方程,解方程即可.【详解】∵一次函数的图像经过∴将点代入中得解得,故答案为:-2.【点睛】本题主要考查根据一次函数的表达式求图象上点的坐标,利用方程的思想是解题的关键.7.(2019·上海八年级课时练习)把2x﹣y=3写成y是x的函数的形式为_________ .【答案】y=2x﹣3【分析】通过移项即可将其变为y是x的函数的形式.【详解】解:2x﹣y=3,移项得y=2x﹣3.故答案为:y=2x﹣3.【点睛】本题主要考查函数的一般形式. y=kx+b(k≠0)是一次函数的解析式,图像是一条直线,斜率是k,截距是b.8.(2019·上海八年级课时练习).如果函数y=(a﹣2)x+3是一次函数,那么a _________ 【答案】≠2【分析】根据一次函数的定义可知自变量的系数不为零.【详解】解:∵函数y=(a﹣2)x+3是一次函数,∴a﹣2≠0,即a≠2.故答案为:≠2.【点睛】本题考点:一次函数的定义,把握定义是解题的关键.9.(2019·上海八年级课时练习)关于x的一次函数y=x+5m-5,若使其成为正比例函数,则m应取_________。
上海民办文绮中学八年级数学下册第四单元《一次函数》检测(包含答案解析)

一、选择题1.如图,点O 为平面直角坐标系的原点,点A 在x 轴正半轴上,四边形OABC 是菱形.已知点B 坐标为(3,3),则直线AC 的函数解析式为( )A .y =3x+3 B .y =3x+23C .y =﹣3x+3 D .y =﹣3x+23 2.下列图象中,不表示y 是x 的函数的是( )A .B .C .D .3.若一次函数y kx b =+(k b ,都是常数)的图象经过第一、二、四象限,则一次函数y bx k =+的图象大致是( )A .B .C .D .4.已知点P (m ,n )在第二象限,则直线y =nx +m 图象大致是下列的( )A .B .C .D .5.若实数k 、b 满足0k b +=,且k b >,则一次函数y kx b =+的图象可能是( )A .B .C .D .6.如图,直线5y x =+和直线y ax b =+相交于点P ,根据图象可知,方程组5y x y ax b =+⎧⎨=+⎩的解是( )A .510x y =⎧⎨=⎩B .1520x y =⎧⎨=⎩C .2025x y =⎧⎨=⎩D .2530x y =⎧⎨=⎩7.如图,一次函数y kx b =+(,k b 为常数,且0k ≠)的图像经过点(3,2)-,则关于x 的不等式2kx b +<的解集为( )A .3x >-B .3x <-C .2x >D .2x <8.甲乙两地相距3600m ,小王从甲地匀速步行到乙地,同时,小张从乙地沿同一路线匀速步行前往甲地,两人之间的路程(m)y 与小王步行的时间(min)x 之间的函数关系如图中的折线段AB BC CD --所示,已知小张先走完全程.结合图象,得到以下四个结论:①小张的步行速度是100m/min ; ②小王走完全程需要36分钟; ③图中B 点的横坐标为22.5; ④图中点C 的纵坐标为2880. 其中错误..的个数是( ) A .1 B .2C .3D .49.如图,在平面直角坐标系中,点()2,A m 在第一象限,若点A 关于x 轴的对称点B 在直线1y x =-+上,则m 的值为( )A .-1B .1C .2D .310.下列图象中,不可能是关于x 的一次函数y =px ﹣(p ﹣3)的图象的是( )A .B .C .D .11.直线y mx b =+与y kx =在同一平面直角坐标系中的图象如图所示,则关于x 的不等式mx b kx +<的解集为( )A .3x >-B .3x <-C .1x >-D .1x <-12.已知,整数x 满足1266,1,24x y x y x -≤≤=+=-+,对任意一个x ,p 都取12,y y 中的大值,则p 的最小值是( ) A .4B .1C .2D .-5二、填空题13.在同一平面直角坐标系中的图像如图所示,则关于x 的不等式21k x k x b <+的解为____________.14.已知一次函数(2) 3y m x m =-+-的图象经过第一、二、四象限,则化简244m m -+296m m -+=__________.15.如图,已知,,a b c 分别是Rt ABC △的三条边长,90C ∠=︒,我们把关于x 的形如a by x c c =+的一次函数称为“勾股一次函数”;若点351,5P ⎛ ⎝⎭在“勾股一次函数”的图象上,且Rt ABC △的面积是10,则c 的值是_________.16.如果直线y=2x+3与直线y=3x ﹣2b 的交点在y 轴上,那么b 的值为___.17.王阿姨从家出发,去超市交水电费.返回途中,遇到邻居交谈了一会儿再回到家,如图所示的图像是王阿姨离开家的时间t (分)和离家距离S (米)的函数图像.则王阿姨在整个过程中走得最快的速度是______米/分.18.若点()14,y -,()22,y 都在直线2y x =-+上,则1y __________2y (填“>”或“=”或“<”)19.矩形OABC 在平面直角坐标系中的位置如图所示,点B 的坐标为()6,8,点D 是OA 的中点,点E 在线段AB 上,当CDE ∆的周长最小时,点E 的坐标是_______.20.已知一次函数y =ax +6,当-2≤x≤3时,总有y >4,则a 的取值范围为______.三、解答题21.已知直线l 1:y =kx+b 经过点A (12,2)和点B (2,5). (1)求直线l 1的表达式;(2)求直线l 1与坐标轴的交点坐标.22.某公司市场营销部的营销员的个人月收入y (元)与该营销员每月的销售量x (万件)成一次函数关系,图象如图所示.根据图象提供的信息,解答下列问题:(1)求出营销员的个人月收入y (元)与该营销员每月的销售量x (万件)(0x ≥)之间的函数关系式.(2)该公司营销员李平5月份的销货量为1.2万件,求李平5月份收入.23.地表以下岩层的温度()y ℃随着所处深度() km x 的变化而变化,在某个地点y 与x 之间满足如下关系: 深度() km x 1 2 3 4 温度()y ℃5590125160y x (2)当8x =时,求出相应的y 值.(3)若岩层的温度是510℃,求相应的深度是多少?24.在一次实验中,小明把一根弹簧的上端固定,在其下端悬挂物体,下表是测得的弹簧的长度y 与所挂物体的质量x 的几组对应值. 所挂物体质量x/kg 0 1 2 3 4 5 弹簧长度y/cm283032343638是 ,因变量是 .(2)当所悬挂重物为6kg 时,弹簧的长度为 cm ;不挂重物时,弹簧的长度为 cm . (3)请直接写出弹簧长度y (cm )与所挂物体质量x (kg )的关系式,并计算若弹簧的长度为46cm 时,所挂重物的质量是多少kg ?(在弹簧的允许范围内) 25.如图,已知一次函数43y x m =+的图象与x 轴交于点(6,0)A -,与y 轴交于点B .(1)求m 的值和点B 的坐标;(2)在x 轴上是否存在点C ,使得ABC 的面积为16?若存在,求出点C 的坐标;若不存在,请说明理由.26.为了加强公民的节水意识,某地规定用水收费标准如下:每户每月用水量不超过36m 时,水费按每立方米1.1元收费,超过36m 时,超过部分每立方米按1.6元收费,设每户每月用水量为3m x ,应缴水费为y 元. (1)写出y 与x 之间的函数表达式;(2)如果有两户家庭某月份需缴纳水费为5.5元和9.8元时,求这两户家庭这个月的用水量分别是多少?【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】过B 点作BH ⊥x 轴于H 点,菱形的对角线的交点为P ,如图,设菱形的边长为t ,则OA =AB =t ,在Rt △ABH 中利用勾股定理得到(3﹣t )2+(3)2=t 2,解方程求出t ,得到A (2,0),再利用P 为OB 的中点得到P (32,3),然后利用待定系数法求直线AC 的解析式即可. 【详解】解:过B 点作BH ⊥x 轴于H 点,菱形的对角线的交点为P ,如图,∵四边形ABCO 为菱形, ∴OP =BP ,OA =AB ,设菱形的边长为t ,则OA =AB =t , ∵点B 坐标为(33 ∴BH 3AH =3﹣t ,在Rt △ABH 中,(3﹣t )2+32=t 2,解得t =2, ∴A (2,0),∵P为OB的中点,∴P(32设直线AC的解析式为y=kx+b,把A(2,0),P(322032k bk b+=⎧⎪⎨+=⎪⎩,解得:kb⎧=⎪⎨=⎪⎩,∴直线AC的解析式为y故选:D.【点睛】本题主要考查菱形的性质,勾股定理以及一次函数的待定系数法,熟练掌握菱形的性质和待定系数法,是解题的关键.2.A解析:A【分析】依据函数的定义,x取一个值,y有唯一值对应,可直接得出答案.【详解】解:A、根据图象知给自变量一个值,可能有2个函数值与其对应,故A选项不是函数,B、根据图象知给自变量一个值,有且只有1个函数值与其对应,故B选项是函数,C、根据图象知给自变量一个值,有且只有1个函数值与其对应,故C选项是函数,D、根据图象知给自变量一个值,有且只有1个函数值与其对应,故D选项是函数,故选:A.【点睛】此题主要考查了函数概念,任意画一条与x轴垂直的直线,始终与函数图象有一个交点,那么y是x的函数.3.B解析:B【分析】根据一次函数y kx b=+图像在坐标平面的位置,可先确定,k b的取值范围,在根据,k b的取值范围确定一次函数y bx k=+图像在坐标平面的位置,即可求解.【详解】根据一次函数y kx b=+经过一、二、四象限,则函数值y随x的增大而减小,可得0k<;图像与y轴的正半轴相交则0b>,因而一次函数y bx k=+的一次项系数0b>,y随x的增大而增大,经过一三象限,常数0k<,则函数与y轴的负半轴,因而一定经过一、三、四象限,故选:B.【点睛】本题考查了一次函数的图像与系数的关系,解题关键是根据已知函数图像的位置确定,k b的取值范围.4.C解析:C 【分析】根据点P 在第二象限,确定m <0,n >0,根据k ,b 的符号,确定图像的分布即可. 【详解】∵点P (m ,n )在第二象限, ∴m <0,n >0,∴图像分布在第一,第三象限,第四象限, 故选C. 【点睛】本题考查了根据k ,b 的符号确定一次函数图像的分布,熟记k ,b 的符号与图像分布的关系是解题的关键.5.A解析:A 【分析】根据0k b +=,且k b >确定k ,b 的符号,从而求解. 【详解】解:因为实数k 、b 满足k+b=0,且k >b , 所以k >0,b <0,所以它的图象经过一、三、四象限, 故选:A . 【点睛】本题主要考查一次函数图象在坐标平面内的位置与k 、b 的关系.解答本题注意理解:直线y=kx+b 所在的位置与k 、b 的符号有直接的关系.k >0时,直线必经过一、三象限.k <0时,直线必经过二、四象限.b >0时,直线与y 轴正半轴相交.b=0时,直线过原点;b <0时,直线与y 轴负半轴相交.6.C解析:C 【分析】根据图像可知,x=20,y=25即满足函数y=x+5,也满足函数y=ax+b ,即2025x y =⎧⎨=⎩是二元一次方程y=x+5的解,也是二元一次方程y=ax+b 的解,恰好满足了方程组的解. 【详解】∵一次函数图像的交点为(20,25), ∴方程组5y x y ax b =+⎧⎨=+⎩的解是2025x y =⎧⎨=⎩,故选C.【点睛】本题考查了一次函数图像交点与二元一次方程组解的关系,熟练驾驭数形结合思想,准确理解交点的意义是解题的关键.7.A解析:A 【分析】根据图像的意义当x=-3时,kx+b=2,根据一次函数的性质求解即可. 【详解】∵当x=-3时,kx+b=2, 且y 随x 的增大而减小,∴不等式2kx b +<的解集3x >-, 故选A. 