独立运行的风力发电系统
风力发电系统的分类及拓扑

并网型风力发电系统
2.B型:有限变速 指可变转子电阻的有限变速风力机,如下图所示。
OptiSlipTM,该技术是Vestas公司在20世纪90年代中期开 始使用。使用绕线感应发电机(WRIG)直接并网;同样 需要电容器组进行无功功率补偿,使用软起动器并网。由 于转子电阻可变使得转差率可变,因此系统的功率输出稳 定,可变转子电阻的大小决定动态速度控制的范围。
特点及其拓扑结构
并网型风力发电系统
4.D型:变速全功率变频器型 此类型主要指发电机通过全功率变频器并网的全变速风
力机。发电机主要有绕线转子同步风力发电机(WRSG) 或永磁同步发电机(PMSG),结构图如下图所示。 其中一些全变速风力发电机系统省去了齿轮箱,此时需 要直驱多级发电机,其直径较大。
特点及其拓扑结构
特点及其拓扑结构
该类型还具体包括三种类型: (1) 失速控制型。该机型在上世纪80~90年代被许多丹麦风力机制造
商采用。 特点:简单、坚固、耐用。不能实现辅助启动,无法控制风力机的
功率。 (2) 桨距控制型。
优点是可控功率,可控启动和紧急停车。 缺点:高风速时很小的风速变化也会导致很大的输出功率波动。桨 叶调节能补偿份额的缓慢变化,但阵风情况不能补偿。 (3) 主动失速控制型。低风速时桨叶调节类似于桨距控制型风机,高 风速时、使桨叶进入深度失速状态。 优点:能够获得更平稳的有限功率,不会出现桨距控制型风力机的 高功率波动。
风力发电系统分类:
1.独立型风力发电系统 2.并网型风力发电系统
小型直流混合系统
小型交流混合系统
A型:恒速恒频 B型:变速恒频 C型:变速含部分功率变频器 D型:变速全功率变频器型
小型直流混合系统
小型风力发电系统经常与其他能源混合发电,又可称之为 “混合电力系统”。
风力发电系统的拓扑结构

、试论述现有风力发电系统的拓扑结构及各自特点风力发电系统主要有三种运行方式:一是独立运行方式,通常是一台小型风力发电机向一户或几户提供电力,采用蓄电池进行蓄能;二是风力发电与其他发电方式(如太阳能发电)相结合形成互补发电系统向一个单位或一个村庄或一个海岛供电;三是风力发电并入常规电网运行,向大电网提供电力。
(一)独立运行的风力发电系统风力发电机组独立运行是一种比较简单的运行方式。
由于风能的不稳定性,需要配置充电装置,最普遍使用的充电装置为蓄电池,当风力发电机在运转时,为用电装置提供电力,同时将多余的电能向蓄电池充电。
根据供电系统的不同可分为直流系统和交流系统。
1、直流系统独立运行的直流风力发电系统为由一个风力机驱动的小型直流发电机经蓄电池蓄能装置想电阻性负载供电。
当风力减小,风力机转速降低,致使直流发电机电压低于蓄电池组电压时,发电机不能对蓄电池充电,而蓄电池却要向发电机反向送电。
为了防止这种情况的发生,在发电机电枢电路与蓄电池组之间装有由逆流继电器控制的动断出点,当直流发电机电压低于蓄电池组电压时,逆流继电器工作断开动断触点,使蓄电池不能向发电机反向供电。
如图1-1所示。
图1-1独立运行的直流风力发电系统2、交流系统如果在蓄电池的正负极两端直接接上直流负载,则构成了一个由交流发电机经整流器组成整流后向蓄电池充电及向直流负载供电的系统。
如图1-2所示。
女口果在蓄电池的正负极接上逆变器,则可向交流负载供电。
如图1-3所示。
图1-2交流发电机向直流负载供电独立运行的风力发电系统特点:结构简单,规模小,但只能向独立的小用户 提供电力。
(二) 互补运行的风力发电系统在互补运行的风力发电系统中,除了有风力发电装置之外,还带有一套备用 的发电系统,经常采用的是柴油机,也有利用太阳能电池。
风力发电机和柴油发 电机构成一个混合系统。
在风力发电机不能提供足够的电力时由柴油机提供备用 的电力,以实现连续、稳定的供电。
风力发电的三种运行方式介绍及特点

