(答案)珠海市2016—2017学年度第二学期八年级数学试题(答案)
学年珠海市香洲区八年级下期末数学试卷附答案解析

2017-2018 学年广东省珠海市香洲区八年级(下)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30 分)1.下列二次根式中,是最简二次根式的是()C.D.a 和b,斜边长为c,已知c=13,b=5,则a=C.12 D.25)B.互相垂直且相等D.互相垂直平分1)(2)(3)(4)班的平均分相同,方差分四个班期末成绩最稳定的是()A.(1)班B.(2)班5.函数y=﹣2x+3 的图象经过(A.第一、二、三象限C.第二、三、四象限C.(3)班D.(4)班A.B.2.直角三角形的两条直角边长分别为()A.1 B. 53.矩形的对角线一定具有的性质是(A.互相垂直C.相等4.在今年的八年级期末考试中,)D.第一、三、四象限B.第一、二、四象限6.如图,下列哪组条件不能判定四边形ABCD是平行四边形(8.如图,直线 y 1=x +b 与 y 2= kx ﹣ 1 相交于点 P ,点 P 的横坐标为﹣ 1,则关于 x 的不等式 x +b <kx ﹣1 的解集在数轴上表示正确的是( )9.如图,把一张正方形纸对折两次后, 沿虚线剪下一角, 展开后所得图形一定是 ( )A . AB ∥ CD , AB = CD B .AB ∥CD ,AD ∥BC C . OA = OC , OB = OD 7.下列计算正确的是( ) D .AB ∥CD ,AD =BCA .B .C .D .A.三角形B.菱形C.矩形D.正方形10.如图,正方形 ABCD 的边长为 4cm ,动点 P 从点 A 出发,沿 A →D → C 的路径以每秒1cm 的速度运动(点 P 不与点 A 、点 C 重合),设点 P 运动时间为 x 秒,四边形 ABCP二、填空题(本大题共 6 小题,每小题 4 分,共 24 分)11.已知一组数据 3、x 、4、 5、6 的众数是 6,则 x 的值是 12.若 有意义,则字母 x 的取值范围是13.定理“对角线互相平分的四边形是平行四边形”的逆定理是 14.将直线 y =2x 向上平移 3个单位所得的直线解析式是 .15.在正方形 ABCD 中,对角线 AC = 2cm ,那么正方形 ABCD 的面积为的面积为 ycm 2,则下列图象能大致反映 y 与x 的函数关系的是( BD16.如图,已知等边三角形ABC边长为1,△ ABC的三条中位线组成△ A1B1C1,△ A1B1C1的三条中位线组成△ A2B2C2,依此进行下去得到△ A5B5C5 的周长为三、解答题(一)(本大题共3小题,每小题6分,共18 分)17.计算:18.已知矩形周长为18,其中一条边长为x,设另一边长为y.(1)写出y 与x 的函数关系式;(2)求自变量x 的取值范围.19.如图,E、F 分别平行四边形ABCD对角线BD上的点,且BE=DF.求证:∠ DAF=∠ BCE.四、解答题(二)(本大题共3小题,每小题7分,共21 分)20.某工厂甲、乙两个部门各有员工400 人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整.收集数据:从甲、乙两个部门各随机抽取20 名员工,进行了生产技能测试,测试成绩百分制如下:甲:78 86 74 81 75 76 87 70 75 90 75 79 81 70 74 8086 69 83 77乙:93 73 88 81 72 81 94 83 77 83 80 81 70 81 73 7882 80 70 40整理、描述数据按如下(表格)分数段整理、描述这两组样本数据:成绩x40≤x≤50≤x≤60≤x≤70≤x≤80≤x≤89 90≤x≤人数49 59 69 79 100部门甲0 0 1 11 7 1乙 1 0 0 a b 2(说明:成绩80 分及以上为生产技能优秀,70﹣79分为生产技能良好,60﹣69 分为生产技能合格,60 分以下为生产技能不合格)分析数据两组样本数据的平均数、中位数、众数如下(表格)表所示:部门平均数中位数众数75得出结论:(1)请补充表格1:a=,b=.乙 7881( 2)估计乙部门生产技能优秀的员工人数为 ; ( 3 )可以推断出部门员工的生产技能水平较高,理由为:① ;② .(从两个不同的角度说明你推断的合理性)21.如图,在△ ABC 中, E 点是 AC 的中点,其中 BD =2,DC =6,BC = ,AD = ,求 DE 的长.22.珠海长隆海洋王国暑假期间推出了两套优惠方案:①购买成人票两张以上(包括两张),则儿童票按 6 折出售;②成人票和儿童票一律按折出售,已知成人票是 350 元/ 张,儿童票是 240元/张,张华准备暑假期间带家人到长隆海洋王国游玩, 准备购 买 8 张成人票和若干张儿童票.( 1)请分别写出两种优惠方案中,购买的总费用 y (元)与儿童人数 x (人)之间的函 数关系式;(2)对 x 的取值情况进行分析,说明选择哪种方案购票更省钱. 五、解答题(三)(本大题共 3小题,每小题 9分,共 27分)23.在矩形ABCD中,AB=8,BC=6,点E是AB边上一点,连接CE,把△ BCE沿CE折叠,使点B 落在点B′处.1)当B′在边CD上时,如图①所示,求证:四边形BCB′ E是正方形;2)当B′在对角线AC上时,如图②所示,求BE的长.24.如图,一次函数y=kx+b 的图象经过点A(0,4)和点B(3,0),以线段AB为边在第一象限内作等腰直角△ ABC,使∠ BAC=90°.1)求一次函数的解析式;2)求出点C的坐标;3)点P是y 轴上一动点,当PB+PC最小时,求点P的坐标.25.如图,菱形ABCD中,AB=6cm,∠ ADC=60°,点E从点D出发,以1cm/ s 的速度沿射线DA运动,同时点F从点A出发,以1cm/ s的速度沿射线AB运动,连接CE、CF和EF,设运动时间为t (s ).1)当t =3s时,连接AC与EF交于点G,如图①所示,则AG=cm;2)当E、F分别在线段AD和AB上时,如图②所示,求证△ CEF是等边三角形;3)当E、F分别运动到DA和AB的延长线上时,如图③所示,若CE=cm,求t 的值和点F到BC的距离.2017-2018 学年广东省珠海市香洲区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共 10小题,每小题 3分,共 30 分)1.下列二次根式中,是最简二次根式的是( )分析】 根据最简二次根式的运算法则即可求出答案.【解答】 解:( A )原式= 2,故 A 不是最简二次根式;( C )原式= 2 ,故 C 不是最简二次根式;( D )原式= ,故 D 不是最简二次根式;故选: B .【点评】 本题考查最简二次根式,解题的关键是正确理解最简二次根式的定义,本题属于基础题型.a 和b ,斜边长为c ,已知 c =13, b = 5,则 a =分析】 根据勾股定理计算即可.A .B .2.直角三角形的两条直角边长分别为 A .1B .5C .12D .25【解答】解:由勾股定理得,a==12,故选:C.【点评】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c ,那么a +b =c .3.矩形的对角线一定具有的性质是()A.互相垂直B.互相垂直且相等C.相等D.互相垂直平分【分析】根据矩形的性质即可判断;【解答】解:因为矩形的对角线相等且互相平分,所以选项 C 正确,故选:C.【点评】本题考查矩形的性质,解题的关键是记住矩形的性质,属于中考基础题.4.在今年的八年级期末考试中,我校(1)(2)(3)(4)班的平均分相同,方差分别为S1 =,S2 =,S3 =17,S4 =,四个班期末成绩最稳定的是()A.(1)班B.(2)班C.(3)班D.(4)班【分析】直接根据方差的意义求解.【解答】解:∵ S1 =,S2 =,S3 =17,S4 =,∴S42<S22<S32<S12,则四个班期末成绩最稳定的是(4)班,故选:D.【点评】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.5.函数y=﹣2x+3 的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限【分析】直接根据一次函数的性质进行解答即可.【解答】解:∵一次函数y=﹣2x+3 中,k=﹣2<0,b=3> 0,∴此函数的图象经过一、二、四象限.故选:B.【点评】本题考查的是一次函数的性质,熟知一次函数y=kx+b(k≠0)中,当k<0,b>0 时函数图象经过一、二、四象限是解答此题的关键.6.如图,下列哪组条件不能判定四边形ABCD是平行四边形()分析】平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.【解答】解:根据平行四边形的判定,A、B、C 均符合是平行四边形的条件,D 则不能判定是平行四边形.故选:D.【点评】此题主要考查了学生对平行四边形的判定的掌握情况.对于判定定理:“一组对边平行且相等的四边形是平行四边形.”应用时要注意必须是“一组”,而“一组对边平行且另一组对边相等”的四边形不一定是平行四边形.7.下列计算正确的是()A.B.D.分析】根据二次根式的性质,化简计算后即可判断;解答】解:A、正确;B、错误;( 3 )2=45;C、错D、错误;不是同类二次根式,不能合并;故选:A.点评】本题考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算的法则,属于中考常考题型.8.如图,直线y1=x+b 与y2=kx﹣ 1 相交于点P,点P的横坐标为﹣1,则关于x 的不等式x+b<kx﹣1 的解集在数轴上表示正确的是()分析】观察函数图象得到当x<﹣ 1 时,函数y=x+b 的图象都在y=kx﹣1 的图象下方,所以不等式x+b<kx﹣1 的解集为x<﹣1,然后根据用数轴表示不等式解集的方法对各选项进行判断.【解答】解:当x<﹣ 1 时,x+b< kx﹣1,即不等式x+b<kx﹣1 的解集为x<﹣1.故选:C.点评】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y =ax+b 的值大于(或小于)0 的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.也考查了在数轴上表示不等式的解集.9.如图,把一张正方形纸对折两次后,沿虚线剪下一角,展开后所得图形一定是()A.三角形B.菱形C.矩形D.正方形【分析】此类问题只有动手操作一下,按照题意的顺序折叠,剪开,观察所得的图形,可得正确的选项.【解答】解:由题意可得:四边形的四边形相等,故展开图一定是菱形.故选:B.【点评】此题主要考查了剪纸问题,对于一下折叠、展开图的问题,亲自动手操作一下,可以培养空间想象能力.10.如图,正方形ABCD的边长为4cm,动点P 从点A出发,沿A→D→ C的路径以每秒1cm的速度运动(点P不与点A、点C重合),设点P运动时间为x 秒,四边形ABCP 的面积为ycm2,则下列图象能大致反映y 与x 的函数关系的是()D 点,则分段讨论 P 在边 AD 、边DC 上运动时 的 y 与 x 的函数关系式.【解答】 解:当 0≤ x ≤4时,点 P 在 AD 边上运动 则 y = ( x +4)4=2x +8当 4≤x ≤8时,点 P 在 DC 边上运动 则 y ═ ( 8﹣ x +4) 4=﹣ 2x +24 根据函数关系式,可知 D 正确 故选: D .点评】 本题为动点问题的函数图象探究题,考查了一次函数图象性质,应用了数形结 合思想.二、填空题(本大题共 6小题,每小题 4分,共 24 分)11.已知一组数据 3、x 、4、 5、6 的众数是 6,则 x 的值是 6分析】 根据点 P 的路线,找到临界点为 BD分析】根据众数的定义:一组数据中出现次数最多的数据即可得出答案.【解答】解:这组数据中的众数是6,即出现次数最多的数据为:6.故x=6.故答案为:6.【点评】本题考查了众数的知识,属于基础题,解答本题的关键是熟练掌握一组数据中出现次数最多的数据叫做众数.12.若有意义,则字母x 的取值范围是x≥﹣5 .【分析】根据被开方数大于等于0 列式计算即可得解.【解答】解:由题意得,x+5≥0,解得x ≥﹣5.故答案为:x≥﹣5.【点评】本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.13.定理“对角线互相平分的四边形是平行四边形”的逆定理是平行四边形是对角线互相平分的四边形.【分析】题设:四边形的对角线互相平分,结论:四边形是平行四边形.把题设和结论互换即得其逆定理.解答】解:逆定理是:平行四边形是对角线互相平分的四边形.点评】命题的逆命题是把原命题的题设和结论互换.原命题正确但逆命题不一定正确,所以并不是所有的定理都有逆定理.14.将直线y=2x 向上平移 3 个单位所得的直线解析式是y=2x+3 .【分析】根据“上加下减”的原则进行解答即可.【解答】解:直线y=2x 向上平移 3 个单位所得的直线解析式是y=2x+3.故答案为y=2x+3.【点评】本题考查的是一次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.15.在正方形ABCD中,对角线AC=2cm,那么正方形ABCD的面积为 2 .【分析】根据正方形的面积公式可求正方形面积【解答】解:正方形面积== 2故答案为 2【点评】本题考查了正方形的性质,利用正方形的面积=对角线积的一半解决问题.16.