【点睛】本题考查了一次函数与不等式的关系,一次函数图像的性质,灵活运用数形结合思想确定不等式的解集是解题的关键.8.B解析:B 【分析】根据小张先走完全程可知,各个节点的意义,A 代表刚开始时两人的距离,B 代表两人相遇,C 代表小张到达终点,D 代表小王到达终点,根据这些节点的意义进行分析即可判断结论的正确与否. 【详解】解:由图可知,点C 表示小张到达终点,用时36min , 点D 表示小王到达终点,用时45min ,故②错误;∴小张的步行速度为:360036100(/min)m ÷=,故①正确; 小王的步行速度为:36004580(/min)m ÷=, 点B 表示两人相遇,∴3600(10080)20(min)÷+=, ∴两人20min 相遇,(20,0)B ,故③错误; ∵362016(min)-=,∴从两人相遇到小张到终点过了16min , ∴16(10080)2880()m ⨯+=, ∴小张到达终点时,两人相距2880m , ∴点C 的纵坐标为2880,故④正确, ∴错误的是②③, 故选:B . 【点睛】本题考查一次函数的应用.解答本题的关键是明确题意,利用数形结合的思想解答.9.B解析:B【分析】根据关于x轴的对称点的坐标特点可得B(2,−m),然后再把B点坐标代入y=−x+1可得m的值.【详解】点A关于x轴的对称点B的坐标为:(2,﹣m),将点B的坐标代入直线y=﹣x+1得:﹣m=﹣2+1,解得:m=1,故选:B.【点睛】此题主要考查了关于x轴对称点的坐标,以及一次函数图象上点的坐标特点,关键是掌握凡是函数图象经过的点必能使解析式左右相等.10.D解析:D【分析】先根据一次函数的增减性、与y轴的交点可得一个关于p的一元一次不等式组,再找出无解的不等式组即可得.【详解】A、由图象知,(3)0pp>⎧⎨-->⎩,解得03p<<,即它可能是关于x的一次函数(3)y px p=--的图象,此项不符题意;B、由图象知,(3)0pp>⎧⎨--=⎩,解得3p=,即它可能是关于x的一次函数(3)y px p=--的图象,此项不符题意;C、由图象知,(3)0pp<⎧⎨-->⎩,解得0p<,即它可能是关于x的一次函数(3)y px p=--的图象,此项不符题意;D、由图象知,(3)0pp<⎧⎨--<⎩,不等式组无解,即它不可能是关于x的一次函数(3)y px p=--的图象,此项符合题意;故选:D.【点睛】本题考查了一次函数的图象与性质、一元一次不等式组,熟练掌握一次函数的图象与性质是解题关键.11.C解析:C【分析】根据图象可得,直线y =mx +b 与y =kx 的交点坐标为(−1,3),所以当x >−1时,直线y =mx +b ,落在直线y =kx 的下方,可得关于x 的不等式mx +b <kx .即可得结论.【详解】根据图象可知:直线y mx b =+与y kx =的交点坐标为:(1,3)-,则关于x 的不等式mx b kx +<的解集为1x >-.故选:C .【点睛】本题考查了一次函数与一元一次不等式、一次函数的图象,解决本题的关键是掌握一次函数与一元一次不等式的关系.12.C解析:C【分析】先画出两个函数的图象,然后联立解析式即可求出两个函数的交点坐标,然后根据图象对x 分类讨论,分别求出对应p 的取值范围,即可求出p 的最小值.【详解】11y x =+,224y x =-+的图象如图所示联立124y x y x =+⎧⎨=-+⎩,解得:12x y =⎧⎨=⎩ ∴直线11y x =+与直线224y x =-+的交点坐标为(1,2),∵对任意一个x ,p 都取1,y 2y 中的较大值由图象可知:当61x -≤<时,1y <2y ,2y >2∴此时p=2y >2;当x=1时,1y =2y =2,∴此时p=1y =2y =2;当16x <≤时,1y >2y ,1y >2∴此时p=1y >2.综上所述:p≥2∴p 的最小值是2.故选:C .【点睛】此题考查的是画一次函数的图象、求两个一次函数的交点坐标和比较函数值的大小,掌握一次函数的图象的画法、联立函数解析式求交点坐标、根据图象比较函数值大小是解决此题的关键.二、填空题13.x <-1【分析】根据不等式得到直线在直线的下方即可确定不等式的解集【详解】解:由不等式得直线在直线的下方∴自变量的取值范围为x <-1故答案为:x <-1【点睛】本题考查了一次函数与不等式的关系理解函数解析:x <-1【分析】根据不等式得到直线2y k x = 在直线1y k x b =+的下方,即可确定不等式的解集.【详解】解:由不等式21k x k x b <+得直线2y k x = 在直线1y k x b =+的下方,∴自变量的取值范围为x <-1.故答案为:x <-1【点睛】本题考查了一次函数与不等式的关系,理解函数与不等式的关系是解题关键.14.5-2m 【分析】首先根据一次函数y=(m-2)x+3-m 的图象不经过第三象限可得m-2<0进而得到m <2再根据二次根式的性质进行计算即可【详解】方法一:一次函数的图象经过第一二四象限∴∴故答案为:方解析:5-2m【分析】首先根据一次函数y=(m-2)x+3-m 的图象不经过第三象限,可得m-2<0,30m ->,进而得到m <2,再根据二次根式的性质进行计算即可.【详解】方法一:一次函数(2)3y m x m =-+-的图象经过第一、二、四象限,∴2030m m -<⎧⎨->⎩,∴=23m m =-+-52m =-.故答案为:52m -.方法二:(2)3y m x m =-+-的图象经过第一、二、四象限,∴2030m m -<⎧⎨->⎩解得23m m <⎧⎨<⎩, ∴2m <,=|2||3|m m =-+-23m m =-+-52m =-故答案为52m -.【点睛】本题考查了一次函数图象与系数的关系,以及二次根式的化简,关键是掌握:①k >0,b>0⇔y=kx+b 的图象在一、二、三象限;②k >0,b <0⇔y=kx+b 的图象在一、三、四象限;③k <0,b >0⇔y=kx+b 的图象在一、二、四象限;④k <0,b <0⇔y=kx+b 的图象在二、三、四象限.15.【分析】依据题意得到三个关系式:a+b=cab=10a2+b2=c2运用完全平方公式即可得到c 的值【详解】解:∵点在勾股一次函数的图象上把代入得:即∵分别是的三条边长的面积为10∴故∴∴故解得:故答解析:【分析】依据题意得到三个关系式:a+b=5c ,ab=10,a 2+b 2=c 2,运用完全平方公式即可得到c 的值.【详解】解:∵点(15P ,在“勾股一次函数”a b y x c c =+的图象上,把(1)5P ,代入得:a b c c=+,即a b +=, ∵,,a b c 分别是Rt ABC 的三条边长,90C ∠=︒,Rt ABC 的面积为10, ∴1102ab =,222+=a b c ,故20ab =, ∴22()2a b ab c +-=,∴22220c⎫-⨯=⎪⎪⎝⎭,故24405c=,解得:c=.故答案为:【点睛】此类考查了一次函数图象上点的坐标特征以及勾股定理的应用,根据题目中所给的材料结合勾股定理和乘法公式是解答此题的关键.16.【分析】先求出y=2x+3与y轴交点坐标为(03)代入y=3x﹣2b即可求得答案【详解】令y=2x+3中x=0解得y=3∴直线y=2x+3与y轴交点为(03)将(03)代入y=3x﹣2b中得-2b=解析:3 2 -【分析】先求出y=2x+3与y轴交点坐标为(0,3),代入y=3x﹣2b,即可求得答案.【详解】令y=2x+3中x=0,解得y=3,∴直线y=2x+3与y轴交点为(0,3),将(0,3)代入y=3x﹣2b中,得-2b=3,解得b=32 -,故答案为:32 -.【点睛】此题考查一次函数与坐标轴的交点坐标,掌握交点坐标的计算方法是解题的关键.17.100【分析】根据题意分别求出每一段路程的速度然后进行判断即可得到答案【详解】解:根据题意0~15分的速度:;25分~35分的速度:;45分~50分的速度:;∵∴王阿姨在整个过程中走得最快的速度是1解析:100【分析】根据题意,分别求出每一段路程的速度,然后进行判断,即可得到答案.【详解】解:根据题意,0~15分的速度:160 800153÷=;25分~35分的速度:(800500)1030-÷=;45分~50分的速度:5005100÷=;∵160301003<<, ∴王阿姨在整个过程中走得最快的速度是100米/分;故答案为:100.【点睛】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象解决相应的问题.18.>【分析】由y =−x +2可知k =−1<0故y 随x 的增大而减小由−4<2可得y1y2的大小关系【详解】解:∵k =−1<0∴y 随x 的增大而减小∵−4<2∵y1>y2故答案为:>【点睛】本题主要考查一次函解析:>【分析】由y =−x +2可知k =−1<0,故y 随x 的增大而减小,由−4<2,可得y 1,y 2的大小关系.【详解】解:∵k =−1<0,∴y 随x 的增大而减小,∵−4<2,∵y 1>y 2故答案为:>【点睛】本题主要考查一次函数的增减性,熟练掌握一次函数的增减性是解题的关键.19.(6)【分析】如图作点D 关于直线AB 的对称点H 连接CH 与AB 的交点为E 此时△CDE 的周长最小先求出直线CH 解析式再求出直线CH 与AB 的交点即可解决问题【详解】解:如图作点D 关于直线AB 的对称点H 连接解析:(6,83) 【分析】如图,作点D 关于直线AB 的对称点H ,连接CH 与AB 的交点为E ,此时△CDE 的周长最小,先求出直线CH 解析式,再求出直线CH 与AB 的交点即可解决问题.【详解】解:如图,作点D 关于直线AB 的对称点H ,连接CH 与AB 的交点为E ,此时△CDE 的周长最小.∵D (3,0),A (6,0),B (6,8),∴H (9,0),C (0,8),设直线CH 解析式为8y kx =+,∴098k =+, ∴89k =-,∴直线CH 解析式为y =−89x +8, ∴x =6时,y =83, ∴点E 坐标(6,83). .【点睛】本题考查矩形的性质、坐标与图形的性质、轴对称−最短问题、一次函数等知识,解题的关键是利用轴对称找到点E 位置,学会利用一次函数解决交点问题,属于中考常考题型. 20.或【分析】分当时和当时两种情况讨论根据函数的增减性以及y >4即可求得a 的取值范围【详解】解:当时一次函数y =ax +6y 随x 增大而减小在x=3时取得最小值此时解得此时;当时一次函数y =ax +6y 随x 增解析:01a <<或203a <<-【分析】分当0a <时和当0a >时两种情况讨论,根据函数的增减性以及y >4即可求得a 的取值范围.【详解】解:当0a <时,一次函数y =ax +6,y 随x 增大而减小,在x=3时取得最小值, 此时364a +>,解得23a >-,此时203a <<-; 当0a >时,一次函数y =ax +6,y 随x 增大而增大,在x=-2时取得最小值,此时264a -+>,解得1a <,此时01a <<;综上所述,01a <<或203a <<-. 故答案为:01a <<或203a <<-. 【点睛】本题考查一次函数的增减性,一次函数与一元一次不等式.能分类讨论是解题关键. 三、解答题21.(1)y =2x+1;(2)(0,1)和(﹣12,0) 【分析】(1)由待定系数法可求得直线l 1的解析式;(2)令x=0可求得其与y 轴的交点坐标,令y=0,可求得其与x 轴的交点坐标.【详解】解:(1)∵直线l 1:y=kx+b 经过点A (12,2)和点B (2,5). ∴12225k b k b ⎧+=⎪⎨⎪+=⎩,解得21k b =⎧⎨=⎩, 即y=2x+1;(2)令x=0,则y=1;令y=0,则x=-12, ∴直线l 1与坐标轴的交点坐标为(0,1)和(-12,0). 【点睛】本题考查待定系数法求一次函数的解析式,一次函数的上点的坐标特征,熟练掌握待定系数法是解题的关键.22.