交流励磁双馈变速恒频风力发电机不仅可以通过控制交流励磁的幅值、相位、频率来实现变速恒频,还可以实现有功、无功功率控制,对电网而言还能起无功补偿的作用。
交流励磁变速恒频双馈发电机系统有如下优点:
·允许原动机在一定范围内变速运行,简化了调整装置,减少了调速时的机械应力。同时使机组控制更加灵活、方便,提高了机组运行效率。
变距调节的缺点是对阵风反应要求灵敏。失速调节型风机由于风的振动引起的功率脉动比较小,而变距调节型风力机则比较大,尤其对于采用变距方式的恒速风力发电机,这种情况更明显,这样不要求风机的变距系统对阵风的响应速度要足够快,才可以减轻此现象。
2 变速恒频风力发电机
变速恒频风力发电机常采用交流励磁双馈型发电机,它的结构类似绕线型感应电机,只是转子绕组上加有滑环和电刷,这样一来,转子的转速与励磁的频率有关,从而,使得双馈型发电机的内部电磁关系既不同于异步发电机又不同于同步发电机,但它却变频控制的功率仅是电机额定容量的一部分,使变频装置体积减小,成本降低,投资减少。
·调节励磁电流幅值,可调节发出的无功功率;调节励磁电流相位,可调节发出的有功功率。应用矢量控制可实现有、无功功率的独立调节。
在风力发电系统中两个主要部件是风力机和发电机。风力机向着变浆距调节技术、发电机向着变速恒频发电技术,这是风力发电技术发展的趋势,也是当今风力发电的核心技术。下面简单介绍这两方面的情况。
1 风力机的变浆距调节
风力机通过叶轮捕获风能,将风能转换为作用在轮毂上的机械转矩。
变距调节方式是通过改变叶片迎风面与纵向旋转轴的夹角,从而影响叶片的受力和阻力,限制大风时风机输出功率的增加,保持输出功率恒定。采用变距调节方式,风机功率输出曲线平滑。在额定风速以下时,控制器将叶片攻角置于零度附近,不做变化,近似等同于定浆距调节。在额定风速以上时,变浆距控制结构发生作用,调节叶片攻角,将输出功率控制在额定值附近。变浆距风力机的起动速度较定浆距风力机低,停机时传递冲击应力相对缓和。正常工作时,主要是采用功率控制,在实际应用中,功率与风速的立方成正比。较小的风速变化会造成较大的风能变化。
风力发电系统的分类及拓扑

并网型风力发电系统
• 2.B型:有限变速 指可变转子电阻的有限变速风力机,如下图所示。
OptiSlipTM,该技术是Vestas公司在20世纪90年代中期 开始使用。使用绕线感应发电机(WRIG)直接并网;同 样需要电容器组进行无功功率补偿,使用软起动器并网。 由于转子电阻可变使得转差率可变,因此系统的功率输出 稳定,可变转子电阻的大小决定动态速度控制的范围。
接三相转差频率变频器实现交流励磁。部分功率变频器用来进行无功
功率补偿。双馈发电机是指,在控制中发电机的定、转子都参与了励
磁,并且定、转子两侧都有能量的馈送。
• 优点:变频器的容量小,更具经济性,动态速度控制范围快一般为同 步转速的-40%~30%。
• 缺点主要是需要使用滑环和需要有电网故障保护,具有齿轮箱,结构 笨重,易出现机械故障。
特点及其拓扑结构
并网型风力发电系统
• C型:变速含部分功率变频器
•
此类型主要指双馈式感应发电机(DFIG),如下图所示。是含
绕线转子感应发电机(WRIG)和转子电路中部分功率变频器(额定
值约为标称发电机功率的30%)。双馈发电机结构类似于三相绕线式
异步感应电机,具有定、转子两套绕组,定子绕组并网,转子绕组外
The end
ቤተ መጻሕፍቲ ባይዱ
Thank you!
特点及其拓扑结构
并网型风力发电系统
• 4.D型:变速全功率变频器型 • 此类型主要指发电机通过全功率变频器并网的全变速风
力机。发电机主要有绕线转子同步风力发电机(WRSG) 或永磁同步发电机(PMSG),结构图如下图所示。 • 其中一些全变速风力发电机系统省去了齿轮箱,此时需 要直驱多级发电机,其直径较大。
风力发电系统分类:
独立式小型风力发电机及其控制器的研究

