期末专题复习讲义(图形的旋转)
三年级下册数学期末复习专题讲义(知识点归纳典例讲解同步测试)-2.图形的运动(1)

北师大版三年级下册数学期末复习专题讲义-2.图形的运动【知识点归纳】1.轴对称图形:对折后两边能完全重合的图形是轴对称图形。
2.对称轴:对折后能使两边重合的线叫做对称轴。
3.轴对称图形特点:对称轴是一条直线,对称轴两侧的对应点到对称轴两侧的距离相等,沿对称轴将它对折,左右两边完全重合。
4.轴对称图形有:角、五角星、等腰三角形、等边三角形、等腰梯形、正方形、长方形、圆和正多边形等都是轴对称图形。
轴对称图形至少有一条对称轴。
圆有无数条对称轴,每条圆的直径所在的直线都是圆的对称轴。
正方形有4条对称轴,长方形有2条对称轴。
5.平移:物体或图形,沿着直线运动的现象,叫做平移。
平移不改变图形的形状和大小。
图形经过平移,对应线段相等,对应角相等,对应点所连的线段相等。
6.平移特征:图形平移前后的形状和大小无变化,只是位置发生变化。
7.旋转:物体或图形,绕一个点或一个轴转动一个角度的现象叫做旋转。
8.旋转的特征:围绕中心转动。
9.平移和旋转:①相同点:平移和旋转都是物体或图形的位置发生变化,而形状、大小不变。
②不同点:平移是物体沿着直线运动,本身的方向不变;旋转是物体绕着一个点或一个轴转动,本身的方向发生改变。
10.汽车行驶,车身在平移,车轮、方向盘在旋转。
【典例讲解】例1.把一张长方形纸对折一次后剪成,展开后的图形不可能是()A.B.C.D.【分析】由于只对折一次,所以对折的折痕就是图形的对称轴,根据轴对称图形的特征选择即可.【解答】解:一张长方形纸对折后剪成,把它展开后可能得到,不可能是,因为没有体现右上角的一道剪口.故选:D.【点评】解答此题的关键是轴对称图形的意义及特征.如果一个图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,折痕所在的直线叫做对称轴.例2.把一张纸对折再剪一剪,展开后的图形可能是②.【分析】被剪下的部分上面是三角形的一半,下面是长方形的一半,所以打开后上面是三角形,下面是长方形.它的展开图可能是②.【解答】解:把一张纸对折再剪一剪,展开后的图形可能是②.故答案为:②.【点评】此题考查了轴对称的性质.即对应点所连的线段被对称轴垂直平分,对应线段相等,对应角相等.例3.线段不是轴对称图形.×(判断对错)【分析】依据轴对称图形的意义,即在平面内,如果一个图形沿一条直线对折,对折后的两部分都能完全重合,这条直线叫做对称轴,这样的图形叫做轴对称图形,据此即可进行解答.【解答】解:线段是轴对称图形,经过它的中点的垂线就是它的对称轴;所以原题说法错误.故答案为:×.【点评】此题主要考查轴对称图形意义的灵活运用.例4.我会做.拿一张长纸条,将它一反一正折叠起来,并画出字母E.用小刀把画出的字母E挖去,拉开就可以得到一条以字母E为图案的花边,如图.(1)在得到的花边中,相邻的两个图案是什么关系?相间的两个图案可以通过什么得到?(2)观察整条花边,左起和右起的三个图案各为一组,这两组图案有什么关系?【分析】(1)因为是在折叠好的纸上画出字母E,所以相邻两个图案成轴对称,相间的两个图案全等且是可以通过平移得到的;(2)根据轴对称的定义可知三个图案为一组也成轴对称关系.【解答】解:(1)相邻两个图案成轴对称,相间的两个图案全等且是可以通过平移得到的;(2)三个图案为一组也成轴对称关系.【点评】主要考查了轴对称的性质.轴对称的性质:(1)对应点所连的线段被对称轴垂直平分;(2)对应线段相等,对应角相等.例5.小红将几张正方形纸对折两次后(如图),在不同的位置剪出一个圆孔,每种剪法各对应哪幅图?连一连.【分析】第一种剪法在右上角打孔,左右展开第一道是,再上下展开第二道就是;第二种剪法在右下角打孔,左右展开第一道是再上下展开第二道就是;第三种剪法在左上角打孔,左右展开第一道是,再上下展开第二道就是;第四种剪法在中间打孔,左右展开第一道是,再上下展开第二道就是,据此连线即可.【解答】解:【点评】解答此题的关键是想象出各种剪法的展开图,时间充裕时也可以剪小纸片来观察.【同步测试】一.选择题(共6小题)1.在下面图形中,()不是轴对称图形.A.B.C.2.下列图形中,对称轴条数最少的是()A.圆B.半圆C.等边三角形D.长方形3.如图有()条对称轴.A.1B.2C.3D.44.下列图形对称轴最多的是()A.等边三角形B.半圆C.等腰梯形D.长方形5.下列图形中,一定是轴对称图形的是()A.三角形B.平行四边形C.梯形D.正方形6.一张长方形纸对折后剪成,把它展开后不可能得到的是()A.B.C.二.填空题(共6小题)7.如图共有条对称轴.8.在这些图形中,是轴对称图形的有个,分别是(填序号).9.☆有条对称轴.10.将图形沿着一条直线对折,如果直线两侧的部分能够完全重合,这样的图形叫做,折痕所在的直线叫做它的.11.明明和亮亮合作画一张轴对称图形,明明画出了轴对称图形的左半边(如图),亮亮要沿着虚线画出轴对称图形的右半边,应是数字.12.在A、W、N、S、X、M、Z这些字母中,可以看作轴对称图形.三.判断题(共5小题)13.用两个大小不同的〇组成的图形,一定是轴对称图形.(判断对错)14.这幅照片上的图案是对称的.(判断对错)15.田、子、中这三个汉字都是对称的.(判断对错)16.“H”是轴对称图形.(判断对错)17.该汽车图标是轴对称图形.(判断对错)四.应用题(共4小题)18.下面哪种剪法不会剪出半个人形图案?请在()里画“〇”.再剪一剪,验证一下你的想法是否正确.19.将一张纸对折后剪去两个圆,展开后是哪一个?画“√”.20.