(1)1000800(0)y x x =+≥ (2)2000元【分析】(1)设y 与x 的函数关系式为y=kx+b ,由图可知,函数经过点(0,800)和点(2,2000),列方程组求解;(2)当x=1.2时,代入(1)中函数关系式计算.【详解】(1)设所求的函数关系式为y kx b =+,函数图象过(0,800)和(2,2800)两点,80022800b k b =⎧∴⎨+=⎩,解得1000800k b =⎧⎨=⎩, 即营销员的个人月收入y (元)与该营销员每月的销售量x (万件)(0x ≥)之间的函数关系式为1000800(0)y x x =+≥.(2)当 1.2x =时,1000 1.28002000y =⨯+=,即李平5月份的收入为2000元.【点睛】本题考查了一次函数的应用,解题的关键是熟练的掌握一次函数的相关知识点,会用待定系数法求函数解析式,会求函数值是解题关键.23.(1)3520y x =+;(2)300;(3)相应的深度是14km .【分析】(1)根据图表可知,深度每增加1km ,温度增加35℃,据此直接直接写出y 与x 之间的关系式即可;(2)根据(1)所得关系式,令x=8,求得y 的值即可;(3)根据(1)所得关系式,令y=510,求得x 的值即可.【详解】(1)由图表可知,深度每增加1km ,温度增加35℃,5535(1)y x ∴=+-553535x =+-3520x =+,即y 与x 之间的关系式为:3520y x =+;(2)由3520y x =+令8x =时,则35820300y =⨯+=;(3)由3520y x =+令510y =时,则3520510x +=,解得14x =故相应的深度是14km .【点睛】本题主要考查一次函数的应用,明确题意、正确列出函数解析式成为解答本题的关键. 24.(1)x ,y ;(2)40,28;(3)y=2x+28,9kg【分析】(1)根据自变量与因变量的定义解答即可;(2)由表格可知:不挂重物时,弹簧的长度为28cm ,重物每增加1kg ,弹簧长度增加2cm ,据此可求当所悬挂重物为6kg 时弹簧的长度;(3)根据(2)中分析可写出函数关系式,把y=46代入中求得的函数关系式,求出x 的值即可;【详解】解:(1)上述表格反映了弹簧的长度ycm 与所挂物体的质量xkg 这两个变量之间的关系.其中所挂物体的质量x 是自变量,弹簧的长度y 是因变量.(2)由表格可知不挂重物时,弹簧的长度为28cm ,∵重物每增加1kg ,弹簧长度增加2cm ,∴当所悬挂重物为6kg 时,弹簧的长度为38+2=40cm ;(3)∵重物每增加1kg ,弹簧长度增加2cm ,∴y=2x+28,把y=46代入y=2x+28,得出:46=2x+28,∴x=9,所以,弹簧的长度为46cm 时,此时所挂重物的质量是9kg .【点睛】本题主要考查了函数关系式和常量与变量的知识,解答本题的关键在于熟读题意并求出弹簧的长度与所挂物体的质量之间的函数关系式.25.(1)8,(0,8);(2)存在,点C 坐标(2,0)-或(10,0)-【分析】(1)把点A (-6,0)代入43y x m =+,求出m ,即可. (2)存在,设点C 坐标为(a ,0),由题意可得12•|a+6|•8=16,解方程即可. 【详解】解:(1)把点 (6,0)A -,代入43y x m =+, 解得:8m =,∴点B 的坐标为(0,8).(2)存在,设C 点坐标为(,0)a . 由题意,168162a ⋅+⋅=, 解得:2a =-或-10,∴点C 坐标(2,0)-或(10,0)-.【点睛】本题考查一次函数综合题、待定系数法等知识,解题的关键是灵活运用所学知识,学会用转化的思想思考问题,属于中考常考题型.26.(1) 1.1(06)1.63(6)x x y x x ≤≤⎧=⎨->⎩;(2)这两户家庭这个月的用水量分别为35m 和38m 【分析】(1)由题意可分06x ≤≤,x>6两种情况写出y 与x 之间的函数表达式;(2)首先判断消费是否大于1.1×6,若不大于,则采用(1)中06x ≤≤的函数关系式求解,若大于,则采用x>6的函数关系式求解.【详解】解:(1)当06x ≤≤时, 1.1y x =;当6x >, 1.16 1.6(6)y x =⨯+⨯-即 1.63y x =-,所以y 与x 之间的函数表达式为 1.1(06)1.63(6)x x y x x ≤≤⎧=⎨->⎩, (2)因为5.5 1.16<⨯所以用水量不超过6立方米,所以当 5.5y =时,5.5 1.1x =,解得5x =.因为9.8 1.16>⨯所以用水量超过6立方米,所以当9.8y =时,9.8 1.63x =-,解得8x =.8m答:这两户家庭这个月的用水量分别为35m和3【点睛】本题考查一次函数的应用,熟练掌握分段函数的特点和解决方法是解题关键.。
上海民办新世纪中学八年级数学下册第四单元《一次函数》检测(含答案解析)

一、选择题1.已知函数y kx b =+的图象如图所示,则函数y bx k =-的图象大致是( )A .B .C .D .2.已知点P (m ,n )在第二象限,则直线y =nx +m 图象大致是下列的( )A .B .C .D .3.若直线y =kx+b 经过第一、二、四象限,则函数y =bx -k 的大致图像是( )A .B .C .D .4.甲、乙两汽车从A 城出发前往B 城,在整个行程中,汽车离开A 城的距离y 与时间t 的对应关系如图所示.下列结论错误的是( ).A .A ,B 两城相距300km B .行程中甲、乙两车的速度比为3∶5C .乙车于7:20追上甲车D .9:00时,甲、乙两车相距60km5.在平面直角坐标系中,横坐标和纵坐标都是整数的点叫整点,已知直线()1:20l y mx m =+<与直线2:4l y x =-,若两直线与y 轴围成的三角形区域内(不含三角形的边)有且只有三个整点,则m 的取值范围是( ) A .21m -<<- B .21m -≤<- C .322m -≤<-D .322m -<≤-6.如图,在四边形ABCD 中,AD ∥BC ,∠B =60°,∠D =90°,AB =4,AD =2,点P 从点B 出发,沿B→A→D→C 的路线运动到点C ,过点P 作PQ ⊥BC ,垂足为Q .若点P 运动的路程为x ,△BPQ 的面积为y ,则表示y 与x 之间的函数关系图象大致是( )A .B .C .D .7.对于函数31y x =-+,下列结论正确的是( ) A .y 随x 的增大而增大 B .它的图象经过第一、二、三象限 C .它的图象必经过点()0,1D .当1x >时,0y >8.直线y kx b =+经过一、三、四象限,则直线y bx k =-的图象只能是图中的( )A .B .C .D .9.如图,点A 的坐标为(0,1),点B 是x 轴正半轴上的一动点,以AB 为边作等腰直角ABC ,使∠BAC=90°,如果点B 的横坐标为x ,点C 的纵坐标为y ,那么表示y 与x 的函数关系的图像大致是( )A .B .C .D .10.关于x 的一次二项式ax+b 的值随x 的变化而变化,分析下表列举的数据,若ax+b =11,则x 的值是( ) x ﹣1 0 1 1.5 ax+b﹣3﹣112A .3B .﹣5C .6D .不存在11.直线y mx b =+与y kx =在同一平面直角坐标系中的图象如图所示,则关于x 的不等式mx b kx +<的解集为( )A .3x >-B .3x <-C .1x >-D .1x <-12.一个有进水管和出水管的容器,从某时刻开始4min 内只进水不出水,在随后的8min 内既进水又出水,而后只出水不进水,直到水全部排出.假设每分钟的进水量和出水量是两个常数,容器内的水量y (L )与时间x (min )之间的关系如图所示,则下列说法错误的是( )A .每分钟的进水量为5升B .每分钟的出水量为3.75升C .OB 的解析式为y =5x (0≤x≤4)D .当x =16时水全部排出二、填空题13.如图,一次函数y ax b =+与y cx d =+的图象交于点P .下列结论中,所有正确结论的序号是_________.①0b <;②0ac <;③当1x >时,ax b cx d +>+;④a b c d +=+;⑤c d >.14.如图在平面直角坐标系中,平行四边形ABCD 的对角线交于点E ,//CD x 轴,若AC BD =,6CD =,AED 的面积为6,点A 为(2,)n ,BD 所在直线的解析式为1(0)y kx k k =++≠,则AC 所在直线的解析式为________.15.甲,乙两人都要从A 仓库运送货物到B 仓库.甲从A 仓库出发匀速行驶,1小时后乙也从A 仓库出发沿同一线路匀速行驶,当乙先到达B 仓库送完货物后(不考虑货物交接的时间)立刻以原速一半的速度返回并在途中与甲第二次相遇.设甲行驶的时间为()h x ,甲和乙之间的距离为()km y 与甲出发的时间x 的函数关系式如图所示.则甲与乙第二次相遇时到A 仓库的距离为______km .16.如图,一个直角三角形与一个正方形在同一水平线上,此三角形从图①的位置开始,匀速向右平移,到图③的位置停止运动.如果设运动时间为x ,三角形与正方形重叠部分的面积为y ,在下面的平面直角坐标系中,线段AB 表示的是三角形在正方形内部移动的面积图象,C 点表示的是停止运动后图象的结束点,下面有三种补全图象方案,正确的方案是______.①②③17.如图,已知一次函数y mx n =-的图像,则关于x 的不等式1mx n ->的解集是__________.18.如图,一次函数483y x =-+的图象与,x y 轴交于点,A B ,点B 关于x 轴的对称点为C ,动点,P Q 分别在线段,BC AB 上(P 不与,B C 重合),且APQ ABO ∠=∠,当APQ 是以AQ 为底边的等腰三角形时,点P 的坐标是________.19.如图,在同一直角坐标系中作出一次函数1y k x =与2y k x b =+的图象,则关于x 、y 的二元一次方程组12y k xy k x b =⎧⎨=+⎩的解是___________.20.平面直角坐标系中,点A 坐标为()23,3,将点A 沿x 轴向左平移a 个单位后恰好落在正比例函数23y x =-的图象上,则a 的值为__________.三、解答题21.如图,直线22y x =-+与x 轴、y 轴分别交于点A 、B .(1)求A 、B 两点的坐标;(2)在x 轴上有一点P ,使得PAB △的面积为5,求P 点的坐标.22.科学研究发现.地表以下岩层的温度y (℃)与所处深度x (千米)之间近似地满足一次函数关系.经测量,在深度2千米的地方,岩层温度为90℃;在深度5千米的地方,岩层温度为195℃.(1)求出y 与x 的函数表达式;(2)求当岩层温达到1805℃时,岩层所处的深度.23.如图,直线1l :1y x =+与直线2l :2y x n =-+相交于点()1,P b .(1)求点P 的坐标;(2)若120y y >>,求x 的取值范围;(3)点(),0D m 为x 轴上的一个动点,过点D 作x 轴的垂线分别交1l 和2l 于点E ,F ,当3EF =时,求m 的值.24.某商店需要购进甲、乙两种商品共200件,其进价和售价如表:甲 乙 进价(元/件) 14 35 售价(元/件)2045件?(2)若商店计划投入资金小于5320元,且销售完这批商品后获利大于1660元,请问有几种购货方案?并求出其中获利最大的购货方案.25.如果3个数位相同的自然数m ,n ,k 满足:m n k +=,且k 各数位上的数字全部相同,则称数m 和数n 是一对“黄金搭档数”.例如:因为123,765,888都是三位数,123765888+=,所以123和765是一对“黄金搭档数”.再如:因为26,29,55都是两位数,262955+=,所以26和29是一对“黄金搭档数”.