风力发电原理

合集下载

风力发电原理

风力发电原理
类型:有传统风车、低速风力机及高速风力机
水平轴力风机图
3、垂直轴风力机
特点:凡风轮转轴与地面呈垂直状态的风力 机叫垂直抽风力机。
形式有:如s型、H型、Ф型等。 应用:虽然目前垂直轴风力机尚未大量商品
化,但是它有许多特点,如不需大型塔架、 发电机可安装在地面上、维修方便及叶片 制造简便等,研究日趋增多,各种形式不 断出现。各种形式的垂直轴风力机。
风力发电原理
主讲:
风力发电的原理:是利 用风力带动风车叶片旋 转,再透过增速机将旋 转的速度提升,来促使 发电机发电。简单的说 风力发电就是将风能转 换为机械能进而将机械 能再转换为电能的过程。
现代风力发电机采用空 气动力学原 理 ,就像 飞机的机翼一样。
风并非 " 推 " 动风轮叶片,而是吹过叶片形成叶 片正反面的压差,这种压差会产生升力,令风轮旋转 并不断横切风流 。

偏导航系统的作用
偏航系统的主要作用有两个: 1) 与风力发电机组的控制系统相互配合,使风发 电机组的风轮始终处于迎风状态,充分利用风能, 提高风力发电机组的发电效率; 2) 提供必要的锁紧力矩,以保障风力发电机组的安 全运行。
(四)发电机
发电机的作用,是利用电磁感应现象把由风轮输 出的机械能转变为电能。
依据目前的风车技术,大约是每秒三公尺 的微风速度(微风的程度),便可以开始 发电。 风力发电正在世界上形成一股热潮, 风力发电没有燃料问题,也不会产生辐射 或空气污染。
(一)风力发电设备
组成:风力发电机组包括两大部分; 一部分是风力机,由它将风能转换为机械能; 另一部分是发电机,由它将机械能转换为电能。
发电机有基本类型: 普通异步风力发电机组 双馈异步风力发电机组 直驱式同步风力发电机组(含永磁发电机和直流 励磁发电机) 混合式风力发电机组