拿一张长纸条,将它一反一正折叠起来,并画出字母E.用小刀把画出的字母E挖去,拉开就可以得到一条以字母E为图案的花边,如图.观察整条花边,左起和右起的三个图案各为一组,这两组图案有什么关系?21.下图中的三角形是从哪张对折后的纸上剪下来的?在()里填上序号.五.操作题(共4小题)22.连一连,下面的图案分别是从哪张对折后的纸上剪下来的?23.画出如图的所有对称轴.(有几条就画几条)24.下面图形中,是轴对称图形的画“√”.25.要求:添加一个正方形,形成一个轴对称图形,并给出3种方案,画出对称轴.六.解答题(共3小题)26.认真想一想,在轴对称图形右边的里画“√”.27.请你用三种不同的方法分别图中添画一个小正方形,使它成为一个轴对称图形.28.下面的图形各有几条对称轴?画一画、数一数、填一填.参考答案与试题解析一.选择题(共6小题)1.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:在下面图形中,不是轴对称图形;故选:C.【点评】掌握轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【分析】一个图形沿一条直线对折,直线两旁的部分能够完全重合,那么这个图形就是轴对称图形,这条直线就是这个图形的一条对称轴,由此即可确定这个图形的对称轴的条数及位置.【解答】解:圆有无数条对称轴,半圆有1条对称轴,等边三角形有3条对称轴,长方形有2条对称轴,所以半圆的对称轴的条数最少;故选:B.【点评】此题考查了利用轴对称图形的定义判断轴对称图形的对称轴条数及位置的灵活应用.3.【分析】依据轴对称图形的意义,即在同一个平面内,一个图形沿某条直线对折,对折后的两部分都能完全重合,则这个图形就是轴对称图形,这条直线就是其对称轴,从而找出它们的对称轴.【解答】解:有2条对称轴.故选:B.【点评】此题主要考查如何确定轴对称图形的对称轴条数及位置.4.【分析】根据轴对称图形的定义:一个图形沿某条直线对折,直线两旁的部分能够完全重合,则这个图形就是轴对称图形,这条直线就是它的一条对称轴,据此分别确定出选项中各个图形中对称轴的条数,然后选择即可.【解答】解:等边三角形有3条对称轴,半圆有1条对称轴,等腰梯形有1条对称轴,长方形有2条对称轴;故选:A.【点评】本题主要考查了图形的对称性,对于常见图形的对称性的理解是解决本题的关键.5.【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;依次进行判断即可.【解答】解:根据轴对称图形的意义可知:三角形,平行四边形、梯形不一定是轴对称图形,只有正方形一定是轴对称图形;故选:D.【点评】此题考查了轴对称图形的意义,判断轴对称图形的关键是寻找对称轴,看图形对折后两部分是否完全重合.6.【分析】由于只对折一次,所以对折的折痕就是图形的对称轴,根据轴对称图形的特征,可知以不同的对称轴对称出来的图形也不同,但不可能没有右上角的一道剪口所形成的图形,据此选择即可.【解答】解:一张长方形纸对折后剪成,把它展开后可能得到:、、不可能是:.故选:B.【点评】解答此题的关键是轴对称图形的意义及特征.如果一个图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,折痕所在的直线叫做对称轴.二.填空题(共6小题)7.【分析】根据轴对称图形的定义:一个图形沿一条直线对折,直线两旁的部分能够完全重合,则这个图形就是轴对称图形,这条直线就是这个图形的一条对称轴,据此即可解答.【解答】解:如图共有4条对称轴.故答案为:4.【点评】此题主要考查如何确定轴对称图形的对称轴条数及位置.8.【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:在这些图形中,是轴对称图形的有4个,分别是①③④⑤;故答案为:4,①③④⑤.【点评】此题考查了轴对称图形的意义,判断轴对称图形的关键是寻找对称轴,看图形对折后两部分是否完全重合.9.【分析】把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线就是它的对称轴,据此解答即可.【解答】解:☆有5条对称轴;故答案为:5.【点评】此题考查了轴对称图形的定义,要求学生能够正确找出轴对称图形的对称轴.10.【分析】依据轴对称图形的定义即可作答.【解答】解:将图形沿着一条直线对折,如果直线两侧的部分能够完全重合,这样的图形叫做轴对称图形,折痕所在的直线叫做它的对称轴.故答案为:轴对称图形、对称轴.【点评】此题主要考查轴对称图形的定义.11.【分析】把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,称这两个图形为轴对称,这条直线叫做对称轴,两个图形中的对应点叫做对称点,依次即可求解.【解答】解:亮亮要沿着虚线画出轴对称图形的右半边,应是数字2019.故答案为:2019.【点评】考查了轴对称,性质:(1)成轴对称的两个图形全等;(2)如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线.12.【分析】依据轴对称图形的意义,即在平面内,如果一个图形沿一条直线对折,对折后的两部分都能完全重合,这样的图形叫做轴对称图形,据此即可进行解答.【解答】解:在A、W、N、S、X、M、Z这些字母中,A、X、W、M可以看作轴对称图形;故答案为:A、X、W、M.【点评】此题主要考查轴对称图形的意义.三.判断题(共5小题)13.【分析】依据轴对称图形的意义,即在平面内,如果一个图形沿一条直线对折,对折后的两部分都能完全重合,这条直线叫做对称轴,这样的图形叫做轴对称图形,据此即可进行解答.