(1)若326与一个个位上的数字是3的数a 是一对“黄金搭档数”,389与一个个位上的数字是8的数b 是一对“黄金搭档数”,直接写出a 和b 的值;(2)若10(19,09)s x y x y =+≤≤≤≤,10(19,09)t x z x z =+≤≤≤≤,且y z <,s 和t 是一对“黄金搭档数”,求这样的“黄金搭档数”一共有多少对?26.为了加强公民的节水意识,某地规定用水收费标准如下:每户每月用水量不超过36m 时,水费按每立方米1.1元收费,超过36m 时,超过部分每立方米按1.6元收费,设每户每月用水量为3m x ,应缴水费为y 元. (1)写出y 与x 之间的函数表达式;(2)如果有两户家庭某月份需缴纳水费为5.5元和9.8元时,求这两户家庭这个月的用水量分别是多少?【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据函数y kx b =+在坐标系中得位置可知0,0k b >>,然后根据系数的正负即可判断函数y bx k =-的位置. 【详解】函数y kx b =+的图像经过一、二、三象限,0,0k b ∴>>,0k -<∴∴函数y bx k =-的图像经过一、三、四象限,故选:B . 【点睛】本题考查了一次函数与系数的关系,根据函数在坐标系中的位置得出系数的正负是解题关键.2.C解析:C 【分析】根据点P 在第二象限,确定m <0,n >0,根据k ,b 的符号,确定图像的分布即可. 【详解】∵点P (m ,n )在第二象限, ∴m <0,n >0,∴图像分布在第一,第三象限,第四象限, 故选C. 【点睛】本题考查了根据k ,b 的符号确定一次函数图像的分布,熟记k ,b 的符号与图像分布的关系是解题的关键.3.B解析:B 【分析】根据一次函数y=kx+b 的图象经过第一、二、四象限,可以得到k 和b 的正负,然后根据一次函数的性质,即可得到一次函数y=bx-k 中b ,-k 的正负,从而得到图象经过哪几个象限,从而可以解答本题. 【详解】解:∵一次函数y=kx+b 的图象经过第一、二、四象限, ∴k <0,b >0, ∴b >0,-k >0,∴一次函数y=bx-k 图象第一、二、三象限, 故选:B . 【点睛】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数解析式判断其经过的象限解答.4.C解析:C 【分析】根据题意得A ,B 两城相距300km ,结合图表甲、乙两车消耗的总时间,可计算得甲、乙两车的速度,从而得到乙车追上甲车和在9:00时甲、乙两车的距离,从而得到答案. 【详解】根据题意得:A ,B 两城相距300km ,故选项A 结论正确;根据题意得:甲车从A 城出发前往B 城共消耗5小时,乙车从A 城出发前往B 城共消耗3小时; 甲车的速度300==60km/h 5乙车的速度300==100km/h 3∴行程中甲、乙两车的速度比为603=1005,故答案B 结论正确; 设乙车出发x 小时后,乙车追上甲车得:()601100x x += ∴32x =∵乙车于6:00出发∴乙车于7:30追上甲车,故选项C 结论错误; ∵9:00时,甲车还有一个小时的到B 城∴9:00时,甲、乙两车相距60160km ⨯=,故选项D 结论正确; 故选:C . 【点睛】本题考查了函数图像和一元一次方程的知识;解题的关键是熟练掌握函数图像的性质,从而完成求解.5.D解析:D 【分析】由1l 过(1,0)时区域内由两个整点求出m=-2,由1l 过(2,-1)时区域内有三个整点求出32m =-,综合求出区域内有三个整点可求出322m -<≤-.【详解】当()1:20l y mx m =+<过(1,0)时区域内由两个整点, 此时m+2=0,m=-2,当()1:20l y mx m =+<过(2,-1)时区域内有三个整点, 此时122m -=+,32m =-, 两直线与y 轴围成的三角形区域内(不含三角形的边)有且只有三个整点,322m -<≤-.故选择:D .【点睛】本题考查数形结合思想求区域整点问题,掌握利用区域三角形边界整点来解决问题是关键.6.D解析:D 【分析】分别求出点P 在BA 上运动、点P 在AD 上运动、点P 在DC 上运动时的函数表达式,进而求解. 【详解】解:由题意得:①当点P 在BA 上运动时()04x ≤≤,2111133cos sin 2222y BQ PQ BP B BP B x x x ,图象为二次函数; ②当点P 在AD 上运动时46x , 1134322y BQ CD BQ BQ ,图象为一次函数; ③当点P 在DC 上运动时, 11142222y BQ CP y BC CP CP CP ,图象为一次函数;所以符合题意的选项是D .故选:D .【点睛】本题考查的是动点图象问题,涉及到二次函数、一次函数、解直角三角形等知识,此类问题关键是,要弄清楚不同时间段,图象和图形的对应关系,进而求解.7.C解析:C【分析】根据一次函数的图象与性质逐项判断即可得.【详解】一次函数31y x =-+中的30k =-<,y ∴随x 的增大而减小,则选项A 错误;一次函数31y x =-+中的30,10k b =-<=>,∴它的图象经过第一、二、四象限,则选项B 错误;当0x =时,1y =,∴它的图象必经过点()0,1,则选项C 正确;当0y =时,310x -+=,解得13x =, y 随x 的增大而减小,∴当13x <时,0y >,则选项D 错误; 故选:C .【点睛】本题考查了一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题关键. 8.D解析:D【分析】先根据直线y kx b =+经过一、三、四象限判断出k 和b 的正负,从而得到直线y bx k=-的图象经过的象限.【详解】解:∵直线y kx b =+经过第一、三、四象限,∴0k >,0b <,∴0k -<,∴直线y bx k =-经过第二、三、四象限.故选:D .【点睛】本题考查一次函数的图象和性质,解题的关键是掌握根据系数的正负判断函数图象经过的象限的方法.9.A解析:A【分析】先作出合适的辅助线,再证明△ADC 和△AOB 的关系,即可建立y 与x 的函数关系,从而确定函数图像.【详解】解:由题意可得:OB=x ,OA=1,∠AOB=90°,∠BAC=90°,AB=AC ,点C 的纵坐标是y , 作AD ∥x 轴,作CD ⊥AD 于点D ,如图所示:∴∠DAO+∠AOD=180°,∴∠DAO=90°,∴∠OAB+∠BAD=∠BAD+∠DAC=90°,∴∠OAB=∠DAC ,在△OAB 和△DAC 中,AOB ADC OAB DAC AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△OAB ≌△DAC (AAS ),∴OB=CD ,∴CD=x ,∵点C 到x 轴的距离为y ,点D 到x 轴的距离等于点A 到x 的距离1,∴y=x+1(x >0).故选A .【点睛】本题考查动点问题的函数图象,明确题意、建立相应的函数关系式是解答本题的关键. 10.C解析:C【分析】设y=ax+b ,把x=0,y=-1和x=1,y=1代入求出a 与b 的值,即可求出所求.【详解】解:设y =ax+b ,把x=0,y=-1和x=1,y=1代入得:11a b b +=⎧⎨=-⎩, 解得:21a b =⎧⎨=-⎩, ∴2x ﹣1=11,解得:x =6.故选:C .【点睛】此题考查了解二元一次方程组以及代数式求值,一次函数的解析式,熟练掌握解二元一次方程组是解本题的关键.11.C解析:C【分析】根据图象可得,直线y =mx +b 与y =kx 的交点坐标为(−1,3),所以当x >−1时,直线y =mx +b ,落在直线y =kx 的下方,可得关于x 的不等式mx +b <kx .即可得结论.【详解】根据图象可知:直线y mx b =+与y kx =的交点坐标为:(1,3)-,则关于x 的不等式mx b kx +<的解集为1x >-.故选:C .【点睛】本题考查了一次函数与一元一次不等式、一次函数的图象,解决本题的关键是掌握一次函数与一元一次不等式的关系.12.D解析:D【分析】根据题意和函数图象可知每分钟的进水量和出水量,继而即可求解【详解】解:由题意可得,每分钟的进水量为:20÷4=5(L ),A 说法正确,不符合题意;∴OB 的解析式为y =5x (0≤x≤4);C 说法正确,不符合题意;每分钟的出水量为:[5×8﹣(30﹣20)]÷8=3.75(L),B说法正确,不符合题意;30÷3.75=8(min),8+12=20(min),∴当x=20时水全部排出.D说法错误,符合题意;故选:D.【点睛】本题考查一次函数的应用,解题的关键是明确题意和解读函数,找出所求问题需要的条件,利用数形结合的思想.二、填空题13.②④⑤【分析】仔细观察图象:①根据一次函数y=ax+b图象从左向右变化趋势及与y轴交点即可判断ab的正负;②根据一次函数y=cx+d图象从左向右变化趋势及与y轴交点可判断cd的正负即可得出结论;③以解析:②④⑤【分析】仔细观察图象:①根据一次函数y=ax+b图象从左向右变化趋势及与y轴交点即可判断a、b的正负;②根据一次函数y=cx+d图象从左向右变化趋势及与y轴交点可判断c、d 的正负,即可得出结论;③以两条直线的交点为分界,哪个函数图象在上面,则哪个函数值大;④由两个一次函数图象的交点坐标的横坐标为1可得出结论;⑤由一次函数y=cx+d图象与x轴的交点坐标为(dc-,0),可得dc->-1,解此不等式即可作出判断.【详解】解:①由图象可得:一次函数y=ax+b图象经过一、二、四象限,∴a<0,b>0,故①错误;②由图象可得:一次函数y=cx+d图象经过一、二、三象限,∴c>0,d>0,∴ac<0,故②正确;③由图象可得:当x>1时,一次函数y=ax+b图象在y=cx+d的图象下方,∴ax+b<cx+d,故③错误;④∵一次函数y=ax+b与y=cx+d的图象的交点P的横坐标为1,∴a+b=c+d,故④正确;⑤∵一次函数y=cx+d图象与x轴的交点坐标为(dc-,0),且dc->-1,c>0,∴c>d.故⑤正确.故答案为:②④⑤.【点睛】本题考查了一次函数的图象与性质、一次函数与一元一次不等式,掌握一次函数的图象与性质并利用数形结合的思想是解题的关键.14.y=-x+【分析】先根据对角线相等的平行四边形是矩形证明▱ABCD是矩形计算BD 的解析式得点A 和C 的坐标从而可得结论【详解】解:在▱ABCD 中∵AC=BD ∴▱ABCD 是矩形∴∠ADC=90°∵S △A解析:y=-23x+253. 【分析】先根据对角线相等的平行四边形是矩形,证明▱ABCD 是矩形,计算BD 的解析式,得点A 和C 的坐标,从而可得结论.【详解】解:在▱ABCD 中,∵AC=BD ,∴▱ABCD 是矩形,∴∠ADC=90°,∵S △AED =6,∴S ▱ABCD =AD•CD=4×6=24,∴AD×6=24,∴AD=4,∵A (2,n ),∴D (2,n-4),B (8,n ),B (8,n-4)∵BD 所在直线的解析式为1(0)y kx k k =++≠ ∴21=n-481k k k k n ++⎧⎨++=⎩,解得:237k n ⎧=⎪⎨⎪=⎩, ∴BD 所在直线的解析式为y=23x+7, ∴A (2,7),C (8,3), 设直线AC 的解析式为:y=mx+a ,则2783m a m a +=⎧⎨+=⎩,解得:23253m a ⎧=-⎪⎪⎨⎪=⎪⎩, ∴AC 所在直线的解析式为:y=-23x+253. 故答案为:y=-23x+253. 【点睛】本题考查的是利用待定系数法求一次函数的解析式,矩形的性质和判定,坐标和图形的性质等知识,熟练掌握矩形的性质是解题的关键. 15.72【分析】根据题意和函数图象中的数据可以求得甲乙的速度然后即可求得甲乙第二次相遇的时刻进而求得乙第二次与甲相遇时距离A 地多少千米【详解】解:从图象可以看出A 点表示乙从A 仓库出发B 点表示甲乙第一次相解析:72【分析】根据题意和函数图象中的数据可以求得甲乙的速度,然后即可求得甲乙第二次相遇的时刻,进而求得乙第二次与甲相遇时,距离A 地多少千米.