简述风力发电原理

简述风力发电原理

简述风力发电原理风力发电是利用风能将其转化为电能的一种可再生能源。

风能是地球上存在的一种自然能源,来源于太阳能的辐射和地球自转所形成的气候系统。

风力发电利用风能的原理是通过风轮的旋转驱动发电机产生电能。

风力发电的基本原理可以简单地归纳为:风能转化为机械能,再由机械能转化为电能。

具体来说,当风吹过风轮时,风轮叶片会受到风力的作用而转动。

风轮连接着发电机的转子,当风轮转动时,转子也会跟着转动。

转子内部的磁场与定子之间的磁场产生相互作用,这种相互作用会产生电流,从而产生电能。

风力发电系统主要由风机叶片、风轮、传动系统和发电机组成。

风机叶片是收集风能的关键部件,它们的形状和数量都会影响风力发电的效率。

风轮是将风能转化为机械能的装置,一般由多个叶片组成。

传动系统将风轮的旋转转动传递给发电机。

发电机是将机械能转化为电能的关键部件,一般采用的是感应发电机。

风力发电的效率受多种因素影响。

首先是风的强度和稳定性,风速越大、越稳定,风力发电的效率就越高。

其次是风机叶片的形状和数量,设计合理的叶片能够更好地捕捉风能。

还有风轮的转速和传动系统的效率等因素也会影响风力发电的效率。

此外,地理位置也是影响风力发电效果的重要因素,选择适合的地点能够最大限度地利用风能。

风力发电作为一种清洁、可再生的能源形式,具有多个优点。

首先,风能广泛分布于全球各地,几乎每个地区都可以通过风力发电来获得电能。

其次,风力发电不会产生二氧化碳等温室气体和污染物,有利于减少环境污染和气候变化。

再次,风力发电具有可再生性,风能源源不断,不会像化石燃料一样会耗尽。

此外,风力发电还可以降低对传统能源的依赖,提高能源的多样化。

然而,风力发电也存在一些挑战和限制。

首先是风能资源的不稳定性和不可控性,风速的变化会直接影响风力发电的输出。

其次是风力发电设备的成本较高,需要大量的投资。

此外,风力发电设备对环境的影响也需要考虑,如鸟类和蝙蝠的迁徙和栖息地受到一定程度的影响。

风力发电机的原理运作

风力发电机的原理运作

风力发电机的原理运作风力发电机是一种利用风能转化为电能的装置。

它利用风的能量转动叶轮,通过传动装置将旋转的动能转化为电能。

下面我们详细介绍风力发电机的原理和运作过程。

一、风力发电机的原理1. 风的动能转换为叶轮的动能:当风经过叶轮时,叶轮所受到的风力会使其开始旋转。

这是因为风有一定的动能,当它与叶轮表面接触时,由于叶轮的形状和设计,风力会使叶轮开始转动。

2. 叶轮的转动驱动发电机:叶轮的转动会通过传动装置传递到发电机,从而驱动发电机产生电能。

传动装置通常由齿轮、轴等组成,可以将叶轮旋转的动能转换为发电机所需要的转动力。

3. 发电机的工作原理:发电机是将机械能转化为电能的关键部件。

它由转子、定子、磁场等构成。

当叶轮转动传递给发电机时,转子内的导线会受到磁场力的作用而产生电动势。

这个电动势经过适当的电路处理后,最终输出为可用的电能。

二、风力发电机的运作过程1. 风力发电机的启动:风力发电机需要一定的风速才能启动。

一般来说,需要的风速在3米/秒至5米/秒之间。

当风速达到或超过设定值时,发电机会自动启动。

2. 风力发电机的控制:发电机可以根据不同的风速自动调整叶轮的转速。

当风速过高时,会启动风速控制器,通过改变叶轮的角度来降低风力对叶轮的影响。

这种控制可以保证风力发电机在不同风速下都能正常工作,同时也可以保护发电机避免风力过大造成的损坏。

3. 风力发电机的发电:当风力发电机启动后,叶轮开始旋转,带动发电机转动。

发电机可以将机械能转化为电能,并通过输出端口输出。

这些电能可以进行储存或传输供给社会使用。

4. 风力发电机的维护和安全:风力发电机需要定期对设备进行维护和保养,以确保其正常工作。

同时,风力发电机也要注意安全问题,避免发电机受到恶劣天气或其他外部因素的影响。

三、风力发电机的优势和应用1. 可再生能源:风力发电是一种利用风能的可再生能源。

风是一种无尽的能源,而且对环境几乎没有污染。

2. 低碳环保:风力发电过程中不产生温室气体和空气污染物。

风力发电的原理是什么

风力发电的原理是什么

风力发电的原理是什么风力发电是指利用风能将风动能转换为电能的一种可再生能源发电技术。

它利用风能驱动风轮转动,将机械能转化为电能。

本文将详细介绍风力发电的原理及其工作原理。

风力发电原理风力发电的原理基于风的运动和空气的物理性质。

当地球受到太阳的照射,不同地区的气温和气压产生差异,形成气候系统。

气候系统中,气体在不同气压区域之间产生气流,形成风。

这种风能被称为风动能。

风力发电利用风动能,通过风轮转动,产生机械能,再由发电机将机械能转换为电能。

下面将详细介绍风力发电的工作过程。

风力发电的工作原理风力发电的工作原理可以归纳为以下几个步骤:1.风的捕获:风力发电机通常由三个主要部分组成:风轮、转子和发电机。

风轮是风力发电机中最重要的部分,它的作用是捕获风能。

风轮通常由多个叶片组成,通过叶片的形状和角度,能够最大程度地捕获风能。

2.风能转换:当风轮受到风的作用力时,风轮会转动。

转动的风轮会带动转子旋转,通过机械传动装置(如齿轮箱)将风轮转动的速度提高,并使其与发电机的转子同步旋转。

这样,机械能就被转化为转子的旋转动能。

3.电能转换:转子的旋转运动会激励发电机中的线圈产生感应电动势,然后通过电磁感应现象将机械能转换为电能。

发电机的输出电流经过电路控制系统处理,最终输入电网供人们使用。

4.电能传输和储存:发电后的电能经过变压器进行传输,将电压调整到合适的水平后输送到电网。

人们可以通过电网获得风力发电机产生的电能。

电能也可以通过储能设备,如电池,进行短期或长期的储存,以备不时之需。

风力发电的优势风力发电具有一系列的优势,使其成为一种重要的可再生能源发电技术:1.环保:风力发电不排放温室气体和污染物,对环境无污染,能够减少对化石燃料的依赖,有助于降低空气和水的污染。