二、研究现状
近年来,针对小型永磁风力发电机性能测试技术的研究已经取得了一定的进 展。然而,现有的测试方法大多基于传统风力发电机性能测试技术,未能充分考 虑永磁风力发电机的特性和需求。此外,这些方法往往操作复杂,精度不高,难 以满足实际应用的需求。因此,开发适用于小型永磁风力发电机的性能测试技术 势在必行。
六、结论
本次演示对小型永磁风力发电机性能测试技术进行了深入研究,提出了一种 基于磁势能和风能测量的测试技术方案。实验验证表明,该技术方案具有高精度、 简便快速、稳定性好等优势,具有广泛的应用前景。未来,随着新能源技术的不 断发展,小型永磁风力发电机性能测试技术将在风能领域发挥越来越重要的作用, 推动可再生能源的可持续发展。
2、反馈系统:反馈系统是控制器的重要组成部分,它通过实时监测发电机 的运行状态,为控制器提供必要的信息,以便做出相应的调整。反馈系统通常包 括风速传感器、发电机速度传感器、电力输出传感器等。
3、电力储存和管理:对于独立式小型风力发电机来说,电力储存和管理也 是控制器的重要职责之一。控制器需要确保在风速低或者无风的情况下,电力能 够得到有效的储存和管理,以确保持续供电。
谢谢观看
2、产业规模:我国的小风电机产业规模也在不断扩大。据统计,我国的小 风电机市场规模在过去几年中增长迅速,成为全球最大的小风电机市场之一。
3、政策支持:我国政府对小风电机的发展给予了大力支持。各级政府出台 了一系列优惠政策,如补贴、税收优惠等,以推动小风电机产业的发展。
三、发展趋势
1、技术创新:未来,我国小风电机产业将继续加大技术创新的力度,以提 高产品的性能和竞争力。例如,通过采用新材料、新工艺等,使得小风电机在重 量、体积和噪音等方面都能得到优化。
参考内容
独立运行风力发电最大功率控制器的设计

风力发电系统有哪些设备组成

风力发电系统有哪些设备组成?风力发电机根据应用场合的不同又分为并网型和离网型风力机,离网型风力发电机亦称独立运行风力机是应用在无电网地区的风力机,一般功率较小。
独立运行风力机一般需要与蓄电池和其他控制装置共同组成独立运行风力机发电系统。
这种独立运行系统可以是几千瓦乃至上几十千瓦解决一个村落的供电系统,也可以是几十到几百瓦的小型风力发电机组以解决一家一户的供电,我们这里主要介绍适合我国边远无电地区的小型风力发电机组。
小型风力发电机组一般由下列几部分组成:风轮、发电机、调速和调向机构、停车机构、塔架及拉索等,控制器、蓄电池、逆变器等。
①风轮:小型风力机的风轮大多用2-3个叶片组成,它是把风能转化为机械能的部件。
目前风轮叶片的材质主要有两种。
一种是玻璃钢材料,一般用玻璃丝布和调配好的环氧树脂在模型内手工糊制,在内腔填加一些填充材料,手工糊制适用于不同形状和变截面的叶片但手工制作费工费时,产品质量不易控制。
国外小风机也采用机械化生产等截面叶片,大大提高了叶片生产的效率和产品质量。
②发电机:小型风力发电机一般采用的是永磁式交流发电机,由风轮驱动发电机产生的交流电经过整流后变成可以储存在蓄电池中的直流电。
③调向机构、调速机构和停车机构:为了从风中获取能量,风轮旋转面应垂直于风向,在小型风机中,这一功能靠风力机的尾翼作为调向机构来实现。
同时随着风速的增加,要对风轮的转速有所限制,这是因为一方面过快的转速会对风轮和风力机的其他部件造成损坏,另一方面也需要把发电机的功率输出限定在一定范围内。
由于小型风力机的结构比较简单,目前一般采用叶轮侧偏式调速方式,这种调速机构在风速风向变化转大时容易造成风轮和尾翼的摆动,从而引起风力机的振动。
因此,在风速较大时,特别是蓄电池已经充满的情况,应人工控制风力机停机。
在有的小型风力机中设计有手动刹车机构,另外在实践可采用侧偏停机方式,即在尾翼上固定一软绳,当需要停机时,拉动尾翼,使风轮侧向于风向,从而达到停车的目的。
风力发电系统