【解答】解:用两个大小不同的〇组成的图形,一定是轴对称图形,因为经过它们的圆心的直线就是它们的对称轴;所以原题说法正确.故答案为:√.【点评】此题主要考查轴对称图形意义的灵活运用.14.【分析】依据轴对称图形的意义,即在平面内,如果一个图形沿一条直线对折,对折后的两部分都能完全重合,这条直线叫做对称轴,这样的图形叫做轴对称图形,据此即可进行解答.【解答】解:这幅照片上的图案不是对称的,因为对折后两部分不能完全重合,所以原题说法错误.故答案为:×.【点评】此题主要考查轴对称图形意义的灵活运用.15.【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此判断即可.【解答】解:“田、中”,都是对称的,“子”不是对称的,所以本题说法错误;故答案为:×.【点评】掌握轴对称图形的意义,判断是不是轴对称图形的关键是找出对称轴,看图形沿对称轴对折后两部分能否完全重合.16.【分析】轴对称图形的概念:如果一个图形沿着一条直线对折,直线两边的图形能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:“H”沿着对称轴对折两边的图形能够完全重合,所以“H”是轴对称图形,所以原题说法正确;故答案为:√.【点评】此题主要考查轴对称图形的定义.17.【分析】依据轴对称图形的概念,即在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线就是其对称轴,据此即可解答.【解答】解:该汽车图标是轴对称图形,有3条对称轴,故原题说法正确;故答案为:√.【点评】本题主要考查了轴对称图形的对称轴条数,比较简单.四.应用题(共4小题)18.【分析】根据轴对称图形的定义可知,折痕就是展开后相邻的两个图形的对称轴,据此判断即可.【解答】解:折痕就是展开后相邻的两个图形的对称轴,第一种剪法会剪出整个人形图案,第二种剪法会剪出半个人形图案.故答案为:【点评】本题主要考查学生的动手能力及空间想象能力,正确理解对称轴的定义是解题的关键.19.【分析】由于该图是把一张纸对折后剪出的,剪出的图形是轴对称图形,折痕就是剪成的图形的对称轴,据此解答.【解答】解:将一张纸对折后剪去两个圆(如图),展开后是,【点评】本题考查了轴对称图形,对称轴左边的图形要与该图的左边部分相吻合.20.【分析】根据轴对称图形的定义可知,左起和右起的三个图案各为一组,这两组图案成轴对称.【解答】解:左起和右起的三个图案各为一组,这两组图案成轴对称关系.【点评】主要考查了轴对称的性质.轴对称的性质:(1)对应点所连的线段被对称轴垂直平分;(2)对应线段相等,对应角相等.21.【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形.因为①的对称轴在折痕,所以如果按①剪下来,得到的是等腰三角形,符合要求.【解答】解:根据轴对称图形可知,图中的三角形是①对折后的纸上剪下来的.故答案为:①.【点评】本题考查了轴对称图形的意义.解题的关键是掌握轴对称图形的意义,判断轴对称图形的关键是寻找对称轴,看图形对折后两部分是否完全重合.五.操作题(共4小题)22.【分析】依据轴对称图形的意义,即在平面内,如果一个图形沿一条直线对折,对折后的两部分都能完全重合,这条直线叫做对称轴,这样的图形叫做轴对称图形,据此即可进行解答.【解答】解:根据分析可得,【点评】此题主要考查轴对称图形意义的灵活运用.23.【分析】一个图形沿一条直线对折,直线两旁的部分能够完全重合,那么这个图形就是轴对称图形,这条直线就是这个图形的对称轴.根据轴对称图形的定义,找出并画出轴对称图形的对称轴即可.【解答】解:如图所示,即为所要画的对称轴;【点评】此题考查了根据轴对称图形定义画出轴对称图形的对称轴的方法.24.【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;依次进行判断即可.【解答】解:根据轴对称图形的意义可知:【点评】此题考查了轴对称图形的意义,判断轴对称图形的关键是寻找对称轴,看图形对折后两部分是否完全重合.25.【分析】依据轴对称图形的概念,即在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线就是其对称轴,从而可以画出轴对称图形.【解答】解:根据分析可得,【点评】解答此题的主要依据是:轴对称图形的概念及特征.六.解答题(共3小题)26.【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此判断即可.【解答】解:【点评】掌握轴对称图形的意义,判断是不是轴对称图形的关键是找出对称轴,看图形沿对称轴对折后两部分能否完全重合.27.【分析】依据轴对称图形的含义,即在平面内,如果一个图形沿一条直线对折,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,据此即可完成作图.【解答】解:如图所示,即为所要求的画图:【点评】解答此题的主要依据是:轴对称图形的意义及特征.28.【分析】依据轴对称图形的意义,即在平面内,如果一个图形沿一条直线对折,对折后的两部分都能完全重合,这样的图形叫做轴对称图形,这条直线就是其对称轴,据此即可进行解答.【解答】解:【点评】此题主要考查轴对称图形的意义及其对称轴的条数.。
2023-2024小学数学三年级上册期末章节考点复习讲义六单元《平移、旋转和轴对称》(苏教版原卷)