【详解】解:从图象可以看出,A 点表示乙从A 仓库出发,B 点表示甲乙第一次相遇,C 点表示乙到达B 码头,D 点表示甲乙第二次相遇.设甲的速度为akm/h ,乙的速度为bkm/h ,()()1.5 1.517 1.5403a b b a ⎧-⎪⎨⎛⎫-⨯- ⎪⎪⎝⎭⎩== 解得,2472a b ⎧⎨⎩== 设甲乙第二次相遇的时间为t 小时,()74024363t ⎛⎫=+⨯- ⎪⎝⎭, 解得,t=3,则乙第二次与甲相遇时,甲距离A 仓库:24×3=72(km ),故答案为:72.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.16.乙【分析】由题意可知三角形没全进入正方形之前重叠部分为直角三角形当三角形即将出正方形之后重叠部分为直角梯形利用面积公式求出两个图形的面积即可判断其图象【详解】设直角三角形的底为a 高为b 运行速度为v 由 解析:乙【分析】由题意可知三角形没全进入正方形之前,重叠部分为直角三角形.当三角形即将出正方形之后,重叠部分为直角梯形.利用面积公式求出两个图形的面积即可判断其图象.【详解】设直角三角形的底为a ,高为b ,运行速度为v .由题意可知当三角形没全进入正方形之前,重叠部分为与原三角形相似的直角三角形. ∵重叠部分的直角三角形的底为vx ,∴根据三角形相似,可知:vx a b =重叠直角三角形的高 , 即重叠直角三角形的高=bvx a,∴22122bvx bv y vx x a a==, ∵a , b , v 都为常数且大于0,∴222bv y x a=是一个开口向上的曲线. 当三角形即将出正方形之后,重叠部分为去掉与原三角形相似的直角三角形的直角梯形. 设正方形边长为l ,则该梯形的高为()l vx a --,下底为b , 根据三角形相似可知:vx l b a -=梯形上底, 即梯形上底()b vx l a -=, ∴[]1()()2b vx l y b l vx a a -⎡⎤=⨯+⨯--⎢⎥⎣⎦. ∵a , b , v ,l 都为常数且大于0,∴[]1()()2b vx l y b l vx a a -⎡⎤=⨯+⨯--⎢⎥⎣⎦中2x 项的系数为202bv a-<, ∴[]1()()2b vx l y b l vx a a -⎡⎤=⨯+⨯--⎢⎥⎣⎦是一个开口向下的曲线. ∴只有乙符合.故答案为:乙.【点睛】本题考查动点问题的函数图象.理解三角形运动过程中的分界点,利用三角形和梯形的面积公式列出关于x 的方程来判断其图象是解题关键.17.【分析】将不等式写成可以理解为一次函数当时求x 的取值范围由函数图象即可得到结果【详解】解:不等式可以写成即一次函数当时x 的取值范围由函数图象可得故答案是:【点睛】本题考查一次函数与不等式的关系解题的 解析:4x >【分析】将不等式1mx n ->写成1mx n ->,可以理解为一次函数y mx n =-,当1y >时,求x 的取值范围,由函数图象即可得到结果.【详解】解:不等式1mx n ->可以写成1mx n ->,即一次函数y mx n =-,当1y >时,x 的取值范围,由函数图象可得4x >.故答案是:4x >.【点睛】本题考查一次函数与不等式的关系,解题的关键是掌握利用一次函数图象解一元一次不等式的方法.18.【分析】由一次函数的图象与轴交于点可得A (60)B (08)由勾股定理AB=由点B 与点C 关于x 轴对称可求C (0-8)AB=AC=10可证△BPQ ≌△CAP(AAS)由性质可得PB=CA=10由线段和差解析:(0,2)-【分析】 由一次函数483y x =-+的图象与,x y 轴交于点,A B ,可得A (6,0),B (0,8),由勾股定理,由点B 与点C 关于x 轴对称,可求C (0,-8),AB=AC=10,可证△BPQ ≌△CAP(AAS),由性质可得PB=CA=10,由线段和差OP=BP-OB=2即可.【详解】解:∵一次函数483y x =-+的图象与,x y 轴交于点,A B , ∴x=0,y=8;y=0,48=03x -+,解得x=6, ∴A (6,0),B (0,8),∴,∵点B 与点C 关于x 轴对称,∴C (0,-8),AB=AC=10,∵∠QPA=∠ABC=∠ACB ,∴∠BPQ+∠APC=108°-∠QPA ,∵∠PAC+∠APC=180°-∠BCA=180°-∠QPA ,∴∠BPQ=∠CAP ,∵PQ=PA ,∴△BPQ ≌△CAP(AAS),∴PB=CA=10,∴OP=BP-OB=10-8=2,P(0,-2),故答案为:(0,-2).【点睛】本题考查一次函数的性质,勾股定理的应用,轴对称性质,等腰三角形的性质,三角形全等的判定与性质,掌握一次函数的性质,勾股定理的应用,轴对称性质,等腰三角形的性质,三角形全等的判定与性质,解题关键发现并会利用一线三等角构造全等. 19.【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标解决问题【详解】解:∵一次函数y1=k1x 与y=k2x+b 的图象的交点坐标为(12)∴二元一次方程组的解为故答案是:【点睛】本题考查了一次函解析:12x y =⎧⎨=⎩【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标解决问题.【详解】解:∵一次函数y 1=k 1x 与y=k 2x+b 的图象的交点坐标为(1,2),∴二元一次方程组12y k x y k x b =⎧⎨=+⎩的解为12x y =⎧⎨=⎩. 故答案是:12x y =⎧⎨=⎩. 【点睛】本题考查了一次函数与二元一次方程(组):方程组的解就是两个相应的一次函数图象的交点坐标.20.【分析】根据点的平移规律可得平移后点的坐标是(2-a3)代入计算即可【详解】解:∵A 坐标为(23)∴将点A 沿x 轴向左平移a 个单位后得到的点的坐标是(2-a3)∵恰好落在正比例函数的图象上∴解得:a= 53【分析】根据点的平移规律可得平移后点的坐标是,3),代入y =-计算即可.【详解】解:∵A 坐标为3),∴将点A 沿x 轴向左平移a 个单位后得到的点的坐标是-a ,3),∵恰好落在正比例函数y =-的图象上,∴)3a -=,解得:.【点睛】此题主要考查了正比例函数图象上点的坐标特点,以及点的平移规律,关键是要懂得左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加..三、解答题21.(1)(1,0)A ,(0,2)B ;(2)(6,0)P 或(4,0)-.【分析】(1)分别令0y =和0x =即可;(2)设P 的坐标(,0)a ,根据题目条件列出等量关系即可求出a ;【详解】解:(1)把0y =代入,220x -+=,1x =,(1,0)A ∴,把0x =代入,2y =,(0,2)B ∴;(2)设P 的坐标(,0)a ,152PA OB ⨯=, 5PA =,|1|5a -=,6a =或者4-,(6,0)P ∴或者(4,0)-;【点睛】本题主要考查了一次函数的图像性质,准确分析计算是解题的关键.22.(1)3520y x =+;(2)岩层所处的深度是51km【分析】(1)设y 与x 的函数关系式为y kx b =+,把()2,90,()5,195带入求解即可; (2)当1805y =时,求出x 的值即可;【详解】解:(1)设y 与x 的函数关系式为y kx b =+, 2905195k b k b +=⎧⎨+=⎩, 解得,3520k b =⎧⎨=⎩, 即y 与x 的函数关系式为3520y x =+;(2)当1805y =时,18053520x =+,解得,51x =,即当岩层温达到1805℃时,岩层所处的深度是51km .【点睛】本题主要考查了一次函数的应用,准确分析计算是解题的关键.23.(1)()1,2P ;(2)12x <<;(3)2m =或0m =.【分析】(1)把()1,P b 代入1l 的解析式可求解;(2)由(1)可先求解2l 的解析式,然后根据图像可进行求解;(3)把x m =分别代入12l l 、解析式可得点E 、F 的坐标,然后根据两点距离公式可分当1m 时和当1m <时,最后求解即可.【详解】解:(1)把()1,P b 代入1l 解析式得:112b =+=,∴()1,2P .(2)把()1,2代入2l 解析式得:22n =-+,∴4n =,∴2l :24y x =-+,当0y =时,2x =,∴当120y y >>时x 的取值范围为12x <<.(3)把x m =分别代入12l l 、解析式得:1y m =+和24y m =-+,∴点()(),1,,24E m m F m m +-+,∴当1m 时,()1243m m +--+=,∴2m =,当1m <时,2413m m -+--=,∴0m =.【点睛】本题主要考查一次函数的综合,熟练掌握一次函数的性质是解题的关键.24.(1)甲种商品购进80件,乙种商品购进120件;(2)共有4种购货方案,甲种商品购进81件、乙种商品购进119件时,获利最大【分析】(1)设甲种商品购进x 件,乙种商品购进y 件,根据该商品购进两种商品共200件且销售完这批商品后能获利1680元,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设甲种商品购进m 件,则乙种商品购进(200﹣m )件,根据“该商店计划投入资金小于5320元,且销售完这批商品后获利大于1660元”,即可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围,结合m 为非负整数即可得出购货方案的数量,设销售完这批商品后获利w 元,根据总利润=每件的利润×销售数量(购进数量),即可得出w 关于m 的函数关系式,再利用一次函数的性质即可解决最值问题.【详解】解:(1)设甲种商品购进x 件,乙种商品购进y 件,依题意得:200(2014)(4535)1680x y x y +=⎧⎨-+-=⎩, 解得:80120x y =⎧⎨=⎩. 答:甲种商品购进80件,乙种商品购进120件.(2)设甲种商品购进m 件,则乙种商品购进(200)m -件,依题意得:1435(200)5320(2014)(4535)(200)1660m m m m +-<⎧⎨-+-->⎩, 解得:8085m <<,又m 为非负整数,m ∴可以为81,82,83,84,∴该商店共有4种购货方案.设销售完这批商品后获利w 元,则(2014)(4535)(200)42000w m m m =-+--=-+, 40-<,w ∴随m 的增大而减小,∴当81m =时,w 取得最大值,即甲种商品购进81件、乙种商品购进119件时,该商店销售完这批商品后获利最大.【点睛】本题考查了二元一次方程组的应用、一元一次不等式组的应用以及一次函数的性质,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.25.(1)673,388a b ==;(2)10对.【分析】(1)由黄金搭档数的定义可得:326+999,a =389+=777b ,解方程从而可得答案; (2)由10,10,s x y t x z =+=+可得,s t 的十位上的数字是相同的,再结合19,09,09,x y z ≤≤≤≤≤≤ y <,z 可得:,s t 都是两位数,s <t ,由20,s t x y z +=++可得0<4,x ≤ 结合x 为正整数,再分类讨论可得答案.