的风速范围内保持近乎恒定的最佳叶尖速比,从而提高了风
力机的运行效率,从风中获取的能量可以比恒速风力机高得
多。此外,这种风力机在结构上和实用中还有很多的优越性。
北京大学出版社
12
4.1.6蓄能装置
风能是随机性的能源,具有间歇性,并且是不能直接储
存起来的。因此,即使在风能资源丰富的地区,把风力发电机
作为获得电能的主要办法时,必须配备适当的蓄能装置。在风
变速恒频方式:即风力发电机组的转速随风速的波动作变速运 行,但仍输出恒定频率的交流电这种方式可提高风能的利用率, 因此成为追求的目标之一,但将导致必须增加实现恒频输出的 电力电子设备,可利用变速同步发电机(交流励磁电机),同时 还应解决由于变速运行而在风力发电机组支撑结构上出现共振 现象的问题。
北京大学出版社
情况下,若风速降低,则柴油机自动启动投入运行;在无风时,
则由柴油发电机向负荷供电。
北京大学出版社
26
4. 具有蓄电池的风力-柴油发电联合运行系统
风力机
异步电动机
耗能负荷(dump Load)
用户负荷
~
柴油机
图4-14 具有蓄能蓄电池及离合器的分离—柴油联合发电系统
北京大学出版社
27
5. 具有蓄电池及蓄能飞轮的风力-柴油发电联合运行系统
转速及 功率控制
异步 发电机
逆变器
蓄电池
风力机
用
户
负
荷
图 4-16 多台风力-柴油-蓄电池联合供电系统
北京大学出版社
29
4.3 并网发电
风力发电机组采用两种方式向电网送电:一是将机组发
出的交流电直接输入电网;二是将机组发出的交流电先整流成
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
The research of fixed-pitch wind turbine
A particular fixed pitch wind turbine has a unique optimaltip speed ratio that can get the maximum value of wind energy utilization factor.
Vector control strategies based on stator-flux orientation • By the previous equations(1-5)(1-7)(1-8), mathematical model of the DFIG in independent operation as shown below:
: optimal tip speed ratio
Cpmax : maximum value of wind energy utilization factor
Fixed pitch variable speed wind power - speed curve
The research of fixed-pitch wind turbine
No Image
(1-1)
DFIG system flux equation under the two-phase synchronous rotating coordinate :
No Image
(1-2)
Vector control strategies based on stator-flux orientation
• Wind turbines are the primary energy conversion parts in wind power generation system i. Its used to intercept the air flowing with the kinetic energy, and the part of the kinetic energy of wind turbine blades wind swept area is converted into mechanical energy. It not only determines the effective output power of the wind power generation system, but also directly affecting the safety of the crew and stable operation,which is one of the key components in the wind power generation system. • According to the aerodynamics, the input power of the wind turbine:
remote rural
Applicable occasions and system components
Island
pastoral area
• a. b. c.
Advantages compared with general wind power generation : High mobility ; Diversification of energy use ; Easy installation.
decoupled control
Voltage outer loop PI contorller
• To reduce the system order and simplify the mathematical model, directiing daxis synchronous rotating coordinate system. • with the following assumptions: a. Ignoring the transient process of the stator flux, that space vector Ψs is in synchronous speed rotation, keeping the amplitude constant. And the Ψs was defined in the d-axis synchronous coordinates; b. Ignoring the stator resistance Rs.
No Image
By the mathematical model of DFIG independent operation, which can get control block diagram as shown below:
No Image
Vector control strategies based on stator-flux orientation DFIG in independent operationthe excitation vector control strategy diagram:
• Simulation model of fixed-pitch wind turbine
Vector control strategies based on stator-flux orientation
• Excitation stator flux oriented control strategy is derived under the conditions of the grid voltage symmetry , the motor parameters symmetry, symmetrical line and transformer parameters and symmetry load conditions ,Therefore, each three-phase system of physical quantities (voltage, current, flux, etc.) contains only positive sequence component system in steady-state operation, active power, reactive power, electromagnetic torque, mechanical torque and speed are constants.
131 Cp ( ) 0 . 73 ( 13 . 2 ) e
18 . 4
opt
Pmax Cpmax Pv
:air density :airflow through the cross-sectional area of the wind wheel in unit time :wind Speed
Applicable occasions and system components
• system components
• Due to the characteristics of the wind energy instability, for the stable power supply to the regional load,wind power generation system is often combined with other forms of energy such as solar energy, fuel, or adding energy storage devices ( batteries, fly wheels and so on), which can store up the wind energy . When wind energy is insufficient, energy storage devices supply to the loads together with wind power generation system.
No Image
(1-6)
No Image
the stator flux orientation
No Image
(1-5)
By the previous equations(1-4):
No Image
No Image
(1-7)
No Image
(1-8)
Control the amplitude of the stator voltage vector
Vector control strategies based on stator-flux orientation
Simulation
Applicable occasions and system components
Applicable occasions: Stand-alone wind power systems are generally used in remote areas where are not covered by the conventional power grid. In addition to regular grid, we should promote standalone wind power systems vigorously and supply the power of daily lives and production for remote area residents (such as remote rural, pastoral area, island and so on).
The Research of Stand-alone DFIG Systems and It's Control Stratagy
Outline
Applicable occasions and system components