期末知识大串讲苏教版数学三年级上册期末章节考点复习讲义第六单元《平移、旋转和轴对称》知识点01:平移和旋转1.平移:2.旋转:3.平移和旋转都是物体或图形运动的现象,运动中物体的都不变;二者的区别在于:平移是,而旋转是物体,平移只改变,旋转改变的是。
知识点02:轴对称图形1.轴对称图形:把一个图形沿着某一条直线对折,对折后折痕两侧的部分能,这样的图形就是。
是图形的对称轴。
2.轴对称图形的特征:对折后,对称轴两侧能考点01:轴对称1.(2021三上·玄武期末)将一张长方形纸对折后,沿虚线剪开,剪出的图形展开后是()。
A.B.C.2.(2020三上·南通期末)下面各图,不是轴对称图形的是()。
A.B.C.D.3.下列说法正确的是()。
①转椅的升降运动是旋转现象。
②婚礼上贴的“喜”字是利用轴对称原理剪的。
③任何图形都是轴对称图形。
④三种运动都是旋转现象。
A.①和②B.①和③C.②和③D.②和④4.手工课上,毛毛和豆豆做了下面几个手工作品,其中轴对称图形有()个。
A.3 B.4 C.5 D.65.仔细看,认真填。
(1)在上面四个图案中,可以由平移得到的有和。
(2)可以由旋转得到的有和。
(3)是轴对称图形的有和。
6.(2020三上·雨花台期末)下面是轴对称图形的在横线上面画“√”,不是轴对称图形的画“×”。
7.(2020三上·江宁期末)哪个图案是从下面纸上剪下来的?连一连。
(1)(2)(3)8.(2020三上·江阴期末)用4个相同的小正方形可以拼成下面几种图形。
(每个小方格表示边长为1厘米的正方形)(1)观察上面的五个图形,是轴对称图形的有(填序号)(2)请你在上面方格图中,再画一个与图⑤周长相同的长方形,这个长方形的长是()厘米,宽是()厘米。
9.(2021三上·玄武期末)下图是一个用4个边长为1厘米的小正方形拼成的图形。
(1)方格纸中涂色图形的周长是厘米。
九年级数学旋转综合期末复习

学习目标
1、重点复习: (1)旋转的性质 (2)旋转的作图 (3)中心对称的性质 (4)关于原点对称坐标规律
2、解决经典例题,总结如何利用“旋转”; 体会“构造思想”、“转化思想”等
一.旋转:
基础过关
1.旋转的定义:
把一个图形绕着某一定点沿某个方向转动一个角度的
图形变换叫做旋转。 A'
第23章复习
方法技巧 中心对称图形的识别关键是看是否存在一点,把图形绕这一 点旋转 180°后能和原图形互相重合;轴对称图形的识别关键是看 是否能找到一条直线,把图形绕这条直线翻转 180°后能和原图形 互相重合.
数学·新课标(RJ)
5.对称中心的确定: 将其中的两个关键点和它们的对
称点的连线作出来,两条连线的交 点就是对称中心.
第23章复习 ┃ 考点攻略 解:解法不唯一,如图23-5:
图23-5
数学·新课标(RJ)
► 考点四 旋转中的计算问题
例9 如图23-6所示,将△OAB绕点O按逆时针方向旋转
至△OA′B′,使点B恰好落在边A′B′上.已知AB=4 cm,BB′=1
cm,则A′B的长是________cm.
3
图23-6
解:∵△A′B′C是由△ABC旋转所得, ∴∠B′=∠ABC=60°,B′C=BC, ∴△B′BC是等边三角形.
∴∠BCB′=60°. ∵∠BCD=90°-60°=30°, ∴∠BDC=180°- (60°+30°) =180°-90°=90°.
4.简单图形的旋转作图:
(1)确定旋转中心; (2)确定图形中的关键点;
6.关于中心对称的作图:
(1)确定对称中心; (2)确定关键点; (3)作关键点的关于对称中心的 对称点; (4)连结各点,得到所需图形.
中考数学 专题22 图形的旋转(知识点串讲)(解析版)

专题22 图形的旋转考点总结【思维导图】【知识要点】知识点一旋转的基础旋转的概念:把一个平面图形绕着平面内某一点O转动一个角度,叫作图形的旋转.点O叫作旋转中心,转动的角叫作旋转角.如图形上的点P经过旋转变化点P',那么这两个点叫作这个旋转的对应点.如图所示,A OB''∆绕定点O逆时针旋转45︒得到的,其中点A与点A'叫作对应点,线段OB与∆是AOB线段OB'叫作对应线段,OAB∠与OA B'∠)的度数叫∠叫作对应角,点O叫作旋转中心,AOA'∠(或BOB'作旋转的角度. 【注意】1.图形的旋转由旋转中心、旋转方向与旋转的角度所决定.2.旋转中心可以是图形内,也可以是图形外。
【图形旋转的三要素】旋转中心、旋转方向和旋转角. 旋转的特征:➢ 对应点到旋转中心的距离相等;➢ 对应点与旋转中心所连线段的夹角等于旋转角; ➢ 旋转前、后的图形全等. 旋转作图的步骤方法:➢ 确定旋转中心、旋转方向、旋转角; ➢ 找出图形上的关键点;➢ 连接图形上的关键点与旋转中心,然后按旋转方向分别将它们旋转一定的角度,得到关键点的对应点; ➢ 按原图的顺序连接这些对应点,即得旋转后的图形. 平移、旋转、轴对称之间的联系:变化后不改变图形的大小和形状,对应线段相等、对应角相等。
平移、旋转、轴对称之间的区别: 1) 变化方式不同:平移:将一个图形沿某个方向移动一定距离。
旋转:将一个图形绕一个顶点沿某个方向转一定角度。
轴对称:将一个图形沿一条直线对折。
2) 对应线段、对应角之间的关系不同平移: 变化前后对应线段平行(或在一条直线上),对应点连线平行(或在一条直线上),对应角的两边平行(或在一条直线上)、方向一致。
旋转: 变化前后任意一对对应点与旋转中心的连线所称的角都是旋转角。
轴对称:对应线段或延长线如果相交,那么交点在对称轴上。
3)确定条件不同A平移:距离与方向旋转:旋转的三要素。
专题09 图形的旋转(解析版)-2020-2021学年九年级数学上册期末综合复习