如图,已知等边三角形ABC边长为1,△ ABC的三条中位线组成△ A1B1C1,△ A1B1C1的三条中位线组成△ A2B2C2,依此进行下去得到△ A5B5C5 的周长为.分析】根据三角形的中位线平行于第三边并且等于第三边的一半求出A1B1=AC,B1C1=AB,A1C1=BC,从而得到△ A1B1C1是△ ABC周长的一半,依此类推,下一个三角形是上一个三角形的周长的一半,根据此规律求解即可.解答】解:∵△ ABC的三条中位线组成△ A1B1C1,∴ A1B1=AC,B1C1=AB,A1C1=BC,∴△ A1B1C1的周长=△ ABC的周长=×3=,依此类推,△ A2B2C2的周长=△A1B1C1 的周长=× =,则△ A5B5C5的周长为=,故答案为:.【点评】本题考查了三角形的中位线平行于第三边并且等于第三边的一半的性质,求出后一个三角形的周长等于前一个三角形的周长的一半是解题的关键.三、解答题(一)(本大题共 3 小题,每小题 6 分,共18 分)17.计算:分析】根据平方差公式和二次根式的加减法可以解答本题.【解答】解:=3﹣2+3 +=1+4 .点评】本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.18.已知矩形周长为18,其中一条边长为x,设另一边长为y.(1)写出y 与x 的函数关系式;(2)求自变量x 的取值范围.【分析】(1)直接利用矩形周长求法得出y与x之间的函数关系式;(2)利用矩形的性质分析得出答案.【解答】解:(1)∵矩形周长为18,其中一条边长为x,设另一边长为y,∴2(x+y)=18,则y=9﹣x;(2)由题意可得:9﹣x >0,解得:0< x<9.【点评】此题主要考查了函数关系式以及自变量的取值范围,正确得出函数关系式是解题关键.19.如图,E、F 分别平行四边形ABCD对角线BD上的点,且BE=DF.求证:∠ DAF=∠ BCE.【分析】只要证明△ ADF≌△ CBE即可解决问题;【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠ ADB=∠ CBD,∵ DF=BE,∴△ ADF≌△ CBE,∴∠ DAF=∠ BCE.【点评】本题考查平行四边形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.四、解答题(二)(本大题共 3 小题,每小题7 分,共21 分)20.某工厂甲、乙两个部门各有员工400 人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整.收集数据:从甲、乙两个部门各随机抽取20 名员工,进行了生产技能测试,测试成绩(百分制如下:甲:78 86 74 81 75 76 87 70 75 90 75 79 81 70 74 80 86 69 83 77乙:93 73 88 81 72 81 94 83 77 83 80 81 70 81 73 78 82 80 70 40整理、描述数据按如下(表格)分数段整理、描述这两组样本数据:成绩x 40≤x≤50≤x≤60≤x≤70≤x≤80≤x≤8990≤x≤人数49 59 69 79 100部门甲0 0 1 11 7 1乙 1 0 0 a b 2(说明:成绩80 分及以上为生产技能优秀,70﹣79分为生产技能良好,60﹣69 分为生产技能合格,60 分以下为生产技能不合格)分析数据两组样本数据的平均数、中位数、众数如下(表格)表所示:部门平均数中位数众数甲75乙78 81得出结论:(1)请补充表格1:a=7 ,b=10(2)估计乙部门生产技能优秀的员工人数为240 ;(3)可以推断出甲部门员工的生产技能水平较高,理由为:① 甲部门生产技能测试中,平均分较高,表示甲部门员工的生产技能水平较高;② 甲部门生产技能测试中,没有技能不合格的员工,表示甲部门员工的生产技能水平较高.(从两个不同的角度说明你推断的合理性)【分析】(1)根据收集数据填写表格即可求解;(2)用乙部门优秀员工人数除以20乘以400 即可得出答案;(3)根据情况进行讨论分析,理由合理即可.【解答】解:(1)由题意知a=7、b=10,故答案为:7、10;2)故估计乙部门生产技能优秀的员工人数为×400=240(人).故答案为:240;(3)可以推断出甲部门员工的生产技能水平较高,理由为:①甲部门生产技能测试中,平均分较高,表示甲部门员工的生产技能水平较高;②甲部门生产技能测试中,没有技能不合格的员工,表示甲部门员工的生产技能水平较高.【点评】本题考查了众数、中位数以及平均数,掌握众数、中位数以及平均数的定义以及用样本估计总体是解题的关键.21.如图,在△ ABC中,E点是AC的中点,其中BD=2,DC=6,BC=,AD =,求DE的长.【分析】根据勾股定理的逆定理求出∠ BDC=90°,求出线段AC长,根据直角三角形斜边上中线性质求出即可.【解答】解:∵ BD2+CD2=22+62=( 2 )2=BC2,∴△ BDC为直角三角形,∠ BDC=90°,在Rt △ADC中,∵ CD=6,AD=2 ,∴ AC=( 2 )+6 =60,∴ AC=2 ,∵ E点为AC的中点,∴ DE=AC=.【点评】本题考查了勾股定理、勾股定理的逆定理、直角三角形斜边上中线性质等知识点,能求出△ ADC是直角三角形是解此题的关键.22.珠海长隆海洋王国暑假期间推出了两套优惠方案:①购买成人票两张以上(包括两张),则儿童票按 6 折出售;②成人票和儿童票一律按折出售,已知成人票是350 元/ 张,儿童票是240元/张,张华准备暑假期间带家人到长隆海洋王国游玩,准备购买8 张成人票和若干张儿童票.(1)请分别写出两种优惠方案中,购买的总费用y(元)与儿童人数x (人)之间的函数关系式;(2)对x 的取值情况进行分析,说明选择哪种方案购票更省钱.【分析】(1)根据题意分别列出两种方案的收费方案的函数关系式;(2)由(1)找到临界点分类讨论即可.【解答】解:(1)当选择方案①时,y=350×8+×240x=144x+2800当选择方案②时,y=(350× 8+240)x×=204x+2380(2)当方案①费用高于方案②时144x+2800>204x+2380解得x<7当方案①费用等于方案②时144x+2800=204x+2380解得x=7当方案①费用低于方案②时144x +2800<204x +2380解得 x >7故当 0<x <7 时,选择方案②当 x =7 时,两种方案费用一样.当 x >7 时,选择方案①【点评】 本题是一次函数实际应用问题,考查一次函数性质以及一元一次方程、不等式.解答关键是分类讨论.五、解答题(三)(本大题共 3小题,每小题 9分,共 27 分)23.在矩形 ABCD 中,AB =8,BC =6,点 E 是 AB 边上一点,连接 CE ,把△BCE 沿 CE 折 叠,使点 B 落在点 B ′处.( 1)当 B ′在边 CD 上时,如图①所示,求证:四边形 BCB ′E 是正方形;2)当 B ′在对角线 AC 上时,如图②所示,求 BE 的长.可证四边形 BCB ′ E是正方形分析】 1)由折叠可得 BE =B ' E , BC = B ' C ,∠ BCE =∠ B ' CE ,由∠ DCB =90°=∠ B2)由折叠可得BC=B' C=6,则可求AB' =4,根据勾股定理可求B' E的长,即可得BE的长.【解答】证明:(1)∵△ BCE沿CE折叠,∴ BE=B' E,BC=B' C∠ BCE=∠ B' CE∵四边形ABCD是矩形∴∠ DCB=90°=∠ B∴∠ BCE=45°且∠ B=90°∴∠ BEC=∠ BCE=45°∴ BC=BE∵ BE=B' E,BC=B' C∴BC=BE=B' C=B' E∴四边形BCB' E 是菱形又∵∠ B=90°∴四边形BCB' E 是正方形(2)∵ AB=8,BC=6∴根据勾股定理得:AC=10∵△ BCE沿CE折叠∴ B' C=BC=6,BE=B' E∴ AB' =4,AE=AB﹣BE=8﹣B' E在Rt△AB' E中,AE2=B' A2+B' E2∴(8﹣B' E)2=16+B' E2解得:BE' =3∴ BE=B' E= 3【点评】本题考查了折叠问题,正方形的判定,矩形的性质,勾股定理,根据勾股定理列出方程是本题的关键.24.如图,一次函数y=kx+b 的图象经过点A(0,4)和点B(3,0),以线段AB为边在第一象限内作等腰直角△ ABC,使∠ BAC=90°.(1)求一次函数的解析式;(2)求出点C的坐标;3)点P是y 轴上一动点,当PB+PC最小时,求点P的坐标.分析】 ( 1)根据待定系数法确定函数解析式即可;2)作 CD ⊥y 轴于点 D ,由全等三角形的判定定理可得出△ ABO ≌△ CAD ,由全等三角形 的性质可知 OA = CD ,故可得出 C 点坐标;3)求得 B 点关于 y 轴的对称点 B ′的坐标,连接 B ′C 与 y 轴的交点即为所求的 P 点, 由 B ′、 C 坐标可求得直线 B ′ C 的解析式,则可求得 P 点坐标.解答】 解:( 1)设 AB 直线的解析式为: y = kx +b ,把( 0,4)( 3,0)代入可得: ,解得: ,2)如图,作 CD ⊥y 轴于点 D.所以一次函数的解析式为: y =﹣x +4∵∠ BAC=90°,∴∠ OAB+∠CAD=90°,又∵∠ CAD+∠ACD=90°,∴∠ ACD=∠ BAO.在△ ABO与△ CAD中,∵,∴△ ABO≌△ CAD(AAS),∴OB=AD=3,OA=CD=4,OD=OA+AD=7.则C的坐标是(4,7).(3)如图2中,作点B关于y轴的对称点B′,连接CB′交x轴于P,此时PB+PC的值最小.∴B′(﹣3,0),把(﹣3,0)(4,7)代入y=mx+n 中,可得:,解得:,∴直线CB′的解析式为y=x+3,令x=0,得到y=3,∴P(0,3).【点评】本题考查的是一次函数的综合题,根据待定系数法求一次函数的解析式、全等三角形的判定与性质,根据题意作出辅助线,构造出全等三角形是解答此题的关键.25.如图,菱形ABCD中,AB=6cm,∠ ADC=60°,点E从点D出发,以1cm/ s 的速度沿射线DA运动,同时点F从点A出发,以1cm/ s的速度沿射线AB运动,连接CE、CF和EF,设运动时间为t (s ).1)当t =3s时,连接AC与EF交于点G,如图①所示,则AG=cm;2)当E、F分别在线段AD和AB上时,如图②所示,求证△ CEF是等边三角形;3)当E、F分别运动到DA和AB的延长线上时,如图③所示,若CE=cm,求t 的值和点F到BC的距离.分析】(1)想办法证明CE=CF,AE=AF,推出AC垂直平分线段EF,即可解决问题;2)如图②中,连接AC.只要证明△ DCE≌△ ACF即可解决问题;3)如图③中,连接AC,作CH⊥ AB于H,FM⊥BC交CB的延长线于M.解直角三角形求出AF,FM即可解决问题;解答】(1)解:如图①中,∵四边形ABCD是菱形,∠ ADC=60∴DA=DC=AB=BC,∴△ ADC,△ ABC第三等边三角形,当t =3 时,AE=DE=3cm,AF=BF=3cm,∵CA=CD=CB,∴CE⊥AD,CF⊥AB,∵∠ CAB=∠ CAD,∴ CF=CE,∵ AE=AF,∴ AC垂直平分线段EF,∴∠ AGF=90°,∵∠ FAG=60°,∴∠ AFG=30AG=AF=cm,故答案为.2)如图②中,连接AC.∵四边形ABCD是菱形,∠ ADC=60°,∴DA=DC=AB=BC,∴△ ADC,△ ABC第三等边三角形,∴∠ D=∠ ACD=∠ CAF=60°,DA=AC,∵ DE=AF,∴△ DCE≌△ ACF,∴ CE=CF,∠ DCE=∠ ACF,∴∠ ECF=∠ ACD=60°,∴△ ECF是等边三角形.3)如图③中,连接AC,作CH⊥ AB于H,FM⊥BC交CB的延长线于M.由(2)可知:△ ECF是等边三角形,∴ CF=CE= 3 ,在Rt△BCH中,∵ BC=6,∠ CBH=60°,∴ BH=3,CH=3 ,在Rt△CFH中,HF==3 ,∴ BF= 3 ﹣3,AF=3+3 ,∴t=(3+3 )s,在Rt△BFM中,∵∠ FBM=∠ ABC=60°,BF=3 ﹣3,∴ FM=BF?sin60 °=.【点评】本题考查四边形综合题、菱形的性质、全等三角形的判定和性质、等边三角形的判定和性质、勾股定理、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。
2016-2017学年度下学期初二数学试卷

2016-2017学年下学期中段水平测试八年级数学试卷(所有答案做在答题卡上)一、选择题(每题3分,共30分)1.下列二次根式中,属于最简二次根式的是( ) A .21B .3.0C .8D .10 2.使式子5-x 有意义,则x 的取值范围是( ) A .x >5 B .x ≠ 5C .x ≥5D .x ≤53.下列几组数中,能作为直角三角形三边长度的是( )A. 2,3,4B. 4,5,6错误!未找到引用源。