【详解】解:(1) 326与一个个位上的数字是3的数a 是一对“黄金搭档数”,326∴与a 的和的个位数是9,且它们的和也是三位数,一对黄金搭档数的和各位数上的数字全部相同,326+999,a ∴=673,a ∴=同理可得:389+=777b ,388,b ∴=综上:673,388.a b ==(2)10,10,s x y t x z =+=+,s t ∴的十位上的数字是相同的,19,09,09,x y z ≤≤≤≤≤≤ y <,z1099,1099,s t ∴≤≤≤≤ 且,s t 都是两位数,s <t ,s 和t 是一对“黄金搭档数”,s ∴与t 的和也是一个两位数,且各位数上的数字全部相同,101020,s t x y x z x y z +=+++=++0∴<4,x ≤ x 为正整数, x 的可能的值为1,2,3,4.综上可得:满足条件的数有10对,分别是:当1x =时,10,12,s t ==当2x =时,20,24,s t == 或21,23,s t ==当3x =时,30,36,s t == 或31,35,s t == 或32,34,s t ==当4x =时,40,48,s t == 或41,47,s t == 或42,46,s t == 或43,45.s t == 综上:这样的“黄金搭档数”一共有10对.【点睛】本题考查的是新定义:黄金搭档数的定义的理解,利用定义借助方程,不等式,对变量的范围的理解进行分类讨论,解题的关键是弄懂题意,作出合适的分类.26.(1) 1.1(06)1.63(6)x x y x x ≤≤⎧=⎨->⎩;(2)这两户家庭这个月的用水量分别为35m 和38m 【分析】(1)由题意可分06x ≤≤,x>6两种情况写出y 与x 之间的函数表达式;(2)首先判断消费是否大于1.1×6,若不大于,则采用(1)中06x ≤≤的函数关系式求解,若大于,则采用x>6的函数关系式求解.【详解】解:(1)当06x ≤≤时, 1.1y x =;当6x >, 1.16 1.6(6)y x =⨯+⨯-即 1.63y x =-,所以y 与x 之间的函数表达式为 1.1(06)1.63(6)x x y x x ≤≤⎧=⎨->⎩, (2)因为5.5 1.16<⨯所以用水量不超过6立方米,所以当 5.5y =时,5.5 1.1x =,解得5x =.因为9.8 1.16>⨯所以用水量超过6立方米,所以当9.8y =时,9.8 1.63x =-,解得8x =.答:这两户家庭这个月的用水量分别为35m 和38m【点睛】本题考查一次函数的应用,熟练掌握分段函数的特点和解决方法是解题关键 .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题1.如图,在平面直角坐标系中,点A的坐标为(﹣2,3),AB⊥x轴,AC⊥y轴,D是OB的中点.E是OC上的一点,当△ADE的周长最小时,点E的坐标是()A.(0,43)B.(0,1)C.(0,103)D.(0,2)2.如图,直线y=-2x+2与x轴和y轴分别交与A、B两点,射线AP⊥AB于点A.若点C 是射线AP上的一个动点,点D是x轴上的一个动点,且以C、D、A为顶点的三角形与△AOB全等,则OD的长为()A.25B.35C.25D.353.如图1,将正方形ABCD置于平面直角坐标系中,其中AD边在x轴上,其余各边均与坐标轴平行,直线l:y=x-3沿x轴的负方向以每秒1个单位的速度平移,在平移的过程中,该直线被正方形ABCD的边所截得的线段长为m,平移的时间为t(秒),m与t的函数图象如图2所示,则图2中b的值为()A .52B .42C .32D .54.如图,一次函数y =2x 和y =ax +4的图象相交于点A (m ,3),则不等式0<ax +4<2x的解集是( )A .0<x <32B .32<x <6 C .32<x <4 D .0<x <35.在平面直角坐标系中,横坐标和纵坐标都是整数的点叫整点,已知直线()1:20l y mx m =+<与直线2:4l y x =-,若两直线与y 轴围成的三角形区域内(不含三角形的边)有且只有三个整点,则m 的取值范围是( ) A .21m -<<- B .21m -≤<- C .322m -≤<-D .322m -<≤-6.已知点()1,4P 在直线2y kx k =-上,则k 的值为( ) A .43B .43-C .4D .4-7.如图,已知直线1:2l y x =,过点()0,1A 作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点C ,过点C 作y 轴的垂线交直线l 于点D ,则点D 的坐标为( )A .()10,5B .()0,10C .()0,5D .()5,108.甲乙两地相距3600m ,小王从甲地匀速步行到乙地,同时,小张从乙地沿同一路线匀速步行前往甲地,两人之间的路程(m)y 与小王步行的时间(min)x 之间的函数关系如图中的折线段AB BC CD --所示,已知小张先走完全程.结合图象,得到以下四个结论:①小张的步行速度是100m/min ; ②小王走完全程需要36分钟; ③图中B 点的横坐标为22.5; ④图中点C 的纵坐标为2880. 其中错误..的个数是( ) A .1 B .2C .3D .49.如图,在平面直角坐标系中点A 的坐标为()0,6,点B 的坐标为3,52⎛⎫-⎪⎝⎭,将AOB 沿x 轴向左平移得到A O B ''',若点B '的坐标为19,52⎛⎫- ⎪⎝⎭,点A '落在直线y kx =上,则k 的值为( )A.43-B.34-C.34D.611-10.火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图像描述如图所示,有下列结论:①火车的速度为30米/秒;②火车的长度为120米;③火车整体都在隧道内的时间为35秒;④隧道长度为1200米.其中正确的结论是()A.①②③B.①②④C.③④D.①③④11.下列说法正确的是()①从开始观察时起,50天后该植物停止长高;②直线AC的函数表达式为165y x=+③第40天,该植物的高度为14厘米;④该植物最高为15厘米A.①②③B.②④C.②③D.①②③④12.一个一次函数的图象与直线112y x=-平行,与x轴、y轴的交点分别为A,B,并且过点(1,5)--,则在线段AB 上(包括端点A ,B )横、纵坐标都是整数的点有( ) A .4个B .5个C .6个D .7个二、填空题13.如图,已知直线,点,过点作轴的垂线交直线于点,以为边,向右侧作正方形,延长交直线于点;以为边,向右侧作正方形,延长交直线于点;……;按照这个规律进行下去,点的横坐标为______.(结果用含正整数的代数式表示)14.已知一次函数(2) 3y m x m =-+-的图象经过第一、二、四象限,则化简244m m -++296m m -+=__________.15.如图,在平面直角坐标系中,(0,2)A ,(4,2)B ,点P 是x 轴上任意一点,当PA PB +有最小值时,P 点的坐标为________.16.如图,正方形ABCD ,CEFG 边在x 轴的正半轴上,顶点A ,E 在直线12y x =上,如果正方形ABCD 边长是1,那么点F 的坐标是______.17.矩形OABC 在平面直角坐标系中的位置如图所示,点B 的坐标为()6,8,点D 是OA 的中点,点E 在线段AB 上,当CDE ∆的周长最小时,点E 的坐标是_______.18.已知一次函数y =2x +b 的图象经过点A (2,y 1)和B (﹣1,y 2),则y 1_____y 2(填“>”、“<”或“=”).19.如图,在ABC 中90ACB ∠=︒,AC BC =,BC 与y 轴交于D 点,点C 的坐标为()2,0-,点A 的坐标为()6,3-,则D 点的坐标是__________.20.新冠疫情爆发以来,某工厂响应号召,积极向疫情比较严重的甲地区捐赠口罩、消毒液等医疗物资,在工厂装运完物资准备前往甲地的A 车与在甲地卸完货准备返回工厂的B 车同时出发,分别以各自的速度匀速驶向目的地,出发6小时时A 车接到工厂的电话,需要掉头到乙处带上部分检验文件(工厂、甲地、乙在同一直线上且乙在工厂与甲地之间),于是,A 车掉头以原速前往乙处,拿到文件后,A 车加快速度迅速往甲地驶去,此时,A 车速度比B 车快32千米/小时,A 车掉头和拿文件的时间忽略不计,如图是两车之间的距离y (千米)与B 车出发的时间x (小时)之间的函数图象,则当A 车到达甲地时,B 车离工厂还有_____千米.三、解答题21.要从甲、乙两仓库向A、B两工地运送水泥.已知甲仓库可运出100吨水泥,乙仓库可运出80吨水泥;A工地需要70吨水泥,B工地需要110吨水泥.两仓库到A、B两工地的路程和每吨每千米的运费如下表:路程(千米)运费(元/吨·千米)甲仓库乙仓库甲仓库乙仓库A地2015 1.2 1.2B地252010.8B地水泥__________吨;乙仓库运往A 地水泥________吨,乙仓库运往B地水泥_______吨.(2)试用x的代数式表示总运费.(3)总运费能达到3695元吗?若能,求出此时甲仓库应运往A地多少吨水泥;若不能,说明理由.22.某剧院的观众席的座位为扇形,已知座位数与排数之间的关系如下:排数()x1234…座位数()y50535659…(2)按照上表所示的规律,当x每增加1时,y如何变化?(3)写出座位数y与排数x之间的关系式;(4)按照上表所示的规律,某一排可能有90个座位吗?说说你的理由.23.小慧家与文具店相距960m,小慧从家出发,沿笔直的公路匀速步行12min来到文具店买笔记本,停留3min,因家中有事,便沿原路匀速跑步6min返回家中.(1)小慧返回家中的速度比去文具店的速度快多少?(2)请你画出这个过程中,小慧离家的距离y与时间x的函数图象;(3)根据图象回答,小慧从家出发后多少分钟离家距离为480m?24.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1千米,出租车离甲地的距离为y2千米,两车行驶的时间为x小时,y1、y2关于x 的函数图象如图所示:(1)客车的速度是 千米/小时,出租车的速度为 千米/小时;y 1关于x 的函数关系式为 ;y 2关于x 的函数关系式为 . (2)求两车相遇的时间;(3)在两车的运动方式和客车行驶速度不变的情况下,求出租车为提前25分钟与客车相遇,应将速度提高为每小时多少千米.25.已知直线36y x =+,求:(1)直线与x 轴,y 轴分别交于A B 、两点,求A 、B 两点坐标; (2)若点(),3C m 在图象上,求m 的值是多少?26.如图直线:x 6=+l y k 与x 轴、y 轴分别交于点B C 、两点,点B 的坐标是()8,0-,点A 的坐标为()6,0-.(1)求k 的值.(2)若点P 是直线l 上的一个动点且在第二象限,当PAC ∆的面积为3时,求出此时点P 的坐标.(3)在x 轴上是否存在点M ,使得BCM ∆为等腰三角形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B【分析】作点A 关于y 轴的对称点A',连接A'D ,与y 轴交于点E ,此时△ADE 的周长最小值为AD+DA'的长;E 点坐标即为直线A'D 与y 轴的交点. 【详解】解:作点A 关于y 轴的对称点A ',连接A 'D ,与y 轴交于点E ,此时△ADE 的周长最小值为AD +DA '的长;∵A 的坐标为(﹣2,3),AB ⊥x 轴, B 点坐标为(-2,0), D 是OB 的中点, ∴D 点坐标为:(﹣1,0),A 关于y 轴的对称点A',可知A '(2,3), 设A 'D 的直线解析式为y =kx +b ,则:230k b k b +=⎧⎨-+=⎩, 解得:11k b =⎧⎨=⎩,∴A 'D 的直线解析式为y =x +1, 当x =0时,y =1 ∴E (0,1). 故选:B .【点睛】本题考查了待定系数法求解析式和求一次函数图象与坐标轴交点坐标,能够利用轴对称求线段的最短距离,将AE +DE 的最短距离转化为两点之间,线段最短,并能利用一次函数求出点的坐标是解题的关键.2.D解析:D 【分析】利用一次函数与坐标轴的交点求出△AOB 的两条直角边,并运用勾股定理求出AB .