2020-2021学年九年级数学上册期末综合复习专题提优训练(人教版)专题09图形的旋转【典型例题】1.如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°.若固定△ABC,将△DEC 绕点C旋转.(1)当△DEC统点C旋转到点D恰好落在AB边上时,如图2.①当∠B=∠E=30°时,此时旋转角的大小为;①当∠B=∠E=α时,此时旋转角的大小为(用含a的式子表示).(2)当△DEC绕点C旋转到如图3所示的位置时,小杨同学猜想:△BDC的面积与△AEC的面积相等,试判断小杨同学的猜想是否正确,若正确,请你证明小杨同学的猜想.若不正确,请说明理由.【答案】解:(1)①∵∠B=30°,∠ACB=90°,∴∠CAD=90°﹣30°=60°.∵CA=CD,∴△ACD是等边三角形,∴∠ACD=60°,∴旋转角为60°.故答案为:60°.①如图2中,作CH⊥AD于H.∵CA=CD,CH⊥AD,∴∠ACH=∠DCH.∵∠ACH+∠CAB=90°,∠CAB+∠B=90°,∴∠ACH=∠B,∴∠ACD=2∠ACH=2∠B=2α,∴旋转角为2α.故答案为:2α.(2)小杨同学猜想是正确的.证明如下:过B作BN⊥CD于N,过E作EM⊥AC于M,如图3,∵∠ACB=∠DCE=90°,∴∠1+∠2=90°,∠3+∠2=90°,∴∠1=∠3.∵BN⊥CD于N,EM⊥AC于M,∴∠BNC=∠EMC=90°.∵△ACB≌△DCE,∴BC=EC,在△CBN和△CEM中,∠BNC=∠EMC,∠1=∠3,BC=EC,∴△CBN≌△CEM(AAS),∴BN=EM.∵S△BDC12=•CD•BN,S△ACE12=•AC•EM.∵CD=AC,∴S△BDC=S△ACE.【专题训练】一、选择题1.在平面直角坐标系中,若点P①m①m①n)与点Q①①2①3)关于原点对称,则点M①m①n)在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A2.下列标志既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】A3.如图,正方形网格中,已有两个小正方形被涂黑,再将图中其余小正方形涂黑一个,使整个图案构成一个轴对称图形,那么涂法共有()A.3种B.4种C.5种D.6种【答案】C4.如图,点E是正方形ABCD的边DC上一点,把①ADE绕点A顺时针旋转90°到①ABF的位置,若四边形AECF的面积为25①DE=3,则AE的长为()A B.5C.8D.4【答案】A5.(2020·河南初三三模)如图,将△ABC绕点C①0①-1①旋转180°得到△A′B′C,设点A的坐标为(a①b),则点A′的坐标为① ①A .①-a ①-b ①B .①-a ①-b -1①C .①-a ①-b +1①D .①-a ①-b -2①【答案】D6.如图,Rt △ABC 中,∠ACB =90°,线段BC 绕点B 逆时针旋转α°(0<α<180)得到线段BD ,过点A 作AE ⊥射线CD 于点E ,则∠CAE 的度数是( )A .90﹣αB .αC .902α-D .2α 【答案】C7.如图,在等腰直角三角形ABC 中,90BAC ∠︒=,一个三角尺的直角顶点与BC 边的中点O 重合,且两条直角边分别经过点A 和点B ,将三角尺绕点O 按顺时针方向旋转任意一个锐角,当三角尺的两直角边与AB ,AC 分别交于点E ,F 时,下列结论中错误的是( )A .AE AF AC =+B .180BEO OFC ∠∠=︒+C .2OE OF BC +=D .12ABC AEOF S S ∆=四边形【答案】C二、填空题8.点A(﹣3,m)和点B(n,2)关于原点对称,则m+n=_____.【答案】19.在平面直角坐标系中,O为坐标原点,点A1),将OA绕原点逆时针方向旋转90°得OB,则点B的坐标为_____①【答案】10.如图,在△ABC中,∠CAB①65°,在同一平面内,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′①AB,则∠B′AB等于_____①【答案】50°11.如图,已知△ABC,D是AB上一点,E是BC延长线上一点,将△ABC绕点C顺时针方向旋转,恰好能与△EDC重合.若∠A=33°,则旋转角为_____°.【答案】82°12.如图,在矩形ABCD中,AD=3,将矩形ABCD绕点A逆时针旋转,得到矩形AEFG,点B的对应点E落在CD 上,且DE =EF ,则AB 的长为_____.【答案】13.(2020·河北其他)如图,将Rt ABC ∆的斜边AB 绕点A 顺时针旋转()090αα︒︒<<得到AE ,直角边AC绕点A 逆时针旋转()090ββ︒︒<<得到AF ,连结EF .若=3AB ,=2AC ,且B αβ+=∠,则=EF _____.【答案】14.四边形ABCD 、四边形AEFG 都是正方形,当正方形AEFG 绕点A 逆时针旋转45°(45BAE ∠=︒)时,如图,连接DG ,BE ,并延长BE 交DG 于点H ,且BH DG ⊥.若4AB =,AE =则线段BH的长是________.三、解答题15.如图,AC是正方形ABCD的对角线,△ABC经过旋转后到达△AEF的位置.(1)指出它的旋转中心;(2)说出它的旋转方向和旋转角是多少度;(3)分别写出点A,B,C的对应点.【答案】解:(1)它的旋转中心为点A①①2)它的旋转方向为逆时针方向,旋转角是45度;①3)点A①B①C的对应点分别为点A①E①F.16.