C. 6,8,11D. 5,12,134.下列运算正确的是( ) A .()442= B .()442-=-C .94)9()4(-⨯-=-⨯-D .257=-5.如图,直角三角形的三边长分为m 、n 、t ,下列各式正确的是( ) A. 222m n t =+B .222m n t =-C . 222n m t =+ D .222t m n =-6.一个直角三角形的两边长分别为8cm 、10cm ,则第三条边长为( )A .6cmB .12cmC .412 cmD .6cm 或412cm 7.如图,在▱ABCD 中,已知AD=5cm ,AB=3cm ,AE 平分∠BAD 交BC 边于点E ,则EC 等于( ) A .1cmB .2cmC .3cmD .4cm8.两条对角线互相垂直平分且相等的四边形是( ) A .矩形 B .菱形 C .正方形 D .平行四边形9.已知菱形ABCD 中,对角线AC 与BD 交于点O ,∠BAD =120°,AC =4, 则该菱形的面积是( )A .16 3B .16C .8 3D .8 10.如图,在矩形ABCD 中,AB=8,BC=4,将矩形沿AC 折叠, 点D 落在点D′处,则重叠部分△AFC 的面积为( ) A .10 B .9C .8D .6二、填空题(每题4分,共24分)11.计算:12= .12.如图,△ABC 中,D 、E 分别是AB 、AC 边的中点,且DE=7cm , 则BC= cm . 13.计算:218-= . 14.如果22(7)0a b -+-=,则a b +的值为 .15.菱形的两条对角线长分别为6和8,则这个菱形的周长为 . 16.如图,在矩形ABCD 中,AD=4,AB=3,MN ∥BC 分别交 AB 、CD 于点M 、N ,在MN 上任取两点P 、Q , 那么图中阴影部分的面积是 .三、解答题(每题6分,共18分)17.计算:(278)(32)--+18.如图,在ABCD 中,E ,F 分别在AD ,BC 边上,且AE =CF.求证: 四边形BFDE 是平行四边形.OO19.如图,已知△ABC 中,AB =5 cm ,BC =12 cm ,AC =13 cm ,AC 边上的中线BD 求:BD 的长四、解答题(每题7分,共21分)20. 已知32x =+ ,32y =-.求:(1)222y xy x ++ (2)22y x -21. 某中学八年级学生想知道学校操场上旗杆的高度,已知旗杆上的绳子垂到地面还多1米,当他们把绳子的下端拉开5米后,发现下端刚好触地面,求旗杆的长度.22.如图,在菱形ABCD 中,AC , BD 相交于点O ,E 为AB 的中点,DE ⊥AB. (1)求∠ABC 的度数; (2)若AC=43,求DE 的长.五、解答题(每题9分,共27分)23.如图,在平行四边形ABCD 中,E 为BC 的中点, 连接AE 并延长交DC 的延长线于点F. (1)求证:AB =CF ;(2)当BC 与AF 满足什么数量关系时, 四边形ABFC 是矩形,并说明理由.24.如图,在正方形ABCD 中,P 是对角线AC 上的一点,点E 在BC 的延长线上,且PE=PB. (1)求证:△BCP ≌△DCP ; (2)求∠DPE 的度数;(3)把正方形ABCD 改为菱形,其他条件不变,如图(2),若∠ABC=58°,求∠DPE 的度数.25.如图,在Rt △ABC 中,∠B =90°,AC =60 cm ,∠A =60°,点D 从点C 出发沿CA 方向以4 cm/秒的速度向点A 匀速运动,同时点E 从点A 出发沿AB 方向以2 cm/秒的速度向点B 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D ,E 运动的时间是t 秒(0<t ≤15).过点D 作DF ⊥BC 于点F ,连接DE ,EF. (1)求证:AE =DF ;(2)四边形AEFD 能够成为菱形吗?如果能,求出相应的t 值;如果不能,请说明理由; (3)当t 为何值时,∠FDE 为直角?请说明理由.ABCDEO。
2016-2017学年度第二学期期中检测八年级数学试题及答案

2016-2017学年度第二学期期中检测八年级数学试题(全卷共120分,考试时间90分钟)一.选择题(本大题有8个小题,每小题3分,共24分,将正确选项填写在表格中相应位置)1.下列图形中,是中心对称图形的是(▲)A B C D2.下列调查中,适宜采用普查方式的是(▲)A.调查市场上某品牌老酸奶的质量情况B.调查某品牌圆珠笔芯的使用寿命C.调查乘坐飞机的旅客是否携带了危禁物品D.调查我市市民对《徐州夜新闻》的认可情况3.下列调查的样本选取方式,最具有代表性的是(▲)A.在青少年中调查年度最受欢迎的男歌手B.了解班上学生的睡眠时间.调查班上学号为双号的学生的睡眠时间C.为了了解你所在学校的学生每天的上网时间,向八年级的同学进行调查D.对某市的出租司机进行体检,以此反映该市市民的健康状况4.下列事件中,属于确定事件的是(▲)A.掷一枚硬币,着地时反面向上B.买一张福利彩票中奖了C.投掷3枚骰子,面朝上的三个数字之和为18D.五边形的内角和为540度5.如图,E、F、G、H分别是□ABCD各边的中点,按不同方式连接分别得到图○1、○2中两个不同的阴影部分甲、乙,关于甲、乙两个阴影部分,下列叙述正确的是(▲)A.甲和乙都是平行四边形B.甲和乙都不是平行四边形C.甲是平行四边形,乙不是平行四边形D.甲不是平行四边形,乙是平行四边形6.如图,在菱形ABCD中,AC=6,BD=8,则菱形的周长是(▲)A.24 B.48 C.40 D.207.若依次连接四边形ABCD各边的中点所得四边形是矩形,则四边形ABCD一定是(▲)A.矩形B.菱形C.对角线互相垂直的四边形D.对角线相等的四边形图(1)图(2)GFEHCD GFEHCDA BBA第5题图CDAB第6题图8. 如图,在□ABCD 中,AD =2AB ,F 是AD 的中点,作CE ⊥AB 于E ,在线段AB 上,连接EF 、CF .则下列结论:○1∠BCD =2∠DCF ;○2∠ECF =∠CEF ;○3S △BEC =2S △CEF ;○4∠DFE =3∠AEF ,其中一定正确的是(▲) A .○1○2○4 B .○1○2○4 C .○1○2○3○4 D .○2○3○4二. 填空题(本大题有8个小题,每小题3分,共24分)9. 如图是某校参加各兴趣小组的学生人数分布扇形统计图,其中“演艺”兴趣小组一项所对应的角度是▲°.10. 一只不透明的袋子里装有1个白球,3个黄球,6个红球,这些球除了颜色外都相同,将球搅匀,从中任意摸出1个球,有下列事件:○1该球是红球,○2该球是黄球,○3该球是白球.它们发生的概率分别记为P 1,P 2,P 3.则P 1,P 2,P 3的大小关系▲.11. 在一个不透明的袋子里,装有若干个小球.这些小球只有颜色上的区别.已知其中只有两个红球.每次摸球前都将袋子里的球搅匀.随机摸出一个小球,记下颜色并将球放回袋子里.通过大量重复试验后,发现摸出红球的频率稳定在0.2,那么据此估计,袋子里的球的总数大约是▲个.12. 在□ABCD 的周长是32cm ,AB =5cm ,那么AD =▲cm .13. 如图,在□ABCD 中,∠ABC 的平分线交AD 于点E ,AB =4,BC =6,则DE =▲. 14. 如图,在□ABCD 中,AD =6,点E 、F 分别是BD 、CD 的中点,则EF =▲.15. 如图,G 为正方形ABCD 的边AD 上的一个动点,AE ⊥BG ,CF ⊥BG ,垂足分别为点E ,F ,已知AD =4,则AE 2+CF 2=▲.16. 如图,在Rt △ABC 中,∠ACB =90,AC =3,BC =4,分别以AB 、AC 、BC 为边在AB 同侧作正方形ABEF ,ACPQ ,BDMC ,记四块阴影部分的面积分别为S 1、S 2、S 3、S 4,则1234S S S S +++=▲.三. 解答题(本大题共8小题,共72分)EFCDBA 第8题图第9题图 第13题图 EAB CD第14题图EFDAB C第15题图F ECDABG 第16题图4321S S S S LMD MPQEF C AB17. (本题8分)某自行车公司调查阳光中学学生对其产品的了解情况,随机抽取部分学生进行问卷,结果分“非常了解”、“比较了解”、“一般了解”、“不了解”四种类型,分别记为A 、B 、C 、D .根据调查结果绘制了如下尚不完整的统计图. 根据所给数据,解答下列问题: (1)本次问卷共随机调查了名学生,扇形统计图中m =.(2)请根据数据信息补全条形统计图. (3)若该校有1000名学生,估计选择“非常了解”、“比较了解”共约有多少人? 18. (本题8分)为了了解某中学初三年级650名学生升学考试的数学成绩,从中随机抽取了50名学生的数学成绩进行分析,并求得样本的平均成绩是93.5分.下面是根据抽取的学生数学成绩制作的统计表:分组 频数累计 频数 频率 60.5~70.5 正 3 a 70.5~80.5 正正 6 0.12 80.5~90.5 正正 9 0.18 90.5~100.5 正正正正 17 0.34 100.5~110.5 正正 b 0.2 110.5~120.5正5 0.1 合计501根据题中给出的条件回答下列问题: (1)表中的数据a =,b =; (2)在这次抽样调查中,样本是;(3)在这次升学考试中,该校初三年级数学成绩在90.5~100.5范围内的人数约为人. 19. (本题8分)在如图所示的网格纸中,建立了平面直角坐标系xOy ,点P (1,2),点A (2,5),B (-2,5),C (-2,3).(1) 以点P 为对称中心,画出△A′B′C′,使△A′B′C′与△ABC 关于点P 对称,并写出下列点的坐标:B′,C′;(2) 多边形ABCA′B′C′的面积是.问卷情况条形统计图6168类型人数DCBA2468101214161820xyCOBAP20. (本题8分)如图,在□ABCD 中, AE ⊥BD ,CF ⊥BD ,垂足分别为E 、F .求证:(1)AE =CF ;(2)四边形AECF 是平行四边形. 证明:21. (本题8分)如图,已知矩形ABCD 中,E 是AD 上的一点,F 是AB 上的一点,EF ⊥EC ,且EF =EC ,DE =4cm ,矩形ABCD 的周长为32cm ,求AE 的长. 解:22. (本题10分)如图,在平面直角坐标系xOy 中,点A (3,4),B (5,0),C (0,-2).在第一象限找一点D ,使四边形AOBD 成为平行四边形, (1) 点D 的坐标是;(2) 连接OD ,线段OD 、AB 的关系是;(3) 若点P 在线段OD 上,且使PC +PB 最小,求点P 的坐标. 解:23. (本题10分)将两张完全相同的矩形纸片ABCD 、FBED 按如图方式放置,BD 为重合的对角线.重叠部分为四边形DHBG ,(1) 试判断四边形DHBG 为何种特殊的四边形,并说明理由; (2) 若AB =8,AD =4,求四边形DHBG 的面积. 解:(1)第20题图FEDABCBCA EDF 第22题图xyO AB CEGHFCDAB(2)24. (本题12分)如图,正方形ABCO 的边OA 、OC 分别在x 、y 轴上,点B 坐标为(6,6),将正方形ABCO 绕点C 逆时针旋转角度a (0°<a <90°),得到正方形CDEF ,ED 交线段AB 于点G ,ED 的延长线交线段OA 于点H ,连CH 、CG . (1)求证:△CBG ≌△CDG ;(2)求∠HCG 的度数;并判断线段HG 、OH 、BG 之间的数量关系,说明理由;(3)连结BD 、DA 、AE 、EB 得到四边形AEBD ,在旋转过程中,四边形AEBD 能否为矩形?如果能,请求出点H 的坐标;如果不能,请说明理由. (1) 证明:(2)解:(3)解:2016-2017学年度第二学期第一次质量抽测八年级数学试题答案四. 选择题(本大题有8个小题,每小题3分,共24分)题号 1 2 3 4 5 6 7 8 答案ACBDADCB五. 填空题(本大题有8个小题,每小题3分,共24分)9.108. 10.P 1>P 2>P 3. 11.10. 12.11. 13.2.14.3.15.16.16.18.六. 解答题(本大题共10小题,共72分)17. 答案:(1)50,m =32;……4分 (2)图略;……6分(3)1000(16%40%)100056%560⨯+=⨯=.答约有560人.……8分 18. 答案:(1)a =0.06,b =10;……4分第23题图xyO GH FEDACB第24题图(2)50名学生的数学成绩;……6分 (3)221.……8分19. 解:(1)B′(4,-1),C′(4,1),图,……4分(其中图2分) (2)28.……8分20. (本题8分) 证明:(1)因为四边形ABCD 是平行四边形,所以AD =BC ,…1分因为AD ∥BC ,所以∠ADE =∠CBF ,……2分因为AE ⊥BD ,CF ⊥BD ,所以∠AED =∠CFB =90°,…3分所以△ADE ≌△CBF ,……4分 所以AE =CF .……5分(2)因为AE ⊥BD ,CF ⊥BD ,所以∠AEF =∠CFE =90°,…6分 所以AE ∥CF ,……7分由(1)得AE =CF ,所以四边形AECF 是平行四边形.……8分 21. 解:因为EF ⊥EC ,所以∠CEF =90°,………………1分 所以∠AEF +∠DEC =90°,………………2分 因为四边形ABCD 是矩形,所以∠A =∠D =90°,………………3分 所以∠AFE +∠AEF =90°,所以∠AFE =∠DEC ,………………4分又EF =EC ,所以△AEF ≌△DCE ,………………5分 所以AE =DC ,………………6分因为2(AD +DC )=32,所以2(AE +DE +AE )=32,………………7分 因为DE =4cm ,所以AE =6cm .………………8分22. 解答: (1)(8,4),图.…………2分(2)OD 与AB 互相垂直平分.图…………4分(3)连接AC 交OD 于点P ,点P 即是所求点.…………5分(有图也可以)设经过点O 、D 的函数表达式为1y k x =,则有方程148k =,所以112k =,所以直线OD 的函数表达式为12y x =.………………6分xyB 'C 'CA 'O BAP第20题图FED ABCxyEPO ADBC设过点C 、A 的一次函数表达式为2y k x b =+,则有方程组22,3 4.b k b =-⎧⎨+=⎩解得22,2.b k =-⎧⎨=⎩所以过点C 、A的一次函数表达式为22y x =-,………………8分解方程组1,22 2.y y x ⎧=⎪⎨⎪=-⎩得4,32.3x y ⎧=⎪⎪⎨⎪=⎪⎩,所以点P (43,23).