2.可再生能源:风力是一种可再生能源,取之不尽,用之不竭。

利用风力发电可以减少对有限资源的消耗,对未来能源供应具有重要意义。

3.风力资源广泛:全球范围内都存在风力资源,且分布广泛。

风力发电的原理和应用

风力发电的原理和应用

风力发电的原理和应用风力发电,顾名思义,是利用风力产生电能的一种发电方式。

在现代社会,随着对可再生能源的需求不断增加,风力发电也成为了一种越来越重要的能源。

本文将介绍风力发电的原理、应用和未来的发展趋势。

一、风力发电的原理风力发电的基本原理很简单,就是利用风轮(也称为风机)旋转发电。

当风流过风轮时,将推动风轮转动,风轮通过传动系统带动发电机旋转,发电机则将机械能转换为电能输出。

其中,风轮是由叶片和轴组成的,叶片是承受风力的部分。

叶片的形状、数量和大小等因素将影响风轮的转速和转动效率。

虽然风力发电的原理很简单,但实现起来却不容易。

首先,风轮需要在合适的风速下才能转动产生电能,而风力的大小和方向又会随着气象条件的变化而不断变化。

因此,选址成为了风电站建设中的重要因素,一般会选择海拔高、风力稳定的地区来建立风电站。

另外,为了提高风力发电的效率,还需要在设计阶段考虑风轮的材质、结构和设计等方面的因素。

二、风力发电的应用风力发电作为一种清洁能源,被广泛应用于全球各个国家和地区。

根据国际能源署的数据,截至2019年底,全球风力发电的总装机容量已经超过了6.32亿千瓦,占全球电力供应的5%。

其中,中国、美国和德国是全球三大风力发电大国。

风力发电在能源领域的应用主要分为两个方面:一是大规模的商业化利用,另外一个是小规模的分布式利用。

大规模的商业化利用通常指的是建立风电站来大规模地利用风力发电。

风电站可以有不同的容量,从几百千瓦到几十兆瓦不等。

风电站的建设需要考虑很多因素,如选址、设备采购和调试等。

但是,在商业化利用中,由于需要建设大型的风电站,需要投入巨大的成本,并且存在地域和季节限制。

小规模的分布式利用则是将风力发电技术应用于家庭、企业和社区等小规模场景中。

一般通过安装风力发电设备,如小型风轮或风能发电机组,在小规模的场景中产生清洁的电力。

分布式利用具有灵活性、可持续性和可控性等优点,并且适合于人口分散的区域。

风力发电机组的工作原理

风力发电机组的工作原理

风力发电机组的工作原理
风力发电机组是利用风能转换成电能的设备,是一种清洁、可再生的能源发电
方式。

它的工作原理主要包括风能转换、机械能转换和电能转换三个过程。

首先,风能转换。

当风吹过风力发电机组的叶片时,叶片受到风的作用而转动。

风的动能转化为叶片的动能,使叶片旋转。

这个过程就是风能转换的过程,也是风力发电机组能够正常工作的基础。

其次,机械能转换。

叶片的旋转带动风力发电机组的转子转动,转子与发电机
内部的磁场相互作用,产生感应电动势。

这时,机械能转化为电能的过程就开始了。

通过转子和定子之间的电磁感应作用,机械能被转化为电能。

最后,电能转换。

产生的交流电通过变压器升压后,送入电网,供给用户使用。

这个过程就是电能转换的过程,也是风力发电机组最终实现发电的过程。

总的来说,风力发电机组的工作原理就是通过风能转换、机械能转换和电能转
换三个过程,最终将风能转化为电能。

这种清洁、可再生的能源发电方式在当前的能源结构调整和环境保护中具有重要的意义。

希望通过不断的技术创新和设备升级,风力发电机组能够更加高效、稳定地工作,为人类的可持续发展做出更大的贡献。