(2020·浙江台州·初三月考)将两块大小相同的含30°角的直角三角板(∠BAC=∠B1A1C=30°)按图①的方式放置,固定三角板A1B1C,然后将三角板ABC绕直角顶点C顺时针方向旋转(旋转角小于90°)至图②所示的位置,AB与A1C交于点E,AC与A1B1交于点F,AB与A1B1交于点O.(1)求证:∠BCE∠∠B1CF.(2)当旋转角等于30°时,AB 与A 1B 1垂直吗?请说明理由. 【答案】解:(1)证明:两块大小相同的含30°角的直角三角板,所以①BCA =①B ′CA ′ ①①BCA -①A ′CA =①B ′CA ′-①A ′CA 即①BCE =①B ′CF①{B B BC B CBCE B CF∠=∠'='∠=∠',①①BCE ①①B ′CF (ASA );(2)解:AB 与A ′B ′垂直,理由如下: 旋转角等于30°,即①ECF =30°, 所以①FCB ′=60°, 又①B =①B ′=60°,根据四边形的内角和可知①BOB ′的度数为360°-60°-60°-150°=90°, 所以AB 与A ′B ′垂直.17.如图,在平面直角坐标系中,已知△ABC 的三个顶点坐标分别是A ①1①1①①B ①4①1①①C ①3①3①① ①1)将△ABC 向下平移5个单位后得到△A 1B 1C 1,请画出△A 1B 1C 1① ①2)将△ABC 绕原点O 逆时针旋转90°后得到△A 2B 2C 2,请画出△A 2B 2C 2① ①3)判断以O ①A 1①B 为顶点的三角形的形状.(无须说明理由)【答案】(1)如图所示,△A1B1C1即为所求;①2)如图所示,△A2B2C2即为所求;①3)三角形的形状为等腰直角三角形,OB=OA11B即OB2+OA12=A1B2①所以三角形的形状为等腰直角三角形.18.如图1,已知正方形ABCD的边CD在正方形DEFG的边DE上,连接AE、GC.(1)试猜想AE与GC的数量关系与位置关系;(2)将正方形DEFG绕点D按顺时针方向旋转,使点E落在BC边上,如图2,连接AE和GC.你认为(1)中的结论是否还成立?若成立,给出证明;若不成立,请说明理由.【答案】(1)答:AE=GC,AE⊥GC;证明:如图1中,延长GC交AE于点H.在正方形ABCD与正方形DEFG中,AD=DC,∠ADE=∠CDG=90°,DE=DG,∴△ADE≌△CDG,∴∠1=∠2,AE=GC,∵∠2+∠3=90°,∴∠1+∠3=90°,∴∠AHG=180°-(∠1+∠3)=180°-90°=90°,∴AE⊥GC.故答案为:AE=GC,AE⊥GC;(2)答:成立;证明:如图2中,延长AE和GC相交于点H.在正方形ABCD和正方形DEFG中,AD=DC,DE=DG,∠ADC=∠DCB=∠B=∠BAD=∠EDG=90°,∴∠1=∠2=90°-∠3;∴△ADE≌△CDG,∴∠5=∠4,AE=CG,又∵∠5+∠6=90°,∠4+∠7=180°-∠DCE=180°-90°=90°,∴∠6=∠7,又∵∠6+∠AEB=90°,∠AEB=∠CEH,∴∠CEH+∠7=90°,∴∠EHC=90°,∴AE⊥GC.19.将两块三角板按图1摆放,固定三角板ABC,将三角板CDE绕点C按顺时针方向旋转,其中∠A=45°,∠D=30°,设旋转角为α,(0°<a<80°)(1)当DE∥AC时(如图2),求α的值;(2)当DE∥AB时(如图3).AB与CE相交于点F,求α的值;(3)当0°<α<90°时,连结AE(如图4),直线AB与DE相交于点F,试探究∠1+∠2+∠3的大小是否改变?若不改变,请求出此定值,若改变,请说明理由.【答案】①1①∵DE∥AC①∴∠D①∠ACD①30°①①∵∠BCA①90°①∴∠BCD①∠BCA①∠ACD①60°①①α①60°①①2①∵DE∥AB①∴∠E①∠CF A①60°①①∵∠CF A①∠B+∠BCE①∴∠BCE①15°①∴∠BCD①∠ECD+∠BCE①105°①①α①105°①①3①①①①①①①①①105°①∵∠ACD+∠CAB①∠D+∠AFD①∠CAB①45°①∠D①30°①∴∠AFD①∠ACD①15°①①∵∠1+∠2①∠AFD①∠3①90°①∠ACD①∴∠1+∠2+∠3①∠AFD+90°①∠ACD①90°+15°①105°.。
图形的旋转(点与直线的旋转专题)

二、教学重点和难点 重点:点的旋转、直线的旋转; 难点:探讨直线的旋转后的解析式
三、课堂操作设计
(一)课堂导入设计: 温故与知新:
二次备课案
三、课堂操作设计
(二)课堂反馈与巩固设计:
(一) 点的旋转
例 1:在平面直角坐标系将点 A(2,1)绕原点顺时针旋转 90o,在坐标系中标出其对
应点 A’,并写出对应点坐标
图形的旋转(点与直线的旋转专 题)
———————————————————————————————— 作者: ———————————————————————————————— 日期:
2
课题:点与直线的旋转 课型:专题课
一、教学目标设计
1.《课程标准》、《考试说明》对本课的教学目标:
2. 学生要掌握的知识目标:(1)由易到难探究点的旋转、直线的旋转; (2)培养学生发现问题、探究解决问题的能力;
2
训练(3)求直线 y = 1 x +1 绕原点逆时针旋转 90o 后对应直线的解析式 2
分析:引导学生将 直线的旋转问题转 化为直线上两个点 的旋转问题,这样 可借鉴“点的旋转” 的解题方式解决此 类问题。
直线绕点旋转的“模块”式解题步骤: (1) 在原直线上任意选取两个点 A、B(一般选直线与坐标轴的交点),将直线的旋
、
5/6
B1
、C1
;
(2)△ABC 绕 AC 中点旋转 180O 得△ACD,点 D 的坐标是
;
(3)在图中画出△A1B1C1 和△ACD,并求旋转过程中
线段 AC 扫过图形的面积?