………………10分23. (本题10分) 解:(1)四边形DHBG 是菱形.………………1分 理由如下:因为四边形ABCD 、FBED 是完全相同的矩形, 所以∠A =∠E =90°,AD =ED ,…………2分 所以DA ⊥AB ,DE ⊥BE ,所以∠ABD =∠EBD ,………………3分 因为AB ∥CD ,DF ∥BE ,所以四边形DHBG 是平行四边形,∠HDB =∠EBD ,………………5分所以∠HDB =∠ABD ,所以DH =BH ,所以□DHBG 是菱形.………………6分(2)由(1),设DH =BH =x ,则AH =8-x ,在Rt △ADH 中,222AD AH DH +=, 即得2224(8)x x +-=,解得5x =,即BH =5,………………9分 所以菱形DHBG 的面积为5420HB AD ??.………………10分第23题图EGHFCDAB24. (本题12分) 解:(1)证明:∵正方形ABCO 绕点C 旋转得到正方形CDEF ,∴CD =CB ,∠CDG =∠CBG =90°.………2分 在Rt △CDG 和Rt △CBG 中,CD =CB ,CG =CG ,∴△CDG ≌△CBG (HL ).………………3分 (2)解:∵△CDG ≌△CBG ,∴∠DCG =∠BCG 12DCB =∠,DG =BG .……………4分 在Rt △CHO 和Rt △CHD 中,CH =CH ,CO =CD ,∴△CHO ≌△CHD (HL ).……………5分 ∴∠OCH =∠DCH 12OCD =∠,OH =DH ,…6分∴∠HCG =∠HCD +∠GCD 11145222OCD DCB OCB =∠+∠=∠=︒,…7分HG =HD +DG =HO +BG .………………8分(3)解:四边形AEBD 可为矩形. 如图,连接BD 、DA 、AE 、EB ,因为四边形AEBD 若为矩形,则四边形AEBD 为平行四边形,且AB =ED ,则有AB 、ED 互相平分,即G 为AB 中点的时候. 因为DG =BG ,所以此时同时满足DG =AG =EG =BG ,即平行四边形AEBD 对角线相等,则其为矩形. 所以当G 点为AB 中点时,四边形AEBD 为矩形.………………10分 ∵四边形DAEB 为矩形,∴AG =EG =BG =DG . ∵AB =6,∴AG =BG =3.………………11分 设H 点的坐标为(x ,0),则HO =x , ∵OH =DH ,BG =DG ,∴HD =x ,DG =3.在Rt △HGA 中,∵HG =x +3,GA =3,HA =6-x ,∴(x +3)2=32+(6-x )2,∴x =2. ∴H 点的坐标为(2,0).………………12分xyOGHFEDACB第24题图。
2016至2017学年度八年级数学下学期期末测试卷

2016~2017学年度下学期期末测试卷八年级数学(考试时间:120分钟满分:120分)一、选择题(12小题,每小题3分,共36分,在每题给出的四个选项中,只有一项是符合题目要求的,将你的结果填在括号()内)1.9的值是()A. 9B. 3C. -3D. 32.关于一组数据的平均数、中位数、众数,下列说法中正确的是()A.平均数一定是这组数中的某个数B.中位数一定是这组数中的某个数C.众数一定是这组数中的某个数D.以上说法都不对3.对于函数y=﹣3x是怎样平移得到y=﹣3x+3()A.向上平移3个单位长度而得到B.向下平移3个单位长度而得到C.向左平移3个单位长度而得到D.向右平移3个单位长度而得到4.在直角三角形中,两条直角边的长分别是6和8,则斜边上的中线长是( )A. 10B. 5C. 8.5D. 5.55.函数y=3x﹣4与函数y=2x+3的交点的坐标是( )A.(5,6)B.(7,﹣7)C.(﹣7,﹣17)D.(7,17)2016~2017学年度下学期期末测试卷(八年级数学)第1页(共8页)2016~2017学年度下学期期末测试卷(八年级数学)第2页(共8页)6.下列二次根式中,最简二次根式是( )A.a8 B.a5 C. D.b a a 22+7.如图,有两颗树,一颗高7米,另一颗高4米,两树 相距4米,一只鸟从一棵树的树梢飞到另一颗树的树梢, 问小鸟至少飞行了( )米A. 4B. 5C. 6D. 78.点P 1(x 1,y 1),点P 2(x 2,y 2)是一次函数y =-4x+3图象上的两个点,且x 1<x 2,则y 1与y 2的大小关系是( )A . y 1>y 2B . y 1>y 2>0C . y 1<y 2D . y 1=y 2 9.不能判断四边形ABCD 是平行四边形的是( ) A . AB=CD ,AD=BC B . AB=CD ,AB ∥CD C . AB=CD ,AD ∥BC D . AB ∥CD ,AD ∥BC10.一个样本的方差为S ²= ,那么这个样本的平均数为( )A . 6B .C . 5D .11.下列图形中,表示一次函数y=kx+t 与正比例函数y=ktx (k 、t 为常数,且kt ≠0)的图象的是( )xyxyxyxyooooA BCD613a 65()()()⎥⎦⎤⎢⎣⎡-++-+-25625225161x x x 第7题图2016~2017学年度下学期期末测试卷(八年级数学)第3页(共8页)12.如图,四边形ABED 和四边形AFCD 都是平行四边形,AF 和DE 相交成直角,AG=3cm ,DG=4cm ,平行四边形ABED 的面积是36㎝², 则四边形ABCD 的周长为( ) A. 49 cm B . 43 cm C . 41 cm D . 46 cm二 、填空题(本大题共6小题,每小题3分,共18分)13. 函数y=kx 的图象经过点P(3,-1),则k 的值为 . 14. 一组数据-1,0,1,2的平均值是 .15. 已知直线y =2x +8与两条坐标轴围成的三角形的面积是__________. 16. 已知菱形的两条对角线分别是6和8,则这个菱形的边长是_________. 17.如图,在△ABC 中,D 、E 分别是AB 、AC 的中点, 若BC=18,则DE= .第17题图 第18题图18.如图,在正方形纸片ABCD 中,一边长为12,将顶点A 折叠至DC 边上的点E ,使DE=5,折痕为PQ ,则PQ 的长为 .ADB FG第12题图ABCD E三、解答题(共66分)解答应写出必要的文字说明、演算过程或推理步骤.19.(6分)计算(1)(2)20.(6分)按列表、描点、连线的要求,在同一坐标系中画出y=2x和y=2x+1的图象,请你观察两个函数的解析式及其图象,问有什么共同点和不同点?22+3()2-2+(3)(3)2016~2017学年度下学期期末测试卷(八年级数学)第4页(共8页)21.(8分)如图,长为4米的梯子搭在墙上与地面成450角,作业时调整为600角,请求出梯子的顶端沿墙面升高了多少米?第21题图22.(8分)为了了解某校1500名学生的视力情况,从中抽取一部分学生进行抽样调查,利用所得视力数据为:4.0,4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9,5.0,5.1,5.2,5.3并绘制了如下的统计图。
2016-2017学年华师大版八年级下学期期末数学试卷及答案

2016-2017学年八年级下学期期末数学试卷一.选择题(单项选择,每小题3分,共21分)1.(3分)20130的值等于()A.0B.1C.2013 D.﹣20132.(3分)在平面直角坐标系中,点(1,2)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.(3分)已知函数y=3x﹣1,当x=3时,y的值是()A.6B.7C.8D.94.(3分)已知一组数据:9,9,8,8,7,6,5,则这组数据的中位数是()A.9B.8C.7D.65.(3分)下列式子成立的是()A.B.C.D.6.(3分)如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A.B D=CD B.A B=AC C.∠B=∠C D.∠BAD=∠CAD 7.(3分)如图,点P是反比例函数y=(x>0)的图象上的任意一点,过点P分别作两坐标轴的垂线,与坐标轴构成矩形OAPB,点D是矩形OAPB内任意一点,连接DA、DB、DP、DO,则图中阴影部分的面积是()A.1B.2C.3D.4.二.填空题(每小题4分,共40分)8.(4分)3﹣2=.9.(4分)若分式的值为0.则x=.10.(4分)用科学记数法表示:0.000004=.11.(4分)数据2,4,5,7,6的极差是.12.(4分)在平面直角坐标系中,点(﹣3,4)关于原点对称的点的坐标是.13.(4分)命题“同位角相等,两直线平行”的逆命题是:.14.(4分)甲、乙两同学近期4次数学单元测试的平均分相同,甲同学的方差S=3.2,乙同学的方差S=4.1,则成绩较稳定的同学是(填“甲”或“乙”).15.(4分)已知某个反比例函数,它在每个象限内,y随x增大而增大,则这个反比例函数可以是(写出一个即可).16.(4分)如图,正方形ABCD中,M是BC上的中点,连结AM,作AM的垂直平分线GH交AB于G,交CD于H,若CM=2,则AG=.17.(4分)如图,在直角坐标系中,已知点A(﹣4,0),B(0,3),对△OAB连续作旋转变换,依次得到三角形(1),三角形(2),三角形(3),三角形(4),…,(1)△AOB的面积是;(2)三角形的直角顶点的坐标是.三、解答题(共89分)18.(16分)①计算:②解方程:.19.(8分)如图,在△ABC中,AB=AC,点D、E在BC上,且BD=CE.求证:△ABE≌△ACD.20.(8分)如图,已知△ABC.(1)作边BC的垂直平分线;(2)作∠C的平分线.(要求:不写作法,保留作图痕迹)21.(8分)某学习小组10名学生的某次数学测验成绩统计表如下:成绩(分)60 70 80 90人数(人) 1 3 x 4(1)填空:①x=;②此学习小组10名学生成绩的众数是;(2)求此学习小组的数学平均成绩.22.(8分)已知一次函数y=kx+b的图象经过点(1,3)和点(2,5),求k和b的值.23.(8分)某校举行英语演讲比赛,准备购买30本笔记本作为奖品,已知A、B两种笔记本的价格分别是12元和8元.设购买A种笔记本x本.(1)购买B种笔记本本(用含x的代数式表示);(2)设购买这两种笔记本共花费y元,求y元与x的函数关系式,并求出y的最大值和最小值.24.(8分)已知正比例函数y=x和反比例函数的图象都经过点A(3,3).(1)直接写出反比例函数的解析式;(2)把直线OA向下平移后与反比例函数的图象交于点B(6,m),求平移的距离.25.(12分)如图1,四边形ABCD,AEFG都是正方形,E、G分别在AB、AD边上,已知AB=4.(1)求正方形ABCD的周长;(2)将正方形AEFG绕点A逆时针旋转θ(0°<θ<90°)时,如图2,求证:BE=DG.(3)将正方形AEFG绕点A逆时针旋转45°时,如图3,延长BE交DG于点H,设BH与AD的交点为M.①求证:BH⊥DG;②当AE=时,求线段BH的长(精确到0.1).26.(13分)已知:直线l1与直线l2平行,且它们之间的距离为2,A、B是直线l1上的两个定点,C、D是直线l2上的两个动点(点C在点D的左侧),AB=CD=5,连接AC、BD、BC,将△ABC沿BC折叠得到△A1BC.(1)求四边形ABDC的面积.(2)当A1与D重合时,四边形ABDC是什么特殊四边形,为什么?(3)当A1与D不重合时①连接A1、D,求证:A1D∥BC;②若以A1,B,C,D为顶点的四边形为矩形,且矩形的边长分别为a,b,求(a+b)2的值.四、附加题(每小题0分,共10分)友情提示:请同学们做完上面考题后,估计一下你的得分情况.如果你全卷得分低于60分(及格线),则本题的得分将计入全卷总分.但计入后全卷总分最多不超过60分;如果你全卷得分已经达到或超过60分.则本题的得分不计入全卷总分.27.=.28.在平面直角坐标系中,直线y=x+1与y轴的交点坐标是(,)参考答案与试题解析一.选择题(单项选择,每小题3分,共21分)1.(3分)20130的值等于()A.0B.1C.2013 D.﹣2013考点:零指数幂.分析:根据零指数幂公式可得:20130=1.解答:解:20130=1.故选B.点评:本题主要考查了零指数幂的运算,要求同学们掌握任何非0数的0次幂等于1.2.(3分)在平面直角坐标系中,点(1,2)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限考点:点的坐标.分析:根据各象限内点的坐标特征解答.解答:解:点(1,2)所在的象限是第一象限.故选A.点评:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3.(3分)已知函数y=3x﹣1,当x=3时,y的值是()A.6B.7C.8D.9考点:函数值.分析:把x=3代入函数关系式进行计算即可得解.解答:解:x=3时,y=3×3﹣1=8.故选C.点评:本题考查了函数值求解,把自变量的值代入函数关系式计算即可,比较简单.4.(3分)已知一组数据:9,9,8,8,7,6,5,则这组数据的中位数是()A.9B.8C.7D.6考点:中位数.分析:根据这组数据是从大到小排列的,找出最中间的数即可.解答:解:∵9,9,8,8,7,6,5是从大到小排列的,∴处于最中间的数是8,∴这组数据的中位数是8;故选B.点评:此题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)即可.5.