风力发电厂工作原理

风力发电厂工作原理

风力发电厂工作原理风力发电是一种利用风能将其转化为电能的可再生能源。

风力发电厂是专门用于发电的设备,通常由风能转换系统、发电机组、电力传输系统和电力调度系统组成。

风力发电厂的工作原理是利用风能将风转化为机械能,再将机械能转化为电能。

下面将详细介绍风力发电厂的工作原理。

1. 风能转换系统风力发电厂的核心是风能转换系统,它由风轮、塔架和控制系统组成。

风轮是将风能转化为机械能的关键部件,通常由数片叶片组成。

当风吹过风轮时,风轮转动,产生机械能。

塔架是支持风轮的结构,通常较高,以便于获取更强的风能。

控制系统用于监测和调节风轮的转速和角度,以保证风能的最大利用效率。

2. 发电机组风力发电厂的发电机组是将机械能转化为电能的关键部件。

机械能通过传动系统传送给发电机,发电机将机械能转化为电能。

发电机通常由转子和定子组成,转子由风轮带动旋转,而定子则产生感应电流。

通过定子上的导线,感应电流转化为交流电能。

3. 电力传输系统发电机组产生的电能需要通过电力传输系统传送到电网中。

电力传输系统由变压器、电缆和开关设备组成。

发电机组产生的电能首先通过变压器升高电压,然后通过电缆输送到变电站或直接输送到电网。

开关设备用于控制电能的流向和分配。

4. 电力调度系统电力调度系统是风力发电厂的管理系统,它负责监测和控制发电机组的运行状态,并根据电网的需求进行电力调度。

电力调度系统可以根据电网负荷和风能状况来控制发电机组的输出功率,以保持电网的稳定运行。

总结起来,风力发电厂的工作原理是利用风能转化为机械能,再将机械能转化为电能。

通过风能转换系统将风能转化为机械能,再通过发电机组将机械能转化为电能。

最后,通过电力传输系统将电能输送到电网中,并通过电力调度系统进行管理和控制。

风力发电厂的工作原理简单清晰,具有可再生能源、环保、节能等优点,因此被广泛应用于全球各地。

随着科技的不断进步,风力发电技术也在不断提高,使得风力发电成为一种可靠、高效的清洁能源。

风力发电的构造原理

风力发电的构造原理

风力发电的构造原理把风的动能转变成机械动能,再把机械能转化为电力动能就是风力发电。

风力发电的原理是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升来促使发电机发电。

依据目前的风车技术计算出大约每秒三米的微风速度便可以开始发电。

风力发电正在世界上形成一股热潮,因为风力发电不需要使用燃料也不会产生辐射。

风力发电机的基础结构有机舱、转子叶片、低速轴、发电机、偏航装置、电子控制器及冷却元件等零部件。

机舱包括齿轮箱和发电机是风力发电机的关键设备,维护人员可以通过风力发电机塔进入机舱。

机舱左端是风力发电机转子,转子叶片捉获风并将风力传送到转子轴心。

现代六百千瓦风力发电机上每个转子叶片的测量长度大约为二十米,而且被设计得很像飞机的机翼。

转子轴心附着在风力发电机的低速轴上,风力发电机的低速轴将转子轴心与齿轮箱连接在一起。

在现代六百千瓦风力发电机上,转子转速慢至大约为19-30转每分钟,轴中有用于液压系统的导管来激发空气动力闸的运行。

齿轮箱左边是低速轴可以将高速轴的转速提高至低速轴的50倍,高速轴以1500转每分钟运转并驱动发电机,它装备有紧急机械闸以用于空气动力闸失效时或风力发电机被维修之时。