根据已知可得∠CAD =∠OBA ,分别从∠ACD =90°或∠ADC =90°时,即当△ACD ≌△BOA 时,AD =AB ,或△ACD ≌△BAO 时,AD =OB ,分别求得AD 的值,即可得出结论. 【详解】解:∵直线y=-2x+2与x轴和y轴分别交与A、B两点,当y=0时,x=1,当x=0时,y=2,∴A(1,0),B(0,2).∴OA=1,OB=2.∴AB=2222+=+=.OA OB125∵AP⊥AB,点C是射线AP上,∴∠BAC=90°,即∠OAB+∠CAD=90°,∵∠OAB+∠OBA=90°,∴∠CAD=∠OBA,若以C、D、A为顶点的三角形与△AOB全等,则∠ACD=90°或∠ADC=90°,即△ACD≌△BOA或△ACD≌△BAO.如图1所示,当△ACD≌△BOA时,∠ACD=∠AOB=90°,AD=AB,∴OD=AD+OA=5+1;如图2所示,当△ACD≌△BAO时,∠ADC=∠AOB=90°,AD=OB=2,∴OD=OA+AD=1+2=3.综上所述,OD 的长为31.故选:D .【点睛】此题考查了一次函数的应用、全等三角形的判定和性质以及勾股定理等知识,掌握一次函数的图象与性质是解题的关键.3.A解析:A【分析】从图2中,判定从有截长到截长消失,用12-2=10秒,根据正方形的对称性,截长从0到最大用5秒,从而判断正方形的边长为5,对角线长即可确定.【详解】解:从图2中,判定从有截长到截长消失,用12-2=10秒,根据正方形的对称性, 截长从0到最大用5秒,所以正方形的边长为5,所以对角线长为故选A .【点睛】本题考查了坐标系中的平移问题,熟练掌握平移的规律,正方形的对称性,灵活运用数形结合的思想是解题的关键.4.B解析:B【分析】先求解A 的坐标,再求解一次函数的解析式及B 的坐标,结合函数图像解0<ax +4<2x 即可得到答案.【详解】 解: 一次函数y =2x 和y =ax +4的图象相交于点A (m ,3),23,m ∴=3,2m ∴= 3,3,2A ⎛⎫∴ ⎪⎝⎭3+4=32a ∴, 2,3a ∴=- 24,3y x ∴=-+令0,y = 则240,3x -+= 6,x ∴=()6,0,B ∴不等式0<ax +4,4y ax ∴=+的图像上的点在x 轴的上方,所以结合图像可得:x <6,ax +4<2x ,2y x ∴=的图像在4y ax =+的图像的上方, 3,3,2A ⎛⎫ ⎪⎝⎭x >32, 所以:不等式0<ax +4<2x 的解集是32<x <6. 故选:.B【点睛】本题考查的是利用待定系数法求解一次函数的解析式,利用一次函数的图像解不等式组,掌握利用图像解决问题是解题的关键.5.D解析:D【分析】由1l 过(1,0)时区域内由两个整点求出m=-2,由1l 过(2,-1)时区域内有三个整点求出32m =-,综合求出区域内有三个整点可求出322m -<≤-. 【详解】当()1:20l y mx m =+<过(1,0)时区域内由两个整点,此时m+2=0,m=-2,当()1:20l y mx m =+<过(2,-1)时区域内有三个整点,此时122m -=+,32m =-, 两直线与y 轴围成的三角形区域内(不含三角形的边)有且只有三个整点,322m -<≤-. 故选择:D .【点睛】本题考查数形结合思想求区域整点问题,掌握利用区域三角形边界整点来解决问题是关键.6.D解析:D【分析】根据一次函数图象上的点的坐标特征,将P (1,4)代入反比例函数的解析式2y kx k =-,然后解关于k 的方程即可.【详解】解:∵点P (1,4)在反比例函数2y kx k =-的图象上,∴4=k-2k ,解得,k=-4.故选:D .【点睛】本题考查了一次函数图象上点的坐标特征,图象上的点的坐标适合解析式是解题的关键. 7.A解析:A【分析】求出B 点的坐标,再求出直线BC 的解析式,从而可得CO 的长度,进一步得出CD 的长度,即可求解.【详解】解:∵A (1,0)∴OA=1当y=1时,112x =,即x=2, ∴B (2,1)∵BC ⊥l ∴设直线BC 的解析式为y=-2x+b ,把B (2,1)代入得,b=5,∴CO=5,当y=5时,152x =,解得,x=10, ∴点D 的坐标为(10,5)故选:A【点睛】 本题主要考查了如何根据一次函数的解析式和点的坐标求线段的长度,解题时要注意相关知识的综合应用.8.B解析:B【分析】根据小张先走完全程可知,各个节点的意义,A 代表刚开始时两人的距离,B 代表两人相遇,C 代表小张到达终点,D 代表小王到达终点,根据这些节点的意义进行分析即可判断结论的正确与否.【详解】解:由图可知,点C 表示小张到达终点,用时36min ,点D 表示小王到达终点,用时45min ,故②错误;∴小张的步行速度为:360036100(/min)m ÷=,故①正确;小王的步行速度为:36004580(/min)m ÷=,点B 表示两人相遇,∴3600(10080)20(min)÷+=,∴两人20min 相遇,(20,0)B ,故③错误;∵362016(min)-=,∴从两人相遇到小张到终点过了16min ,∴16(10080)2880()m ⨯+=,∴小张到达终点时,两人相距2880m ,∴点C 的纵坐标为2880,故④正确,∴错误的是②③,故选:B .【点睛】本题考查一次函数的应用.解答本题的关键是明确题意,利用数形结合的思想解答.9.B解析:B【分析】 确定向左平移的距离为319()822---=,确定点A '的坐标为(-8,6),将其代入y=kx 中,得k=6(8)-=34-. 【详解】∵点B 的坐标为3,52⎛⎫- ⎪⎝⎭,将AOB 沿x 轴向左平移得到A O B ''',且点B '的坐标为19,52⎛⎫- ⎪⎝⎭, ∴向左平移的距离为319()822---=, ∵点A 的坐标为()0,6,∴点A '的坐标为(-8,6),∵点A '落在直线y kx =,∴6= -8k ,解得k=34-, 故选:B. .【点睛】本题考查了平移的基本规律,正比例函数解析式的确定,熟记平移的规律是解题的关键. 10.D解析:D【分析】根据函数的图象即可确定在BC 段,所用的时间是5秒,路程是150米,则速度是30米/秒,进而即可确定其它答案.【详解】在BC 段,所用的时间是5秒,路程是150米,则速度是30米/秒.故①正确; 火车的长度是150米,故②错误;整个火车都在隧道内的时间是:45−5−5=35秒,故③正确;隧道长是:45×30−150=1200(米),故④正确.故选D.【点睛】本题主要考查了用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,是解题的关键.11.A解析:A【分析】①根据平行线间的距离相等可知50天后植物的高度不变,也就是停止长高;②设直线AC的解析式为y=kx+b(k≠0),然后利用待定系数法求出直线AC线段的解析式,③把x=40代入②的结论进行计算即可得解;④把x=50代入②的结论进行计算即可得解.【详解】解:∵CD∥x轴,∴从第50天开始植物的高度不变,故①的说法正确;设直线AC的解析式为y=kx+b(k≠0),∵经过点A(0,6),B(30,12),∴30126k bb+=⎧⎨=⎩,解得156kb⎧=⎪⎨⎪=⎩,所以,直线AC的解析式为165y x=+(0≤x≤50),故②的结论正确;当x=40时,14065y=⨯+=14,即第40天,该植物的高度为14厘米;故③的说法正确;当x=50时,15065y=⨯+=16,即第50天,该植物的高度为16厘米;故④的说法错误.综上所述,正确的是①②③.故选:A.【点睛】本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,已知自变量求函数值,仔细观察图象,准确获取信息是解题的关键.12.B解析:B【分析】 首先根据一次函数的图象与直线112y x =-平行,图象经过点(-1,-5),用待定系数法求出函数关系式,然后求出A 、B 两点的坐标,最后根据所求点满足在线段AB 上(包括端点A 、B ),且横、纵坐标都是整数,得出结果;【详解】一次函数的图象与直线112y x =-平行,设此直线为12y x b =+, 过点(-1,-5), ∴把此点代入,得152b -=-+,解得92b , ∴此直线为1922y x =-. 当0x =时,92y =-; 0y =时,19022x =-,解得x=9, 故A(9,0),B(0,92-). 由直线的解析式可知,只要x 是奇数时,y 即为整数,而从9到0共有5个奇数,即1,3,5,7,9,故在线段AB 上(包括端点A ,B )横、纵坐标都是整数的点有5个.故选:B .【点睛】本题考查了一次函数平行的特点,列出方程,求出未知数,再根据题意求解;二、填空题13.3n-12n-2【分析】先根据一次函数方程求出B1点的坐标再根据B1点的坐标求出A2C1的坐标以此类推总结规律便可求出点Bn 的坐标【详解】解:∵A1(20)∴B1(21)由正方形的性质可求A2(30解析:【分析】先根据一次函数方程求出点的坐标,再根据点的坐标求出,的坐标,以此类推总结规律便可求出点的坐标. 【详解】 解:, , 由正方形的性质,可求,, ,, ,…… , 点的横坐标为, 故答案为. 【点睛】本题考查一次函数的图像及性质,点的坐标规律;理解题意,结合一次函数的图像和正方形的性质,探索点的坐标规律是解题的关键.14.5-2m 【分析】首先根据一次函数y=(m-2)x+3-m 的图象不经过第三象限可得m-2<0进而得到m <2再根据二次根式的性质进行计算即可【详解】方法一:一次函数的图象经过第一二四象限∴∴故答案为:方解析:5-2m【分析】首先根据一次函数y=(m-2)x+3-m 的图象不经过第三象限,可得m-2<0,30m ->,进而得到m <2,再根据二次根式的性质进行计算即可.【详解】方法一:一次函数(2)3y m x m =-+-的图象经过第一、二、四象限,∴2030m m -<⎧⎨->⎩, ∴224496m m m m -+-+22(2)(3)m m =--23m m =-+-52m =-.故答案为:52m -.方法二:(2)3y m x m =-+-的图象经过第一、二、四象限,∴2030m m -<⎧⎨->⎩解得23m m <⎧⎨<⎩, ∴2m <,=|2||3|m m =-+-23m m =-+-52m =-故答案为52m -.【点睛】本题考查了一次函数图象与系数的关系,以及二次根式的化简,关键是掌握:①k >0,b>0⇔y=kx+b 的图象在一、二、三象限;②k >0,b <0⇔y=kx+b 的图象在一、三、四象限;③k <0,b >0⇔y=kx+b 的图象在一、二、四象限;④k <0,b <0⇔y=kx+b 的图象在二、三、四象限.15.(20)【分析】作点A 关于x 轴的对称点C 连接BC 交x 轴于一点即为点P 此时有最小值则C (0-2)求出直线BC 的解析式即可得到答案【详解】作点A 关于x 轴的对称点C 连接BC 交x 轴于一点即为点P 此时有最小值解析:(2,0)【分析】作点A 关于x 轴的对称点C ,连接BC 交x 轴于一点即为点P ,此时PA PB +有最小值,则C (0,-2),求出直线BC 的解析式,即可得到答案.【详解】作点A 关于x 轴的对称点C ,连接BC 交x 轴于一点即为点P ,此时PA PB +有最小值,则C (0,-2),设直线BC 的解析式为y=kx+b ,将点B 、C 的坐标代入,得422k b b +=⎧⎨=-⎩,解得12k b =⎧⎨=-⎩, ∴直线BC 的解析式为y=x-2,当y=0时,得x-2=0,解得x=2,∴P (2,0),故答案为:(2,0)..【点睛】此题考查最短路径问题,待定系数法求函数解析式,正确理解最短路径问题作点A 的对称点利用一次函数图象与x 轴的交点求出答案是解题的关键.16.