(3分)下列式子成立的是()A.B.C.D.考点:分式的混合运算.分析:利用分式的基本性质,以及分式的乘方法则即可判断.解答:解:A、+=,选项错误;B、当m=1时,=4,故选项错误;C、()2=,故选项错误;D、正确.故选D.点评:本题主要考查分式的混合运算,理解分式的性质以及运算法则是解答的关键.6.(3分)如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A.B D=CD B.A B=AC C.∠B=∠C D.∠BAD=∠CAD考点:全等三角形的判定.分析:利用全等三角形判定定理ASA,SAS,AAS对各个选项逐一分析即可得出答案.解答:解:A、∵∠1=∠2,AD为公共边,若BD=CD,则△ABD≌△ACD(SAS);B、∵∠1=∠2,AD为公共边,若AB=AC,不符合全等三角形判定定理,不能判定△ABD≌△ACD;C、∵∠1=∠2,AD为公共边,若∠B=∠C,则△ABD≌△ACD(AAS);D、∵∠1=∠2,AD为公共边,若∠BAD=∠CAD,则△ABD≌△ACD(ASA);故选:B.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7.(3分)如图,点P是反比例函数y=(x>0)的图象上的任意一点,过点P分别作两坐标轴的垂线,与坐标轴构成矩形OAPB,点D是矩形OAPB内任意一点,连接DA、DB、DP、DO,则图中阴影部分的面积是()A.1B.2C.3D.4.考点:反比例函数系数k的几何意义.分析:首先根据反比例系数k的几何意义,可知矩形OAPB的面积=6,然后根据题意,得出图中阴影部分的面积是矩形OAPB的面积的一半,从而求出结果.解答:解:∵P是反比例函数的图象的任意点,过点P分别做两坐标轴的垂线,∴与坐标轴构成矩形OAPB的面积=6.∴阴影部分的面积=×矩形OAPB的面积=3.故选C.点评:本题考查了反比例函数比例系数k的几何意义和矩形的性质,在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|是解答此题的关键.二.填空题(每小题4分,共40分)8.(4分)3﹣2=.考点:负整数指数幂.专题:计算题.分析:根据幂的负整数指数运算法则计算.解答:解:原式==.故答案为:.点评:本题考查的是幂的负整数指数运算,先把底数化成其倒数,然后将负整数指数幂当成正的进行计算.9.(4分)若分式的值为0.则x=1.考点:分式的值为零的条件.分析:根据分式值为零的条件是分子等于零且分母不等于零,可得,据此求出x 的值是多少即可.解答:解:∵分式的值为0,∴,解得x=1.故答案为:1.点评:此题主要考查了分式值为零的条件,要熟练掌握,解答此题的关键是要明确:分式值为零的条件是分子等于零且分母不等于零,注意:“分母不为零”这个条件不能少.10.(4分)用科学记数法表示:0.000004=4×10﹣6.考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.000004=4×10﹣6;故答案为:4×10﹣6.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.11.(4分)数据2,4,5,7,6的极差是5.考点:极差.分析:用这组数据的最大值减去最小值即可.解答:解:由题意可知,极差为7﹣2=5.故答案为5.点评:本题考查了极差的定义,极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值.注意:①极差的单位与原数据单位一致.②如果数据的平均数、中位数、极差都完全相同,此时用极差来反映数据的离散程度就显得不准确.12.(4分)在平面直角坐标系中,点(﹣3,4)关于原点对称的点的坐标是(3,﹣4).考点:关于原点对称的点的坐标.分析:根据关于原点对称的点,横坐标与纵坐标都互为相反数解答.解答:解:点(﹣3,4)关于原点对称的点的坐标是(3,﹣4).故答案为:(3,﹣4).点评:本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于原点对称的点,横坐标与纵坐标都互为相反数.13.(4分)命题“同位角相等,两直线平行”的逆命题是:两直线平行,同位角相等.考点:命题与定理.分析:把一个命题的题设和结论互换就得到它的逆命题.解答:解:命题:“同位角相等,两直线平行.”的题设是“同位角相等”,结论是“两直线平行”.所以它的逆命题是“两直线平行,同位角相等.”故答案为:“两直线平行,同位角相等”.点评:本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.14.(4分)甲、乙两同学近期4次数学单元测试的平均分相同,甲同学的方差S=3.2,乙同学的方差S=4.1,则成绩较稳定的同学是甲(填“甲”或“乙”).考点:方差.分析:根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.解答:解:∵S=3.2,S=4.1,∴S甲2<S乙2,则成绩较稳定的同学是甲.故答案为:甲.点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.15.(4分)已知某个反比例函数,它在每个象限内,y随x增大而增大,则这个反比例函数可以是y=﹣(答案不唯一)(写出一个即可).考点:反比例函数的性质.专题:开放型.分析:设该反比例函数的解析式是y=,再根据它在每个象限内,y随x增大而增大判断出k的符号,选取合适的k的值即可.解答:解:设该反比例函数的解析式是y=,∵它在每个象限内,y随x增大而增大,∴k<0,∴符合条件的反比例函数的解析式可以为:y=﹣(答案不唯一).故答案为:y=﹣(答案不唯一).点评:本题考查的是反比例函数的性质,此题属开放性题目,答案不唯一,只要写出的反比例函数的解析式符合条件即可.16.(4分)如图,正方形ABCD中,M是BC上的中点,连结AM,作AM的垂直平分线GH交AB于G,交CD于H,若CM=2,则AG=2.5.考点:正方形的性质;线段垂直平分线的性质;勾股定理.分析:求出BC、AB长,求出AM、求出AO,证△GAO∽△MAB,得出比例式,代入求出即可.解答:解:∵M为BC中点,CM=2,∴BC=4,BM=2,∵四边形ABCD是正方形,∴∠B=90°,AB=BC=4,在Rt△ABM中,由勾股定理得:AM==2,∵AM的垂直平分线GH,∴AO=OM=AM=,∠AOG=∠B=90°,∵∠GAO=∠MAB,∴△GAO∽△MAB,∴=,∴=,∴AG=2.5,故答案为:2.5.点评:本题考查了线段垂直平分线,相似三角形的性质和判定,勾股定理,正方形性质的应用,主要考查学生运用性质进行推理和计算的能力.17.(4分)如图,在直角坐标系中,已知点A(﹣4,0),B(0,3),对△OAB连续作旋转变换,依次得到三角形(1),三角形(2),三角形(3),三角形(4),…,(1)△AOB的面积是6;(2)三角形的直角顶点的坐标是(8052,0).考点:坐标与图形变化-旋转;三角形的面积.专题:规律型.分析:(1)根据点A、B的坐标求出OA、OB,再根据三角形的面积列式计算即可得解;(2)观察不难发现,每3个三角形为一个循环组依次循环,用2013除以3,根据商是671可知三角形是第671个循环组的最后一个三角形,直角顶点在x轴上,再根据一个循环组的距离为12,进行计算即可得解.解答:解:(1)∵A(﹣4,0),B(0,3),∴OA=4,OB=3,∴△AOB的面积=×4×3=6;(2)由图可知,每3个三角形为一个循环组依次循环,∵2013÷3=671,∴三角形是第671个循环组的最后一个三角形,12×671=8052,∴三角形的直角顶点的坐标是(8052,0).故答案为:6;(8052,0).点评:本题考查了坐标与图形变化﹣旋转,三角形的面积,仔细观察图形,发现每3个三角形为一个循环组依次循环是解题的关键,也是本题的难点.三、解答题(共89分)18.(16分)①计算:②解方程:.考点:解分式方程;分式的加减法.专题:计算题.分析:①原式利用同分母分式的减法法则计算,约分即可得到结果;②分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:①原式===2;②方程两边同乘以5x(x﹣6),得10x=4x﹣24,解得x=﹣4,经检验x=﹣4是分式方程的解.点评:此题考查了解分式方程,以及分式的加减法,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.19.(8分)如图,在△ABC中,AB=AC,点D、E在BC上,且BD=CE.求证:△ABE≌△ACD.考点:全等三角形的判定.专题:证明题.分析:由AB=AC可得∠B=∠C,然后根据BD=CE可证BE=CD,根据SAS即可判定三角形的全等.解答:证明∵AB=AC,∴∠B=∠C,∵BD=EC,∴BE=CD,在△ABE与△ACD中,,∴△ABE≌△ACD(SAS).点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.20.(8分)如图,已知△ABC.(1)作边BC的垂直平分线;(2)作∠C的平分线.(要求:不写作法,保留作图痕迹)考点:作图—复杂作图.专题:作图题.分析:(1)分别以B、C为圆心,大于BC的一半为半径画弧,两弧交于点M、N,MN 就是所求的直线;(2)以点C为圆心,任意长为半径画弧,交AC,BC于两点,以这两点为圆心,大于这两点的距离为半径画弧,交于一点E,作射线CE交AB于D即可.解答:解:如图所示:点评:考查三角形角平分线及边垂直平分线的画法;掌握角平分线与线段垂直平分线的作法是解决本题的关键.21.(8分)某学习小组10名学生的某次数学测验成绩统计表如下:成绩(分)60 70 80 90人数(人) 1 3 x 4(1)填空:①x=2;②此学习小组10名学生成绩的众数是90;(2)求此学习小组的数学平均成绩.考点:众数;加权平均数.分析:(1)①用总人数减去得60分、70分、90分的人数,即可求出x的值;②根据众数的定义即一组数据中出现次数最多的数,即可得出答案;(2)根据平均数的计算公式分别进行计算即可.解答:解:(1)①∵共有10名学生,∴x=10﹣1﹣3﹣4=2;②∵90出现了4次,出现的次数最多,∴此学习小组10名学生成绩的众数是90;故答案为:2,90;(2)此学习小组的数学平均成绩是:=(60+3×70+2×80+4×90)=79(分).点评:此题考查了众数和平均数,掌握众数和平均数的概念及公式是本题的关键,众数是一组数据中出现次数最多的数.22.(8分)已知一次函数y=kx+b的图象经过点(1,3)和点(2,5),求k和b的值.考点:待定系数法求一次函数解析式.分析:设该一次函数解析式为y=kx+b(k≠0).把已知点的坐标代入函数解析式,可以列出关于系数k、b的方程组,通过解该方程组可以求得它们的值.解答:解:设该一次函数解析式为y=kx+b(k≠0).由题意,得解得,即k和b的值分别是2和1.点评:本题考查了待定系数法求一次函数解析式.注意:求正比例函数,只要一对x,y 的值就可以,因为它只有一个待定系数;而求一次函数y=kx+b,则需要两组x,y的值.23.(8分)某校举行英语演讲比赛,准备购买30本笔记本作为奖品,已知A、B两种笔记本的价格分别是12元和8元.设购买A种笔记本x本.(1)购买B种笔记本(30﹣x)本(用含x的代数式表示);(2)设购买这两种笔记本共花费y元,求y元与x的函数关系式,并求出y的最大值和最小值.考点:一次函数的应用.分析:(1)根据一共准备购买30本笔记本作为奖品,可知购买B种笔记本的数量=30﹣购买A种笔记本的数量;(2)先由购买这两种笔记本共花费的钱数=购买A种笔记本花费的钱数+购买B种笔记本花费的钱数,求出y元与x的函数关系式,再由自变量的取值范围,根据一次函数的增减性,即可求得答案.解答:解:(1)∵某校举行英语演讲比赛,准备购买30本笔记本作为奖品,其中购买A 种笔记本x本,∴购买B种笔记本(30﹣x)本.(2)y=12x+8(30﹣x)=4x+240,∵k=4>0,∴y随x的增大而增大,又∵0≤x≤30,∴当x=0时,y的最小值为240,当x=30时,y的最大值为360.故答案为(30﹣x).点评:本题考查的是用一次函数解决实际问题,此类题是近年2015届中考中的热点问题.注意利用一次函数求最值时,关键是应用一次函数的性质;即由函数值y随x的变化,结合自变量的取值范围确定最值.24.(8分)已知正比例函数y=x和反比例函数的图象都经过点A(3,3).(1)直接写出反比例函数的解析式;(2)把直线OA向下平移后与反比例函数的图象交于点B(6,m),求平移的距离.考点:反比例函数与一次函数的交点问题;一次函数图象与几何变换.分析:(1)把A的坐标代入反比例函数的解析式求出即可;(2)把B的坐标代入反比例函数的解析式求出B的坐标,设平移后的直线的解析式为y=x+b,把B的坐标代入求出即可.解答:解:(1);(2)点B(6,m)在反比例函数的图象上,m=1.5,平移后的直线的解析式为y=x+b,y=x+b的图象过点B,把B的坐标代入得:1.5=6+b,解得:b=﹣4.5,∴平移的距离为4.5.点评:本题考查了用待定系数法求反比例函数的解析式,平移的性质的应用,主要考查学生的理解能力和计算能力.25.(12分)如图1,四边形ABCD,AEFG都是正方形,E、G分别在AB、AD边上,已知AB=4.(1)求正方形ABCD的周长;(2)将正方形AEFG绕点A逆时针旋转θ(0°<θ<90°)时,如图2,求证:BE=DG.(3)将正方形AEFG绕点A逆时针旋转45°时,如图3,延长BE交DG于点H,设BH与AD的交点为M.