发电机通常被称为感应电机或异步发电机,在现代风力发电机上最大电力输出通常为500至1500千瓦。

偏航装置借助电动机转动机舱以使转子正对着风,偏航装置由电子控制器操作可以通过风向标来感觉风向,通常在风改变其方向时风力发电机一次只会偏转几度。

电子控制器包含一台不断监控风力发电机状态的计算机并控制偏航装置,为防止出现齿轮箱或发电机的过热等故障,该控制器可以自动停止风力发电机的转动并通过电话调制解调器来呼叫风力发电机操作员。

液压系统用于重置风力发电机的空气动力闸,冷却元件包含一个风扇以用于冷却发电机,此外它包含一个油冷却元件来用于冷却齿轮箱内的油,一些风力发电机还具有水冷发电机。

风力发电机塔载有机舱及转子,通常高的塔具有优势是因为离地面越高则风速越大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
时,输出功率达到极限,按恒功率输出调节风力 机。
(五)风的能量与测量
产生能量的基本要素: 风具有一定的质量
和速度。
风能的一些主要特性参数:如风能、风能密
度、风速与风级、风向与风频以及风的测量等。
1)风能:空气运动产生的动能称为“风能”。 2)风能密度:单位时间内通过单位截面积的风
能。
3)风速与风级:风速就是空气在单位时间内移
发电机有基本类型: 普通异步风力发电机组 双馈异步风力发电机组 直驱式同步风力发电机组(含永磁发电机和直流 励磁发电机) 混合式风力发电机组
1、普通异步风力发电机组
技术特点:
1、叶轮转速较低,一般为每分钟十几转,需要齿轮 箱增速, 转子绕组短路,结构一般为鼠笼结构; 2、转子转速固定,风能利用率低,其转速由齿轮箱 传动比和发电机极对数决定; 3、转子电流产生的旋转磁场的转速高于同步速运行 ; 4、发电机定子直接与电网连接,启动时产生很大启 动电流,其配置启动装置。 5、从系统吸收大量无功,需配置无功补偿装置。 结构简单,控制方便。
机组的总体结构
机组的总体结构图:
风轮
增速器
发电机
主继电器