训练 2、(1)如图,△ABC 三点的坐标分别为 C(1, 1),B(5,1),A(1,4),
△ABC 关于直线 y=1/2 作轴对称变换得△DEF,其中点 D、E,F 分别为点 A、B 、C
23.1图形的旋转(复习课)

姓名:23.1 图形的旋转(复习课)学习内容1.复习旋转的有关概念:旋转,旋转中心,旋转方向,旋转角.2.复习旋转的性质:(1)对应点到旋转中心的距离相等;(2)对应到与旋转中心连线的夹角都等于旋转角;(3)旋转前后的两个图形是全等形.3.利用旋转解决有关的几何问题与实际运用.学习目标了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题.理解对应点到旋转中心的距离相等;理解对应点与旋转中心所连线段的夹角等于旋转角;理解旋转前、后的图形全等.掌握以上三个图形的旋转的基本性质的运用.重难点1.重点:图形的旋转的基本性质及其应用.2.难点与关键:运用操作实验几何得出图形的旋转的三条基本性质.学习过程一、复习导学1.什么叫旋转?什么叫旋转中心?什么叫旋转角?什么叫旋转的对应点?(画图或举实例说明)2.请独立完成:如图,正六边形ABCDEF能否看做是正三角形OAB通过怎样的若干次旋转所形成的图形?3、以点O作为旋转中心把△ABC旋转到△A′B′C′的位置.(1)线段OA与OA′,OB与OB′,OC与OC′有什么关系?(2)∠AOA′,∠BOB′,∠COC′有什么关系?(3)△ABC与△A′B′C′形状和大小有什么关系?归纳:综合以上的实验操作和上题的三个问题你能总结出一些有关旋转的性质吗?(1);(2);(3).二、知识运用:例1.以点O为旋转中心,,画出△ABC绕O点顺时针旋转60°后的图形,(1)点O在三角形内;(2)点O在点C上;(3)点0在三角形外CC(O) C例2.如图,四边形ABCD 是边长为1的正方形,且DE=14, △ABF 是△ADE 的旋转图形.(1)旋转中心是哪一点? (2)旋转了多少度?(3)AF 的长度是多少? (4)如果连结EF ,那么△AEF 是怎样的三角形?三、应用拓展例3.如图,正方形ABCD 中,一个以A 为顶点的45°的角绕点A 旋转,在旋转过程各角的边分别交直线BC 、CD 于点E 、F ,连结EF ,(1)当点E 、F 分别在边BC 、CD 边上时,试探究BE+•DF•与EF 的关系.(2)当点E 、F 分别在边BC 、CD 的延长线上时(如图2),还有(1)的关系吗?如果有,请说明理由,如果没有,请探究它们之间的关系,并说明理由。
第四章《图形的旋转》 专题课件-2021-2022学年鲁教版(五四制)八年级数学上册

三、等腰直角三角形类型:
在等腰直角三角形△ABC中,∠C=90°, P为△ABC内一点,将△APC绕C点按逆时针 方向旋转90°,使得AC与BC重合。
经过这样旋转变化,在图(3-1-b)中, △P' CP为等腰直角三角形。
由旋转性质,可证A、F、D、E共线;
则OA+OB+OC= AE 勾股定理求得AB=2=2AC,得∠ABC=30°,得∠ABE=90°, 勾股定理求得AE,得解。
A
3.在边长为2的正方形ABCD内求一点P,使得PA+PB+PC
之和为最小,并求这个最小值.
【解析】将△BPC绕B点顺时针旋转60°,得△BEF,可
可得此时∠APB=∠CPB=∠APC=120°
P点即为“费马点”
2.已知Rt△ABC中,∠C=90°,AC=1,BC= 3,O为△ABC
A
内一点,且∠AOB=∠BOC=∠COA=120°,则
OA+OB+OC=
.
O
C
B
【解析】将△BOC绕B点逆时针旋转60°,得△BDE; 可得△BOD为等边三角形;
ABCD面积为
.
【解析】(方法一) 将△APB绕B点顺时针旋转90°得△CBM,连接PM,过C点作 CN⊥BM,交BM延长线于N点.
易得△PBM为等腰直角三角形,求得PM= 2 2
由PC2=PM2+CM2,得PM⊥CM,可得△CMN为等腰直角三角形, 求得CN,MN 由勾股定理可求BC,进而求得正方形面积。
A
D
P
B
C
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图形的旋转专题复习
基础训练:
1.在以下”绿色食品、响应环保、可回收物、节水“四个标志图案中,是中心对称图形的是()
A . B.
C . D.
2.如果一个四边形绕对角线的交点旋转90°能与自身重合,那么这个四边形一定是() A.平行四边形B.矩形C.菱形D.正方形
3.如图所示,等腰直角三角形ABC的直角边AB的长为6 cm,将△ABC绕点A逆时针旋转15°后得到△AB′C′,则图中阴影部分的面积等于cm2.
4.如图,将边长为2的正方形OABC绕点O逆时针旋转75°,
则点B的坐标为.
5.已知点A(2,a)与点B(b,﹣5)关于原点对称,则a+b的值等于
.
6.已知点A(2,6)与点B(﹣4,2),则线段AB的中点P的坐标是.
7.如图,直角三角形△ABC的BC是斜边,
将△ABP绕点A逆时针旋转90°后得到△ACP′.则∠AP′C=度.
例题分析:
考点一:旋转的定义与性质
例1:如图,图形中一个矩形是另一个矩形顺时针旋转90°后形成的,这个图形是()
A.B.C.D.