①求证:BH⊥DG;②当AE=时,求线段BH的长(精确到0.1).考点:四边形综合题.分析:(1)根据正方形的周长定义求解;(2)根据正方形的性质得AB=AD,AE=AG,在根据旋转的性质得∠BAE=∠DAG=θ,然后根据“SAS”判断△BAE≌△DAG,则BE=DG;(3)①由BAE≌△DAG得到∠ABE=∠ADG,而∠AMB=∠DMH,根据三角形内角和定理即可得到∠DHM=∠BAM=90°,则BH⊥DG;②连结GE交AD于点N,连结DE,由于正方形AEFG绕点A逆时针旋转45°,AF与EG 互相垂直平分,且AF在AD上,由AE=可得到AN=GN=1,所以DN=4﹣1=3,然后根据勾股定理可计算出DG=,则BE=,解着利用S△DEG=GE•ND=DG•HE可计算出HE=,所以BH=BE+HE=≈5.1.解答:(1)解:正方形ABCD的周长=4×4=16;(2)证明:∵四边形ABCD,AEFG都是正方形,∴AB=AD,AE=AG,∵将正方形AEFG绕点A逆时针旋转θ(0°<θ<90°),∴∠BAE=∠DAG=θ,在△BAE和△DAG,,∴△BAE≌△DAG(SAS),∴BE=DG;(3)①证明:∵△BAE≌△DAG,∴∠ABE=∠ADG,又∵∠AMB=∠DMH,∴∠DHM=∠BAM=90°,∴BH⊥DG;②解:连结GE交AD于点N,连结DE,如图,∵正方形AEFG绕点A逆时针旋转45°,∴AF与EG互相垂直平分,且AF在AD上,∵AE=,∴AN=GN=1,∴DN=4﹣1=3,在Rt△DNG中,DG==;∴BE=,∵S△DEG=GE•ND=DG•HE,∴HE==,∴BH=BE+HE=+=≈5.1.点评:本题考查了四边形的综合题:熟练掌握正方形的性质和旋转的性质;会运用三角形全等的知识解决线段相等的问题;会运用勾股定理和等腰直角三角形的性质进行几何计算.26.(13分)已知:直线l1与直线l2平行,且它们之间的距离为2,A、B是直线l1上的两个定点,C、D是直线l2上的两个动点(点C在点D的左侧),AB=CD=5,连接AC、BD、BC,将△ABC沿BC折叠得到△A1BC.(1)求四边形ABDC的面积.(2)当A1与D重合时,四边形ABDC是什么特殊四边形,为什么?(3)当A1与D不重合时①连接A1、D,求证:A1D∥BC;②若以A1,B,C,D为顶点的四边形为矩形,且矩形的边长分别为a,b,求(a+b)2的值.考点:四边形综合题.专题:综合题.分析:(1)根据平行四边形的判定方法可得到四边形ABCD为平行四边形,然后根据平行四边形的面积公式计算;(2)根据折叠的性质得到AC=CD,然后根据菱形的判定方法可判断四边形ABDC是菱形;(3)①连结A1D,根据折叠性质和平行四边形的性质得到CA1=CA=BD,AB=CD=A1B,∠1=∠CBA=∠2,可证明△A1CD≌△A1BD,则∠3=∠4,然后利用三角形内角和定理得到得到∠1=∠4,则根据平行线的判定得到A1D∥BC;②讨论:当∠CBD=90°,则∠BCA=90°,由于S△A1CB=S△ABC=5,则S矩形A1CBD=10,即ab=10,由BA1=BA=5,根据勾股定理得到a2+b2=25,然后根据完全平方公式进行计算;当∠BCD=90°,则∠CBA=90°,易得BC=2,而CD=5,所以(a+b)2=(2+5)2.解答:解(1)∵AB=CD=5,AB∥CD,∴四边形ABCD为平行四边形,∴四边形ABDC的面积=2×5=10;(2)∵四边形ABDC是平行四边形,∵A1与D重合时,∴AC=CD,∵四边形ABDC是平行四边形,∴四边形ABDC是菱形;(3)①连结A1D,如图,∵△ABC沿BC折叠得到△A1BC,∴CA1=CA=BD,AB=CD=A1B,在△A1CD和△A1BD中∴△A1CD≌△A1BD(SSS),∴∠3=∠4,又∵∠1=∠CBA=∠2,∴∠1+∠2=∠3+∠4,∴∠1=∠4,∴A1D∥BC;②当∠CBD=90°,∵四边形ABDC是平行四边形,∴∠BCA=90°,∴S△A1CB=S△ABC=×2×5=5,∴S矩形A1CBD=10,即ab=10,而BA1=BA=5,∴a2+b2=25,∴(a+b)2=a2+b2+2ab=45;当∠BCD=90°时,∵四边形ABDC是平行四边形,∴∠CBA=90°,∴BC=2,而CD=5,∴(a+b)2=(2+5)2=49,∴(a+b)2的值为45或49.点评:本题考查了四边形综合题:熟练掌握平四边形的判定与性质以及特殊平行四边形的判定与性质;会运用折叠的性质确定相等的线段和角.四、附加题(每小题0分,共10分)友情提示:请同学们做完上面考题后,估计一下你的得分情况.如果你全卷得分低于60分(及格线),则本题的得分将计入全卷总分.但计入后全卷总分最多不超过60分;如果你全卷得分已经达到或超过60分.则本题的得分不计入全卷总分.27.=.考点:分式的加减法.专题:计算题.分析:原式利用同分母分式的减法法则计算即可得到结果.解答:解:原式==.故答案为:点评:此题考查了分式的加减法,熟练掌握同分母分式的减法法则是解本题的关键.28.在平面直角坐标系中,直线y=x+1与y轴的交点坐标是(0,1)考点:一次函数图象上点的坐标特征.专题:计算题.分析:根据y轴上点的坐标特征得到直线y=x+1与y轴的交点的横坐标为0,然后把x=0代入直线解析式求出对应的y的值即可.解答:解:把x=0代入y=x+1得y=1,所以直线y=x+1与y轴的交点坐标是(0,1).故答案为0,1.点评:本题考查了一次函数图象上点的坐标特征:一次函数图象上点的坐标满足其解析式.也考查了y轴上点的坐标特征.。
珠海市2015—2016学年度第二学期期末八年级数学

珠海市2015—2016学年度第二学期期末八年级数学一、选择题(本大题10小题,每小题3分,共30分)1.下列二次根式中属于最简二次根式的是( ) A.3 B.8.0 C.21 D.12 2.下列四个函数中,是正比例函数的是( )A . 21y x =+ B.221y x =+ C. 2y x = D .2y x =3.在平行四边形ABCD 中,∠B =60°,那么下列各式中,不能成立的是( )A .60D ∠=︒B .120A ∠=︒C .180CD ∠+∠=︒ D .180C A ∠+∠=︒4.下列各式中,不是二次根式的是( ) A.45 B. 3- C. 22+a D. 51 5.一次函数y =2x +1的图象不经过( )A . 第一象限 B. 第二象限 C .第三象限 D .第四象限6. 下列各组数中不能作为直角三角形的三边长的是( )A. 1.5,2,3B.C. 6,8,10D. 3,4,57.如图所示,当x 在什么范围时,直线l 1在直线l 2的下方( )A . 1.5x > B. 1x > C. 1x < D. 1.5x <8. 平行四边形ABCD 的周长为16,AB 的长是周长的83,那么BC 的长是( ) A. 5 B. 4 C. 2 D. 39.甲乙两班的学生人数相等,参加了同一次数学测试,两班的平均分都是89分,方差分别为S 甲2=2.56,S 乙2=1.92,那么成绩比较集中的班级是( )A .甲班B .乙班 C. 两班一样集中 D. 无法确定10.如图,矩形ABCD 对角线相交于点O ,∠AOB = 60°,AB = 4,则AC 为( )A . 4B .8C .D .10二、填空题(本大题6小题,每小题4分,共24分)11. 当x .12. 计算:2210)23(-=______________.13.“内错角相等,两直线平行”的逆命题是_________________________.14. 某一次函数的图象经过点(1,﹣2),且函数y 的值随自变量x 的增大而减小,请写出一个满足上述条件的函数关系式: .15.菱形的两条对角线长分别为6 cm 和8 cm ,则该菱形的面积为___________cm 2.16.如图所示,DE 为△ABC 的中位线,点F 在DE 上,且∠AFB =90°,若AB =5,BC =8,则EF 的长为 .三、解答题(一)(本大题3小题,每小题6分,共18分)17. 计算:6)273482(÷-.18.已知函数3y kx =+的图象与函数12y x =的图象相交于点(-2,a ).求k 的值.19.如图,从一个大正方形中裁去面积分别为x 2和y 2的两个小正方形,已知32,32+=-=y x ,求留下阴影部分面积.四、解答题(二)(本大题3小题,每小题7分,共21分)20. 为支援灾区,某校初中三个年级举办了一次自愿捐款活动,学校对学生的捐款金额进行了抽样调查,得到一组数据,图(1)是这组数据的统计图,图(2)是各年级捐款人数比例分布的扇形图.(1)这组数据的平均数、中位数各是多少?(2)若该校九年级共有380名学生捐款,估计全校学生捐款大约是多少元?九年级 捐款金额/元 图(1) 八年级 32% 七年级 30% 图(2)21. 华润、得一两家超市平时以同样的价格出售相同的商品.同一促销期间两家超市都让利酬宾,其中华润所有商品按8.5折出售,得一超市对一次性购物中超过200元后的价格部分打7.5折.(1)以x (单位:元)表示商品原价,y (单位:元) 表示购物金额,分别写出两家超市让利方式y 关于x 的函数解析式;(2)在促销期间购买同样的商品如何选择这两家超市更省钱?22. 如图,在Rt △ABC 中,∠ACB=90°,DE 垂直平分BC ,垂足为D ,交AB 于点E .又点F 在DE 的延长线上,且AF=CE .(1)求证:点E 是AB 的中点; (2)求证:四边形ACEF 是平行四边形.五、解答题(三)(本大题3小题,每小题9分,共27分)23. 如图,已知直线AB 为函数62+=x y 的图像.(1)点M(a ,b )(b >0)在直线AB 上,且M 到x 轴的距离为4,求a 的值;(2)若P 为线段AB 上一动点,使得△APO 和△BPO 的面积相等,求点P 的坐标.24. 如图,四边形ABCD 是正方形,点E 、K 分别在BC 、AB 上,CE=BK ,点G 在BA 的延长线上, DG ⊥DE .(1)证明:CE=AG ;(2)以线段DE 、DG 为边作矩形DEFG ,连接KF 、BF ,证明:BFK CEFKS S ∆=2四边形.25. 如图,平面直角坐标系内,四边形ABCO 是矩形,AO=32,MN 是矩形ABCO 的对称轴,点M 、N 分别在边AO 和边BC 上,过点O 折叠矩形,使点A 落在MN 上的点D 处,折痕OE 交MN 于点F ,交AB 于点E.(1)求直线AF 的解析式;(2)如图2所示,当点B 在线段AE 的延长线上移动时,作等边∆BDG ,问:∠DOG 的值是否发生改变?如有改变,请说明理由;如果不变,求∠DOG 的值.。
2016~2017学年北师大版八年级数学第二学期期末测试卷及答案(精选2套)

第5题图 2016~2017学年度第二学期期末测试题八年级数学本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷共2页,满分为36分;第Ⅱ卷共6页,满分为84分.本试题共8页,满分为120分.考试时间为120分钟.答卷前,请考生务必将自己的姓名、准考证号、座号、考试科目涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷规定的位置.考试结束后,将本试卷和答题卡一并交回.本考试不允许使用计算器.第I 卷(选择题 共36分)注意事项:第Ⅰ卷为选择题,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.下列从左到右的变形是因式分解的是( )A.(a +3)(a —3)=a 2-9B.()2241026x x x ++=++ C.()22693x x x -+=- D.()()243223x x x x x -+=-++ 2. 分式293x x --的值为零,则x 的取值( ).A .3B .3-C .3±D .03. 下列变形正确的是( ).A .11a ab b+=+ B .11a ab b--=-- C .221a b a b a b-=--D .22()1()a b a b --=-+ 4. 有一个三角形两边长为3和4,要使三角形为直角三角形,则第三边长为( ) A .5 BC .5D .不确定5. 如图所示,同时自由转动两个转盘,指针落在每一个数上的机会均等,转盘停止后,两个指针同时落在奇数上的概率是( )A .425B .525C .625D .9256. 下列命题中正确的是 ( )A .有两条边相等的两个等腰三角形全等B .两腰对应相等的两个等腰三角形全等C .两角对应相等的两个等腰三角形全等D .一边对应相等的两个等边三角形全等 7. 如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为x 米,则可列方程为( )8. 下列说法中,正确的是( )设 ( )A .∠A =∠B B .AB =BC C .∠B =∠CD .∠A =∠C10.如图,在△ABC 中,∠CAB=75°,在同一平面内,将△ABC 绕点A 旋转到△AB ′C ′的位11. 随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘乘轿车平均速度的2.5倍,若设乘公交车平均每小时走x 千米,根据题意可列方程为( ) A .x x 5.28158=+ B .155.288+=x xC .x x 5.28418=+D .415.288+=x x12 . 如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为( )A .16B .17C .18D .19第Ⅱ卷(非选择题 共84分)注意事项:1.第Ⅱ卷为非选择题,请考生用蓝、黑色钢笔(签字笔)或圆珠笔直接在试卷上作答. 