【分析】令y =1可得x =2即点A (21)根据正方形的性质可得点E 的横坐标待入解析式即可求得点E 的纵坐标继而根据正方形的性质可得点F 的坐标【详解】∵正方形边在轴的正半轴上∴AB =BC =CD =AD =1C 解析:93,22⎛⎫ ⎪⎝⎭【分析】令y =1可得x =2,即点A (2,1)根据正方形的性质可得点E 的横坐标,待入解析式即可求得点E 的纵坐标,继而根据正方形的性质可得点F 的坐标.【详解】∵正方形ABCD ,CEFG 边在x 轴的正半轴上,∴AB =BC =CD =AD =1,CE =CG =EF =GF ,AB 、CD 、CE 、FG ⊥x 轴,∵顶点A ,E 在直线12y x =令y =1,则x =2∴点A (2,1)∴点E 的横坐标为3将x =3代入直线12y x =,得32y = ∴点E 、F 的纵坐标是32 即32CE FG EF === ∴点F 的横坐标为39322+= 即点F (92,32) 故答案为:(92,32) 【点睛】本题考查一次函数的应用,涉及到正方形的性质、点的坐标,解题的关键是熟练掌握正方形的性质求得点A 、E 的坐标.17.(6)【分析】如图作点D 关于直线AB 的对称点H 连接CH 与AB 的交点为E 此时△CDE 的周长最小先求出直线CH 解析式再求出直线CH 与AB 的交点即可解决问题【详解】解:如图作点D 关于直线AB 的对称点H 连接解析:(6,83) 【分析】如图,作点D 关于直线AB 的对称点H ,连接CH 与AB 的交点为E ,此时△CDE 的周长最小,先求出直线CH 解析式,再求出直线CH 与AB 的交点即可解决问题.【详解】解:如图,作点D 关于直线AB 的对称点H ,连接CH 与AB 的交点为E ,此时△CDE 的周长最小.∵D (3,0),A (6,0),B (6,8),∴H (9,0),C (0,8),设直线CH 解析式为8y kx =+,∴098k =+,∴89k =-, ∴直线CH 解析式为y =−89x +8, ∴x =6时,y =83, ∴点E 坐标(6,83). .【点睛】本题考查矩形的性质、坐标与图形的性质、轴对称−最短问题、一次函数等知识,解题的关键是利用轴对称找到点E 位置,学会利用一次函数解决交点问题,属于中考常考题型. 18.>【分析】由k =2>0利用一次函数的性质可得出y 随x 的增大而增大结合2>﹣1即可得出y1>y2【详解】解:∵k =2>0∴y 随x 的增大而增大又∵2>﹣1∴y1>y2故答案为:>【点睛】本题考查一次函数解析:>【分析】由k=2>0,利用一次函数的性质可得出y随x的增大而增大,结合2>﹣1即可得出y1>y2.【详解】解:∵k=2>0,∴y随x的增大而增大,又∵2>﹣1,∴y1>y2.故答案为:>.【点睛】本题考查一次函数的增减性,根据比例系数k的正负,判断y随x的变化规律是解题关键.19.(0)【分析】过A和B分别作AF⊥OC于FBE⊥OC于E利用已知条件可证明△AFC≌△CEB再有全等三角形的性质和已知数据即可求出B点的坐标然后求出直线BC的解析式即可得到结论【详解】解:过A和B分解析:(0,83)【分析】过A和B分别作AF⊥OC于F,BE⊥OC于E,利用已知条件可证明△AFC≌△CEB,再有全等三角形的性质和已知数据即可求出B点的坐标,然后求出直线BC的解析式,即可得到结论.【详解】解:过A和B分别作AF⊥OC于F,BE⊥OC于E,∵∠ACB=90°,∴∠ACF+∠CAF=90°∠ACF+∠BCE=90°,∴∠CAF=∠BCE,在△AFC和△CEB中,90AFC CBECAF BCEAC AC︒⎧∠=∠=⎪∠∠⎨⎪=⎩=,∴△AFC≌△CEB(AAS),∴FC=BE,AF=CE,∵点C的坐标为(﹣2,0),点A的坐标为(﹣6,3),∴OC=2,AF=CE=3,OF=6,∴CF=OF﹣OC=4,OE=CE﹣OC=2﹣1=1,∴BE=4,∴则B点的坐标是(1,4),设直线BC的解析式为:y=kx+b,则420k bk b+=⎧⎨-+=⎩,∴4383 kb⎧=⎪⎪⎨⎪=⎪⎩,∴直线BC的解析式为:y=43x+83,当x=0时,y=83,∴D(0,83).故答案为:(0,83).【点睛】本题考查了全等三角形的判定和性质,坐标与图形的性质,等腰直角三角形的性质,熟练掌握全等三角形的判定和性质是解题的关键.20.96【分析】根据题意和题目的函数图像先求出A车和B车的速度然后求出A车到乙地拿到文件后前往甲地的时间再得到B车的总时间即可求出A车到达甲地时B车离工厂的距离【详解】解:根据题意设A车的速度为B车的速解析:96【分析】根据题意和题目的函数图像,先求出A车和B车的速度,然后求出A车到乙地拿到文件后,前往甲地的时间,再得到B车的总时间,即可求出A车到达甲地时B车离工厂的距离.【详解】解:根据题意,设A车的速度为1V,B车的速度为2V,则12()640080V V+⨯=+①,A车前往乙地取文件的过程,有12()(76)8016V V-⨯-=-②,结合①②两式,得148V =,232V =,∴A 车的速度为48千米/小时;B 车的速度为32千米/小时;A 车拿到文件后,距离甲地的距离为:32764160⨯-=千米,∴A 车加速后达到甲地的时间为:160(3232) 2.5÷+=小时;∴B 车一共所走的时间有:7 2.59.5+=小时,∴当A 车到达甲地时,B 车离工厂的距离为:400329.596-⨯=千米;故答案为:96.【点睛】本题考查了二元一次方程组的应用——行程问题,以及函数图像的识别,解题的关键是熟练掌握题意,正确求出A 、B 两车的速度,从而进行解题.三、解答题21.(1)100x -,70x -,10x +;(2)33920y x =-+;(3)能,75吨【分析】(1)用甲仓库一共可运出的100吨水泥减去x 得到甲仓库运往B 地的水泥吨数,用A 工地需要的水泥减去x 得到乙仓库运往A 工地的水泥吨数,用同样的方法得到乙仓库运往B 地的水泥吨数;(2)设总运费是y 元,根据表格中的距离和运费列出总费用的表达式;(3)令(2)中的3695y =,解出x 的值即可.【详解】解:(1)设甲仓库运往A 地水泥x 吨,则甲仓库运往B 地水泥()100x -吨;乙仓库运往A 地水泥()70x -吨,乙仓库运往B 地水泥()110100x --⎡⎤⎣⎦吨故答案是:100x -,70x -,10x +;(2)设总运费是y 元,()()()1.220125100 1.215700.82010y x x x x =⨯+⨯-+⨯-+⨯+,整理得:33920y x =-+;(3)令3695y =,则339203695x -+=,解得75x =,答:可以,此时甲仓库应运往A 地75吨水泥.【点睛】本题考查一次函数的实际应用,解题的关键是根据题意列出函数关系式进行求解. 22.(1)56;(2)y 增加3;(3)y=3x+47;(4)不能,理由见解析.【分析】(1)根据表格中的数据可以解答本题;(2)根据表格中的数据可以得到当x 每增加1时,y 如何变化;(3)根据表格中的数据可以得到座位数y 与排数x 之间的关系式;(4)根据题意和表格中的数据,先判断,然后说明理由即可解答本题.【详解】解:(1)由表格可知,此剧院第三排有56个座位;(2)由表格可知,当排数x每增加1时,座位y增加3;(3)由题意可得,y=50+3(x-1)=3x+47,即座位数y与排数x之间的关系式是y=3x+47;(4)按照上表所示的规律,某一排不可能有90个座位,理由:当y=90时,90=3x+47,得x=1413,∵x为正整数,∴此方程无解.即某一排不可能有90个座位.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.23.(1)80m/min;(2)答案见解析;(3)6分钟或18分钟.【分析】()1根据速度=路程/时间的关系,列出等式96096080(m/min)612-=即可求解;()2根据题中已知,描点画出函数图象;()3根据图象可得小慧从家出发后6分钟或18分钟离家距离为480m.【详解】解:(1)由题意可得:96096080(m/min) 612-=答:小慧返回家中的速度比去文具店的速度快80m/min(2)如图所示:(3)根据图象可得:小慧从家出发后6分钟或18分钟分钟离家距离为480m.【点睛】本题考查一次函数的应用;能够理解题意,准确画出函数图象,并从图象中获取信息是解题的关键.24.(1)60,100,y 1=60x ,y 2=﹣100x+600;(2)154小时;(3)每小时120千米 【分析】 (1)根据函数图象中的数据可以得到客车和出租车的速度,然后即可写出y 1、y 2关于x 的函数解析式;(2)根据题意和(1)中的函数关系式,可以求得两车相遇的时间;(3)根据题意,可以求得出租车为提前25分钟与客车相遇,应将速度提高为每小时多少千米.【详解】解:(1)由图象可得,客车的速度为:600÷10=60(千米/小时),出租车的速度为:600÷6=100(千米/小时),设客车的解析式为:1y kx =,把点(10,600)代入,则60010k =,∴60k =,∴y 1关于x 的函数关系式为y 1=60x ;设出租车的解析式为2y ax b =+,把点(0,600)和(6,0)代入,则60060b a b =⎧⎨+=⎩, ∴100600a b =-⎧⎨=⎩, ∴y 2关于x 的函数关系式为y 2=﹣100x+600;故答案为:60,100;y 1=60x ,y 2=﹣100x+600;(2)令60x =﹣100x+600,解得x =154, 即154时两车相遇; (3)∵154时=3小时45分钟,出租车提前25分钟与客车相遇, ∴出租车出发的时间为3小时20分钟, ∵3小时20分钟=133小时, ∴出租车的速度为:600÷133﹣60=120(千米/小时), 即出租车为提前25分钟与客车相遇,应将速度提高为每小时120千米.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.25.(1)A(-2,0)、B(0,6);(2)-1【分析】(1)直线与x轴交点的纵坐标等于零;直线与y轴交点的横坐标等于零;(2)把该点代入已知函数解析式,列出关于m的方程,通过解方程来求m的值.【详解】解:(1)令y=0,则3x+6=0,解得:x=-2;令x=0,则y=6.所以,直线与x轴,y轴的交点坐标坐标分别是A(-2,0)、B(0,6);(2)把C(m,3)代入y=3x+6,得到3m+6=3,即m=-1.【点睛】本题考查了一次函数图象上点的坐标特征.一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(-bk,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.26.(1)34k=;(2)点P的坐标为(-4,3);(3)点M的坐标为(-18,0),7(,0)4-,(2,0)或(8,0).【分析】(1)由点B的坐标,利用一次函数图象上点的坐标特征可求出k值;(2)利用一次函数图象上点的坐标特征求出点C的坐标,设点P的坐标为3(,6)4+x x,由S△PAC=S△BOC-S△BAP-S△AOC结合△PAC的面积为3,可得出关于x的一元一次方程,解之即可得出点P的坐标;(3)利用勾股定理求出BC的长度,分CB=CM,BC=BM,MB=MC三种情况考虑:①当CB=CM时,由OM1=OB=8可得出点M1的坐标;②当BC=BM时,由BM2=BM3=BC=10结合点B的坐标可得出点M2,M3的坐标;③当MB=MC时,设OM=t,则M4B=M4C=8-t,利用勾股定理可得出关于t的一元一次方程,解之即可得出点M4的坐标.综上,此题得解.【详解】解:(1)∵直线l:y=kx+6过点B(-8,0),∴0=-8k+6,∴k3.4=(2)当x=0时,3664y x=+=∴点C的坐标为(0,6).设点P的坐标为3(,6)4+ x x。