电网 主开关 变压器
变桨 风
转速 风速
熔断器
晶闸管 并网
控制系统
功率
无功补偿
(三)风力发电机主要组成部分介绍
1、风轮
风力机区别于其他机械的最主 要特征就是风轮。风轮一般由 2~3个叶片和轮毂所组成,其 功能是将风能转换为机械能。
由于风力发电机的理论基础也 是空气动力学,故其叶片形状 与机翼很相似。风经过水平轴 风力发电机的叶片时由于叶片 与风有一个夹角,风在叶片上 形成升力,风力发电机就是依 靠叶片上的升力把风能转换为 旋转的机械能,从而带动发电 机进行发电的。
Ф型风力机图
(二)风力发电系统
从外部看,整个风力发电机组 看上去只有三个主要部分:风 轮、机舱和塔架。
发电机、传动系统、控制系统 等都集成在机舱内。
机舱除了承担容纳所有机械部 件的功能,还起到承受所有外 力( 包括静负载及动负载) 的作用。
机舱底盘和塔架之间有回转体 ,使机舱可水平转动。
因此,为实现最大风能捕获,风力机有三种典型 的运行状态:① 低风速段实行变速运行,可保持
一个恒定的风能利用系数Cp值,根据风速变化控 制风力机转速,使叶尖速比λ不变,直到转速达到 极限;② 转速达到极限后,风速进一步加大时,
按恒定转速控制风力机运行,直到输出最大功率, 此时的风能Cp不一定是最大值;③ 超过额定风速
5)通过电力电子换流器与电网连接,吸收或输出功 率可调,因此可以实现风力发电机平滑并网。
6)电网侧换流器采用空间矢量控制技术,可以实现 发电机有功功率和无功功率的解藕控制,能够独立 调节发电机向系统吸收或发出无功。结构、控制系 统复杂。
以上风电机组优缺点比较表
双馈、永磁和直流励磁 风力发电机外观图
风中蕴含的能量是动能,故
P=1/2ρAV3
可用风能与风速的立方成正比,风速的轻微增加 会导致功率的显著增加
风力与海平面1.225kg/m3处的空气比重成正比 风能还受气压及温度的影响(大约10-15%) 风能还与叶轮扫略面积成正比
2、风力机的主要特性系数
1)功率系数(Cpຫໍສະໝຸດ 描述风机将风能转风力发电原理
主讲:王老师
风力发电的原理:是利 用风力带动风车叶片旋 转,再透过增速机将旋 转的速度提升,来促使 发电机发电。简单的说 风力发电就是将风能转 换为机械能进而将机械 能再转换为电能的过程 。
现代风力发电机采用空 气动力学原 理 ,就像 飞机的机翼一样。
风并非 " 推 " 动风轮叶片,而是吹过叶片形成叶 片正反面的压差,这种压差会产生升力,令风轮旋转 并不断横切风流 。
3)当风速大干最大运行速度(一般设定为25m/s)时实现 自动停机。
4)故障保护。
风机控制方式及内容
一个完整的风力发电机组通常由风轮、增速齿轮 箱、风力发电机、机座、塔架、调速器、调向器 、停车制动器、控制系统等构成,为使风力机组 能够稳定运行,必须对其进行有效的控制。考虑 到风力发电机组的特殊性,按重要性的顺序,控 制器应依次满足以下要求: 1)风能转换系统是稳定的; 2)运行过程中,在各种不确定的的因素如阵风 、剪切风、负载变化作用下具有鲁棒性; 3)控制代价小,即对不同输入信号的幅值有一 定限制,如调向的时间等;
可能提取的风能 Cp 输入的风能
换为机械能的效率
2)叶尖速比 为了表示风轮在不同风
速中的状态,用叶片 圆周速度与风速比来 衡量,称叶尖速比
2Rn
v
风中的能量无法全部被风机 转换,其理论最高限度Cp (max)=0.593,通常被称 为贝茨因数。
其中:R 叶轮的半径, n 叶轮的机械转的圈数, V 作用于风力机的迎面风 速。
瓦—几兆瓦;
⑧发电机,分为直流发电机和交流发电
机;
⑨另外还有塔架高度等等。
2、水平轴力风机
特点:风力机的风轮轴与地面呈水平状态,称水平 轴风力机。
组成:它一般内风轮增速器、调速器、调向装置、 发电机和塔架等部件组成,大中型风力机还有自 动控制系统。
应用:这种风力机的功率从几十千瓦到数兆瓦,是 日前最具有实际开发价值的风力机:
动的距离,国际上的单位是米/秒(m/s)或千米/ 小时(km/h)。分13级
4)风向与风频:通常把风吹来的地平方向定为
风的方向,即风向。风频是指风向的频率,即在 一定时间内某风向出现的次数占各风向出现总次 数的百分比,