2.答卷前,请考生先将考点、姓名、准考证号、座号填写在试卷规定的位置.二、填空题(本大题共6个小题.每小题3分,共18分.把答案填在题中横线上.)13. 当x 时,分式x-31有意义 14. 在△ABC 中,∠A:∠B:∠C =1:2:3,AB =6cm ,则BC = cm . 15. 分解因式:3223x y 2x y +xy =- 16. 若关于x 的方程2222x m x x++=--有增根,则m 的值是______ 17..两个连续整数的积为42,这两个数分别为18. 如图4,正方形ABCD 中,点E 在BC 的延长线上,AC=CE,则下列结论: (1)∠ACE=1350.(2)∠E=22.50,(3)∠2=112.50.(4)AF 平分∠DAC. (5)DF=FC. 其中正确的有三、解答题(本大题共9个小题,共66分.解答应写出文字说明,证明过程或演算步骤.)(1)因式分解 m 3n -9mn . (2)计算 2111a a a a -++-20. (本小题满分8分)(1)解方程 )12(3)12(4+=+x x x ;(2)解分式方程22121--=--xx x21. (本小题满分8分)某市为了治理城市污水,需要铺设一段全长为300米的污水排放管道,铺设120米后,为了尽可能减少施工对城市交通所造成的影响,后来每天的工作量比原计划增加20%,结果共用了27天完成了这一任务,求原计划每天铺设管道多少米?小明和小刚用如图所示的两个转盘做配紫色游戏,游戏规则是:分别旋转两个转盘,若其中一个转盘转出了红色,另一个转出了蓝色,则可以配成紫色.此时小刚得1分,否则小明得1分.这个游戏对双方公平吗?请说明理由.若你认为不公平,如何修改规则才能使游戏对双方公平?23(本小题满分8分)如图,在平行四边形ABCD 中,对角线AC,BD 交于点O ,经过点O 的直线交AB 于E ,交CD 于F .求证:OE =OF .B小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?25. (本小题满分9分)如图所示,在长和宽分别是a 、b 的矩形纸片的四个角都剪去一个边长为x 的正方形.(1)用a ,b ,x 表示纸片剩余部分的面积;(2)当a =6,b =4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长.26. (本小题满分10分)如图,在Rt △ABC 中,∠C =90°,以AC 为一边向外作等边三角形ACD ,点E 为AB 的中点,连结DE .(1)证明DE ∥CB ;(2)探索AC 与AB 满足怎样的数量关系时,四边形DCBE 是平行四边形.一.选择CBBCD D C C CA DB二.填空13.≠3, 14. 3 15.a+b 16.0 17 6\7 或-6\-7 18. (1)(2)(3)(4)(5)19.20. -1\2 3\423. 解析:证明:∵四边形ABCD是平行四边形,∴OA=OC,AB∥CD ……………2′∴∠OAE=∠OCF ……………4′∵∠AOE=∠COF ……………6′∴△OAE≌△OCF(ASA)∴OE=OF ……………8′25x1=即正方形的边长为中,,=AC= AC=2016—2017学年期末测试八年级数学试卷一、选择题(每小题3分,共30分请把正确选项填在相应题号下的空格里。
2016-2017学年广东省广州市海珠区八年级(下)期末数学试卷

2016-2017学年广东省广州市海珠区八年级(下)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1. 在平行四边形ABCD ,AB =3,BC =5,则平行四边形ABCD 的周长为( ) A.8 B.12 C.14 D.162. 下列各式中,不是最简二次根式的是( ) A.√8 B.√5 C.√3 D.√23. 甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数是9.2环,方差分别为S 甲2=0.54,S 乙2=0.61,S 丙2=0.50,S 丁2=0.63,则射击成绩最稳定的是( )A.甲B.乙C.丙D.丁4. 下列计算正确的是( ) A.√8+√2=√10 B.√8−√2=√2 C.√8×√2=√16 D.√8÷√2=√45. 一次函数y =x +2的图象与x 轴交点的坐标是( ) A.(0, 2) B.(0, −2) C.(2, 0) D.(−2, 0)6. 在△ABC 中,∠C =90∘,∠B =60∘,AB =6,则BC =( ) A.3 B.3√3 C.6√3 D.127. 已知P 1(−1, y 1),P 2(2, y 2)是正比例函数y =−x 图象上的两个点,则y 1、y 2的大小关系是( ) A.y 1=y 2 B.y 1<y 2 C.y 1>y 2 D.不能确定8. 一次函数y =kx +b 的图象经过第一、三、四象限,则( ) A.k >0,b >0 B.k >0,b <0 C.k <0,b >0 D.k <0,b <09. 在四边形ABCD 中,AC ⊥BD ,点E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点,则四边形EFGH 是( ) A.矩形 B.菱形 C.正方形 D.无法确定10. 如图,某电脑公司提供了A 、B 两种方案的移动通讯费用y (元)与通话时间x (分钟)之间的关系,则以下说法错误的是( )A.若通话时间少于120分,则A 方案比B 方案便宜20元B.若通讯费用为60元,则B 方案比A 方案的通话时间多C.若两种方案通讯费用相差10元,则通话时间是145分或185分D.若通话时间超过200分,则B 方案比A 方案便宜12元 二、填空题(本题共6小题,每小题3分,共18分)11. 若√x −3在实数范围内有意义,则x 的取值范围是________.12. 若−2a >−2b ,则a <b ,它的逆命题是________.13. 在△ABC 中,AB =5cm ,AC =12cm ,BC =13cm ,那么△ABC 的面积是________cm 2.14. 如图,已知正比例函数y =kx 经过点P ,将该函数的图象向上平移3个单位后所得图象的函数解析式为________.15. 在“一带一路,筑梦中国”合唱比赛中,评分办法采用7位评委现场打分,每个班的最后得分为去掉一个最高分、一个最低后的平均数.已知7位评委给某班的打分是:88,85,87,93,90,92,94,则该班最后得分是________.16. 如图,把Rt △ABC 放在直角坐标系内,其中∠CAB =90∘,BC =5,点A 、B 的坐标分别为(1, 0)、(4, 0),将△ABC 沿x 轴向右平移,当点C 落在直线y =2x −6上时,线段BC 扫过的面积为________.三、解答题(本题共9小题,共102分.解答要求写出文字说明,证明过程或计算步骤)17. 计算:(1)√3−√12+√27;(2)(√18−√8)÷√2.18. 已知菱形ABCD 的周长是200,其中一条对角线长60. (1)求另一条对角线的长度.(2)求菱形ABCD 的面积.19. 某校开展“爱我海珠,创卫同行”的活动,倡议学生利用双休日在海珠湿地公园参加义务劳动,为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制了不完整的统计图,根据图中信息解答下列问题:(1)将条形统计图补充完整.(2)抽查的学生劳动时间的众数为________,中位数为________.(3)已知全校学生人数为1200人,请你估算该校学生参加义务劳动1小时的有多少人?20. 已知直线l1:y1=x+m与直线l2:y2=nx+3相交于点C(1, 2).(1)求m、n的值.(2)在给出的直角坐标系中画出直线l1和直线l2的图象.(3)求nx+3>x+m的解集.21. 如图,DE是△ABC的中位线,过点C作CF // BD交DE的延长线于点F.(1)求证:DE=EF.(2)分别连结DC、AF,若AC=BC,试判断四边形ADCF的形状,并说明理由.22. “日啖荔枝三百颗,不辞长作岭南人”,广东的夏季盛产荔枝,桂味、糯米糍是荔枝的品种之一.佳佳同学先用52元购买2千克桂味和1千克糯米糍;几天后,他用76元购买1千克桂味和3千克糯米糍.(前后两次两种荔枝的售价不变)(1)求桂味、糯米糍的售价分别是每千克多少元?(2)若佳佳同学用y元买了这两种荔枝共中10千克,设买了x千克桂味.①写出y与x的函数关系式.②若要求糯米糍的重量不少于桂味重量的3倍,请帮佳佳同学设计一个购买方案,使所需的费用最少,并求出最少费用.23. 如图,矩形ABCD中,AB=8,BC=4,将△ADC沿AC折叠,点D落在点D′处,CD′与AB交于点F.(1)求线段AF的长.(2)求△AFC的面积.(3)点P为线段AC(不含点A、C)上任意一点,PM⊥AB于点M,PN⊥CD′于点N,试求PM+PN的值.24. 如图,已知四边形OABC是平行四边形,点A(2, 2)和点C(6, 0),连结CA并延长交y轴于点D.(1)求直线AC的函数解析式.(2)若点P从点C出发以2个单位/秒沿x轴向左运动,同时点Q从点O出发以1个单位/秒沿x轴向右运动,过点P、Q分别作x轴垂线交直线CD和直线OA分别于点E、F,猜想四边形EPQF的形状(点P、Q重合除外),并证明你的结论.(3)在(2)的条件下,当点P运动多少秒时,四边形EPQF是正方形?25. 如图,正方形ABCD的边长是2,点E是射线AB上一动点(点E与点A、B不重合),过点E作FG⊥DE交射线CB于点F、交DA的延长线于点G.(1)求证:DE=GF.(2)连结DF,设AE=x,△DFG的面积为y,求y与x之间的函数解析式.(3)当Rt△AEG有一个角为30∘时,求线段AE的长.参考答案与试题解析2016-2017学年广东省广州市海珠区八年级(下)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.【答案】D【考点】平行四边形的性质【解析】根据平行四边形的性质:平行四边形的对边相等可得DC=3,AD=5,然后再求出周长即可.【解答】解:∵四边形ABCD是平行四边形,∵AB=CD,AD=BC,∵AB=3,BC=5,∴DC=3,AD=5,∴平行四边形ABCD的周长为:5+5+3+3=16,故选D.2.【答案】A【考点】最简二次根式【解析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数含能开得尽方的因数或因式,故A符合题意;B、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故B不符合题意;C、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C不符合题意;D、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D不符合题意;故选:A.3.【答案】C【考点】方差算术平均数【解析】方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,由此即可判断.【解答】解:∵S甲2=0.54,S乙2=0.61,S丙2=0.50,S丁2=0.63,∴丙的方差最小,成绩最稳定,故选C.4.【答案】B【考点】二次根式的混合运算【解析】根据二次根式的加减法对A、B进行判断;根据二次根式的乘法法则对C进行判断;根据二次根式的除法法则对D进行判断.【解答】解:A、原式=2√2+√2=3√2,所以A选项错误;B、原式=2√2−√2=√2,所以B选项正确;C、原式=√8×2=√16=4,所以C选项错误;D、原式=√8÷2=√4=2,所以D选项错误.故选B.5.【答案】D【考点】一次函数图象上点的坐标特点【解析】计算函数值为所对应的自变量的取值即可.【解答】解:当y=0时,x+2=0,解得x=−2,所以一次函数的图象与x轴的交点坐标为(−2, 0).故选D6.【答案】A【考点】含30度角的直角三角形【解析】根据∠C=90∘,∠B=60∘求出∠A=30∘,然后根据30∘的角所对的直角边是斜边的一半,求出BC的长.【解答】解:∵∠C=90∘,∠B=60∘,∴∠A=90∘−60∘=30∘,又∵AB=6,∴BC=12×6=3.故选:A.7.【答案】C【考点】一次函数图象上点的坐标特点【解析】由k=−1<0结合一次函数的性质即可得出该正比例函数为减函数,再结合−1<2即可得出结论.【解答】解:∵k=−1<0,∴正比例函数y随x增大而减小,∵−1<2,∴y1>y2.故选C.8.【答案】B【考点】一次函数图象与系数的关系【解析】根据图象在坐标平面内的位置关系确定k,b的取值范围,从而求解.【解答】解:由一次函数y=kx+b的图象经过第一、三、四象限,又由k>0时,直线必经过一、三象限,故知k>0.再由图象过三、四象限,即直线与y轴负半轴相交,所以b<0.故选B.9.【答案】A【考点】中点四边形【解析】首先利用三角形的中位线定理证得四边形EFGH为平行四边形,然后利用有一个角是直角的平行四边形是矩形判定即可.【解答】证明:∵点E、F、G、H分别是边AB、BC、CD、DA的中点,∴EF=12AC,GH=12AC,∴EF=GH,同理EH=FG∴四边形EFGH是平行四边形;又∵对角线AC、BD互相垂直,∴EF与FG垂直.∴四边形EFGH是矩形.故选:A.10.【答案】C 【考点】函数的图象【解析】当B方案为50元时,A方案如果是40元或者60元,才能使两种方案通讯费用相差10元,先求两种方案的函数解析式,再求对应的时间.