变式1:如图,△ABC和△ACD都是等边三角形,△ACD是由△ABC()
A.绕点A顺时针旋转60°得到的B.绕点A顺时针旋转120°得到的
C.绕点C顺时针旋转60°得到的D.绕点C顺时针旋转120°得到的
变式2:将等边三角形绕一点旋转后,恰好能与原来的等边三角形重合,那么旋转的角度至少是_____.例2:如图,在Rt△ABC中,∠ACB=90°,∠A=40°,以直角顶点C为旋转中心,将△ABC旋转到△A′B′C的位置,其中A′、B′分别是A、B的对应点,且点B在斜边A′B′上,直角边CA′交AB于D,则旋转角等于()
A.70°B.80°
C.60°D.50°
1
1
变式1:在上中图4×4的正方形网格中,△MNP 绕某点旋转一定的角度,得到△M 1N 1P 1,则其旋转中心可能是( )
A .点A
B .点B
C .点C
D .点D
变式2:如上右图,BD 为正方形ABCD 的对角线,BE 平分∠DBC ,交DC 于点E ,将△BCE 绕点C 顺时针旋转90°得到△DCF ,若CE =1cm ,则BF = .
例3:如图,在Rt △ABC 中,∠ABC =90°,AB =BC =,将△ABC
绕点C 逆时针旋转60°,得到△MNC ,连接BM ,则BM 的长是
.
变式1:3:40分时,时针与分针所成的角度是 .
变式2:如图,在△ABC 中,∠ACB =90º,∠ABC =30º,AC =1.现在将△ABC 绕点C 逆时针旋转至△A′B′C ,使得点A′恰好落在AB 上,连接BB′,则BB′的长度为 .
考点二:中心对称与中心对称图形
例1:下列图形中既是轴对称图形又是中心对称图形的是( )
A .
B .
C .
D . 变式:观察下列图案,其中既是轴对称图形又是中心对称图形的有( )
A .1个
B .2个
C .3个
D .4个
例2:如图所示的四组图形中,左边图形与右边图形成中心对称的有( )
① ② ③ ④
A .1组
B .2组
C .3组
D .4组
变式:4张扑克牌如图1所示放在桌子上,小敏把其中两张旋转180°后得到如图2所示,那么她所旋转的牌从左起( )
A .第一张、第二张
B .第二张、第三张
C .第三张、第四张
D .第一张、第四张
考点三:图形变换的坐标表示
例1:已知点A 的坐标为()a b ,,O 为坐标原点,连结OA ,将线段OA 绕点O 按逆时针方向旋转90°得1OA ,则点1A 的坐标为( )
A . ()a b -,
B .()a b -,
C . ()b a -,
D . ()b a -,
变式1:在平面直角坐标系中,把直线y=2x+4绕着原点O 顺时针旋转90°后,所得的直线一定经过下列各点中的( )
A .(2,0)
B .(4,2)
C .(6,﹣1)
D .(8,﹣1)
变式2:如图,△DEF 是由△ABC 绕着某点旋转得到的,则这点的坐标是_______.
例2:若点(,2)P m -与点(3,)Q n 关于原点对称,则2015()m n += .
变式1:直角坐标系第二象限内的点P (x 2+2x ,3)与另一点Q (x +2,y )关于原点对称,
试求x +2y 的值.
变式2:如图,8个边长为1的小正方形组成一个整体,过点A 的直线l
恰好将其分成面积相等的两个部分,则直线l 的解析式为 .
考点四:旋转与对称的作图
例1:如图,在平面直角坐标系中,△ABC 的三个顶点都在格点上,点A 的坐标为(2,4),
请解答下列问题:
(1)画出△ABC 关于y 轴对称的△A 1B 1C 1, 并写出点A 1的坐标 ;
(2)画出△A 1B 1C 1绕原点O 旋转180°后得到的△A 2B 2C 2, 并写出点A 2的坐标 ;
(3)直接写出△A 1B 1C 1与△A 2B 2C 2的位置关系:
变式:如图,每个小正方形的边长都是单位1,△ABC 在平面直角坐标系中的位置如图.
(1)画出△ABC 关于y 轴对称的△A 1B 1C 1.
(2)画出△ABC 绕点O 按逆时针方向旋转90°后的△A 2B 2C 2.
(3)判断△A 1B 1C 11和△A 2B 2C 2是不是成轴对称?
如果是,请在图中作出它们的对称轴.
考点四:平移与旋转的综合运用
例1:如图,点E 是正方形ABCD 内一点,连接AE ,BE ,CE ,
将△ABE 绕点B 顺时针旋转90°到△CBE ′的位置,
若AE =1,BE =2,CE =3,则∠BEC = 度.
变式1:如图,在直角梯形ABCD 中,AD ∥BC ,∠C =90°,AD =5,BC =9,
以A 为中心将腰AB 顺时针旋转90°至AE ,连接DE ,则△ADE 的面积等于( )
A .10
B .11
C .12
D .13
变式2:如图,E 为正方形ABCD 外一点,∠AEC =90°,
若AE =1, BE CE 的长为 .
例2:如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线平移至△FEG,DF、FG相交于点H.
(1)判断线段DE、FG的位置关系,并说明理由;
(2)连结CG,求证:四边形CBEG是正方形.
变式1:如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=a.将△BOC绕点C按顺时针方
向旋转60°得△ADC,连接OD.
(1)求证:△COD是等边三角形;
(2)当a=150°时,试判断△AOD的形状,并说明理由;
(3)探究:当a为多少度时,△AOD是等腰三角形?
变式2:在锐角△ABC中,AB=4,BC=5,∠ACB=45°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1.(1)如图1,当点C1在线段CA的延长线上时,求∠CC1A1的度数;
(2)如图2,连接AA1,CC1.若△ABA1的面积为4,求△CBC1的面积;
(3)如图3,点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转过程中,点P的对应点是点P1,求线段EP1长度的最大值与最小值.。