5)风的测量:风的测量仪器主要有风向器、杯形
风速器和三杯轻便风向风速表等。
1、风中的能量
齿轮箱的主要功能就是将风轮在风力作用下所产 生的动力传递给发电机并使其得到相应转速。齿轮 箱 对于大型风力发电机,由于限制其转速,传动 装置的增速比一般为40—50。 这样,可以降低发 电机重量,从而降低成本。
5、偏航系统
用来调整风力机的风轮叶片旋转平而与空气流动方 向相对位置的机构。因为当风轮叶片旋转平面与气 流方向垂直时,也即是迎着风向时,风力机从流动 的空气中获取的能量最大,因而风力机的输出功率 最大,所以调向机构又称为迎风机构(通称偏航系 统)。整个偏航系统由电动机及减速机构、偏航调 节系统和扭缆保护装置等部分组成。
2、双馈式异步风力发电机组
技术特点: 1、叶轮转速较低,一般为每分钟十几转 ,需要齿轮箱增速; 2、转子绕组通过电滑环或采用绕线结构 与电力电子换流装置连接;
3、通过电力电子换流装置的控制作用,可以调节控 制发电机转子电流和电磁转矩,从而使转子转速 可随风速的变化而改变,使风力发电系统获得最 大风能捕获效率,风能利用率高;
双馈风力发电机 外观特点:机舱细长
直驱永磁风力发电机 外观特点:机舱短粗
直流励磁风力发电机 外观特点:机舱臃肿
(四)控制系统主要功能
1)按预先设定的风速值(一般为3—4m/s)自动启动风力 发电机组,并通过软启动装置将异步发电机并人电网 。
2)借助各种传感器自动检测风力发电机组的运行参数及 状态,包括风速、风向、风力机风轮转速、发电机转 速、发电机温升、发电机输出功率、功率因数、电压 、电流等以从齿轮箱轴承的油温、液压系统的油压等 。
4)最大限度地将风能转换为电能,即在额定风速以 下,可能使发电机在每一种风速时,输出的电功率达 到最大,额定风速以上时则保持输出电功率为常量;
5)风力发电机输出的电功率保持恒压恒频,有较高 的电能品质质量。
风力发电机组控制目标有很多项,控制方法多种多 样,按控制对象划分大致可分为偏航系统、发电机 并网控制系统、发电机功率控制系统、电容器控制 系统等等,其中两个核心问题是:风能的最大捕获 以提高风能转换效率以及改善电能质量问题。由风 力机最大风能捕获的运行原理可知,若风速越高, 则与之相对应的风力机转速越高。但受风电机组转 速极限、功率极限等限制,风力机转速不可能太高。
依据目前的风车技术,大约是每秒三公尺 的微风速度(微风的程度),便可以开始 发电。 风力发电正在世界上形成一股热潮, 为风力发电没有燃料问题,也不会产生辐 射或空气污染。
(一)风力发电设备
组成:风力发电机组包括两大部分; 一部分是风力机,由它将风能转换为机械能; 另一部分是发电机,由它将机械能转换为电能
2、塔架
风力机的塔架除了要支撑风力机的重量,还要承 受吹向风力机和塔架的风压,以及风力机运行中 的动载荷。它的刚度和风力机的振动有密切关系。 水平轴风力发电机的塔架主要可分为管柱型和桁 架型两类。
一般圆柱形塔架对风的阻力较小,特别是对于下 风向风力机,产生紊流的影响要比桁架式塔架小。 桁架式塔架常用于中小型风力机上,其优点是造 价不高,运输也方便。但这种塔架会使下风向风 力机的叶片产生很大的紊流。
3、叶尖速比的影响
风能利用系数 Cp与风力机叶 尖速比λ的对应 关系:
4、风轮的功率输出
风力机采集风能的基本计算公式 P=(Cp×ρ×v3×A)/2
其中, Cp为风能利用系数(Power Coefficient),表示风
机捕获风能的能力, Cp = Pcapture / Pwind
类型:有传统风车、低速风力机及高速风力机
水平轴力风机图
3、垂直轴风力机
特点:凡风轮转轴与地面呈垂直状态的风力 机叫垂直抽风力机。
形式有:如s型、H型、Ф型等。 应用:虽然目前垂直轴风力机尚未大量商品
化,但是它有许多特点,如不需大型塔架 、发电机可安装在地面上、维修方便及叶 片制造简便等,研究日趋增多,各种形式 不断出现。各种形式的垂直轴风力机。
1、风力机的主要技术指标参数
①风轮直径,通常风力机的功率越大,直径
越大;
②叶片数目,高速发电用风力机为2—4片,
低速风力机大干4片;
相关文档
最新文档