【解答】解:A方案的函数解析式为:y A={30(0<x≤120);25;x−18(x>120);B方案的函数解析式为:y B={50(0<x≤200);25;x−30(x>200);当B方案为50元,A方案是40元或者60元时,两种方案通讯费用相差10元,将y A=40或60代入,得x=145分或195分,故C错误;观察函数图象可知A、B、D正确.故选C二、填空题(本题共6小题,每小题3分,共18分)11.【答案】x≥3【考点】二次根式有意义的条件【解析】根据被开方数大于等于0列式进行计算即可求解.【解答】根据题意得x−3≥0,解得x≥3.12.【答案】若a<b,则−2a>−2b【考点】命题与定理【解析】交换原命题的题设与结论即可得到它的逆命题.【解答】解:若−2a>−2b,则a<b,它的逆命题是若a<b,则−2a>−2b.故答案为若a<b,则−2a>−2b.13.【答案】30【考点】勾股定理的逆定理【解析】根据勾股定理的逆定理判定三角形为直角三角形,再利用面积公式求解.【解答】解:∵AB=5cm,AC=12cm,BC=13cm,即52+122=132,∴△ABC为直角三角形,∵直角边为AB,AC,根据三角形的面积公式有:S=12×5×12=30(cm2)故答案为3014.【答案】y=−32x+3【考点】一次函数图象与几何变换【解析】先将P(−2, 3)代入y=kx,利用待定系数法求出这个正比例函数的解析式,再根据“上加下减”的平移规律即可求解.【解答】解:将P(−2, 3)代入y=kx,得−2k=3,解得k=−32,则这个正比例函数的解析式为y=−32x;将直线y=−32x向上平移3个单位,得直线y=−32x+3.故答案为15.【答案】90分【考点】算术平均数【解析】去掉一个最高分、一个最低后,这组数据变为88,87,93,90,92,再求这5个数的平均数.【解答】解:去掉一个最高分、一个最低后,这组数据变为88,87,93,90,92,其平均数为x=15×(88+87+93+90+92)=15×450=90分.故答案为90分.16.【答案】16【考点】一次函数的综合题【解析】根据题意,线段BC扫过的面积应为一平行四边形的面积,其高是AC的长,底是点C平移的路程.求当点C落在直线y=2x−6上时的横坐标即可.【解答】如图所示.∵点A、B的坐标分别为(1, 0)、(4, 0),∴AB=3.∵∠CAB=90∘,BC=5,∴AC=4.∴A′C′=4.∵点C′在直线y=2x−6上,∴2x−6=4,解得x=5.即OA′=5.∴CC′=5−1=4.∴S BCC′B′=4×4=16.即线段BC扫过的面积为16.三、解答题(本题共9小题,共102分.解答要求写出文字说明,证明过程或计算步骤)17.【答案】解:(1)原式=√3−2√3+3√3=2√3(2)原式=√9−√4=3−2=1【考点】二次根式的混合运算【解析】根据二次根式的运算法则即可求出答案.【解答】解:(1)原式=√3−2√3+3√3=2√3(2)原式=√9−√4=3−2=118.【答案】解:(1)如图,设AC、BD交于点O,不妨设AC=60,∵四边形ABCD为菱形,∴AB=BC=CD=AD,AO=OC,BO=OD,且AC⊥BD,∵菱形的周长为200,AC=60,∴AB=50,AO=30,在Rt△AOB中,由勾股定理可求得OB=40,∴BD=2OB=80,即菱形的另一条对角线的长为40;(2)由(1)可知AC=60,BD=80,∴S菱形ABCD =12AC⋅BD=12×60×80=2400.【考点】菱形的性质【解析】(1)由周长可求得AB的长,不妨设AC=60,AC、BD交于点O,在Rt△AOB中可求得OB,则可求得BD的长;(2)由菱形的面积公式可求得答案.【解答】解:(1)如图,设AC、BD交于点O,不妨设AC=60,∵四边形ABCD为菱形,∴AB=BC=CD=AD,AO=OC,BO=OD,且AC⊥BD,∵菱形的周长为200,AC=60,∴AB=50,AO=30,在Rt△AOB中,由勾股定理可求得OB=40,∴BD=2OB=80,即菱形的另一条对角线的长为40;(2)由(1)可知AC=60,BD=80,∴S菱形ABCD =12AC⋅BD=12×60×80=2400.19.【答案】1.5、1.5;1.5,1.5(3)1200×30%=400,答:估算该校学生参加义务劳动1小时的有400人.【考点】条形统计图用样本估计总体扇形统计图中位数众数【解析】(1)根据学生劳动“1小时”的人数除以占的百分比,求出总人数;(2)根据统计图中的数据确定出学生劳动时间的众数与中位数即可;(3)总人数乘以样本中参加义务劳动1小时的百分比即可得.【解答】解:(1)根据题意得:30÷30%=100(人),∴学生劳动时间为“1.5小时”的人数为100−(12+30+18)=40(人),补全统计图,如图所示:(2)根据题意得:抽查的学生劳动时间的众数为1.5小时、中位数为1.5小时,(3)1200×30%=400,答:估算该校学生参加义务劳动1小时的有400人.20.【答案】解:(1)把C(1, 2)代入y=x+m得1+m=2,解得m=1;把C(1, 2)代入y=nx+3得n+3=2,解得n=−1;(2)如图,(3)根据图象得,当x>1时,y1>y2,所以nx+3>x+m的解集为x>1.【考点】一次函数与一元一次不等式【解析】(1)把C点坐标分别代入y1=x+m和y2=nx+3中可计算出m、n的值;(2)利用描点法画出两函数图象;(3)利用函数图象,写出直线y1=x+m在直线y2=nx+3上方所对应的自变量的范围即可.【解答】解:(1)把C(1, 2)代入y=x+m得1+m=2,解得m=1;把C(1, 2)代入y=nx+3得n+3=2,解得n=−1;(2)如图,(3)根据图象得,当x>1时,y1>y2,所以nx+3>x+m的解集为x>1.21.【答案】(1)证明:∵DE是△ABC的中位线,∴E为AC中点,∴AE=EC,∵CF // BD,∴∠ADE=∠F,在△ADE和△CFE中,∵{∠ADE=∠F∠AED=∠CEF AE=CE,∴△ADE≅△CFE(AAS),∴DE=FE.(2)解:四边形ADCF是矩形.理由:∵DE=FE,AE=AC,∴四边形ADCF是平行四边形,∴AD=CF,∵AD=BD,∴BD=CF,∴四边形DBCF为平行四边形,∴BC=DF,∵AC=BC,∴AC=DF,∴平行四边形ADCF是矩形.【考点】三角形中位线定理【解析】(1)首先根据三角形的中位线定理得出AE=EC,然后根据CF // BD得出∠ADE=∠F,继而根据AAS证得△ADE≅△CFE,最后根据全等三角形的性质即可推出EF=DE;(2)首先证得四边形ADCF是平行四边形、四边形DBCF也为平行四边形,从而得到BC=DF,然后根据AC=BC得到AC=DF,从而得到四边形ADCF是矩形.【解答】(1)证明:∵DE是△ABC的中位线,∴E为AC中点,∴AE=EC,∵CF // BD,∴∠ADE=∠F,在△ADE和△CFE中,∵{∠ADE=∠F∠AED=∠CEFAE=CE,∴△ADE≅△CFE(AAS),∴DE=FE.(2)解:四边形ADCF是矩形.理由:∵DE=FE,AE=AC,∴四边形ADCF是平行四边形,∴AD=CF,∵AD=BD,∴BD=CF,∴四边形DBCF为平行四边形,∴BC=DF,∵AC=BC,∴AC=DF,∴平行四边形ADCF是矩形.22.【答案】桂味的售价是每千克16元,糯米糍的售价是每千克20元.(2)①设买了x千克桂味,则买了(10−x)千克糯米糍,根据题意得:y=16x+20(10−x)=−4x+200(0<x<10).②∵糯米糍的重量不少于桂味重量的3倍,∴10−x≥3x,∴x≤52.∵y=−4x+200中,k=−4<0,∴y值随x值的增大而减小,∴当x=52时,y取最小值,最小值为190.答:当购买桂味52千克、糯米糍152千克时,所需的费用最少,最少费用为190元.【考点】一次函数的应用二元一次方程组的应用一元一次不等式的实际应用 【解析】(1)设桂味的售价是每千克m 元,糯米糍的售价是每千克n 元,根据“用52元购买2千克桂味和1千克糯米糍,用76元购买1千克桂味和3千克糯米糍”,即可得出关于m 、n 的二元一次方程组,解之即可得出结论;(2)①设买了x 千克桂味,则买了(10−x)千克糯米糍,根据总价=单价×购买数量,即可得出y 与x 的函数关系式;②由糯米糍的重量不少于桂味重量的3倍可得出关于x 的一元一次不等式,解之即可得出x 的取值范围,再利用一次函数的性质即可解决最值问题. 【解答】 解:(1)设桂味的售价是每千克m 元,糯米糍的售价是每千克n 元, 根据题意得:{2m +n =52m +3n =76,解得:{m =16n =20.答:桂味的售价是每千克16元,糯米糍的售价是每千克20元. (2)①设买了x 千克桂味,则买了(10−x)千克糯米糍,根据题意得:y =16x +20(10−x)=−4x +200(0<x <10). ②∵ 糯米糍的重量不少于桂味重量的3倍, ∴ 10−x ≥3x , ∴ x ≤52.∵ y =−4x +200中,k =−4<0, ∴ y 值随x 值的增大而减小,∴ 当x =52时,y 取最小值,最小值为190.答:当购买桂味52千克、糯米糍152千克时,所需的费用最少,最少费用为190元. 23.【答案】 解:(1)∵ 四边形ABCD 是矩形,∴ ∠B =90∘,AB // CD , ∴ ∠DCA =∠BAC ,∵ 矩形沿AC 折叠,点D 落在点E 处, ∴ △ACD ≅△ACE , ∴ ∠DCA =∠ECA , ∴ ∠BAC =∠ECA , ∴ AF =CF ,设AF =CF =x ,则BF =8−x ,在Rt △BCF 中,根据勾股定理得:BC 2+BF 2=CF 2,即42+(8−x)2=x 2,解得:x =5, ∴ AF =5;(2)S △ACF =12AF ⋅BC =12×5×4=10; (3)连接PF ,12×AF ×PM +12×CF ×PN =S △ACF =10,∴ PM +PN =4. 【考点】翻折变换(折叠问题) 矩形的性质 【解析】(1)根据矩形的性质和翻折变换的性质得到AF =CF ,设AF =x ,根据勾股定理列出方程,解方程即可求出AF ;(2)根据三角形面积公式计算即可;(3)连接PF ,根据三角形的面积公式解答即可. 【解答】 解:(1)∵ 四边形ABCD 是矩形,∴ ∠B =90∘,AB // CD , ∴ ∠DCA =∠BAC ,∵ 矩形沿AC 折叠,点D 落在点E 处, ∴ △ACD ≅△ACE , ∴ ∠DCA =∠ECA , ∴ ∠BAC =∠ECA , ∴ AF =CF ,设AF =CF =x ,则BF =8−x ,在Rt △BCF 中,根据勾股定理得:BC 2+BF 2=CF 2, 即42+(8−x)2=x 2, 解得:x =5, ∴ AF =5;(2)S △ACF =12AF ⋅BC =12×5×4=10; (3)连接PF ,12×AF ×PM +12×CF ×PN =S △ACF =10, ∴ PM +PN =4. 24.【答案】 解:(1)设直线AC 的解析式为y =kx +b ,∵点A(2, 2)和点C(6, 0),∴{2k+b=26k+b=0,∴{k=−1 2b=3,∴直线AC的解析式为y=−12x+3;(2)如图1,∵点A的坐标为(2, 2),∴直线OA的解析式为y=x,∵点Q从点O出发以1个单位/秒沿x轴向右运动,∴OQ=t,∴F(t, t),∴FQ=t,∵点P从点C出发以2个单位/秒沿x轴向左运动,∴CP=2t,∴OP=6−2t,由(1)知,直线AC的解析式为y=−12x+3,∴E(6−2t, t),∴PE=t,∴PE=FQ,∵FQ⊥x轴,PE⊥x轴,∴∠PQF=90∘,FQ // PE,∵PE=FQ,∴四边形PEFQ是平行四边形,∵∠PQF=90∘,∴平行四边形PEFQ是矩形;(3)由(2)知,PC=2t,OQ=t,PE=t,∴PQ=OC−OQ−CP=6−t−2t=6−3t,或PQ=OQ+CP−OC=3t−6,∵四边形PEFQ是正方形,∴PQ=PE,∴6−3t=t或3t−6=t,∴t=32或t=3,即:点P运动32秒或3秒时,四边形EPQF是正方形.【考点】一次函数的综合题【解析】(1)利用待定系数法即可求出直线AC的解析式;(2)先利用待定系数法求出直线OA的解析式,进而求出点E,F坐标,即可得出PE=FQ,即可得出结论;(3)先分两种情况(点Q在点P左侧或右侧)求出PQ,利用PE=PQ建立方程即可求出时间.【解答】解:(1)设直线AC的解析式为y=kx+b,∵点A(2, 2)和点C(6, 0),∴{2k+b=26k+b=0,∴{k=−12b=3,∴直线AC的解析式为y=−12x+3;(2)如图1,∵点A的坐标为(2, 2),∴直线OA的解析式为y=x,∵点Q从点O出发以1个单位/秒沿x轴向右运动,∴OQ=t,∴F(t, t),∴FQ=t,∵点P从点C出发以2个单位/秒沿x轴向左运动,∴CP=2t,∴OP=6−2t,由(1)知,直线AC的解析式为y=−12x+3,∴E(6−2t, t),∴PE=t,∴PE=FQ,∵FQ⊥x轴,PE⊥x轴,∴∠PQF=90∘,FQ // PE,∵PE=FQ,∴四边形PEFQ是平行四边形,∵∠PQF=90∘,∴平行四边形PEFQ是矩形;(3)由(2)知,PC=2t,OQ=t,PE=t,∴PQ=OC−OQ−CP=6−t−2t=6−3t,或PQ=OQ+CP−OC=3t−6,∵四边形PEFQ是正方形,∴PQ=PE,∴6−3t=t或3t−6=t,∴t=32或t=3,即:点P运动32秒或3秒时,四边形EPQF是正方形.25.【答案】(1)证明:过点F作FH⊥DA,垂足为H,∵在正方形ABCD中,∠DAE=∠B=90∘,∴四边形ABFH是矩形,∴FH=AB=DA,∵DE⊥FG,∴∠G=90∘−∠ADE=∠DEA,又∴∠DAE=∠FHG=90∘,∴△FHG≅△DAE,∴DE=GF.(2)∵△FHG≅△DAE∴FG=DE=√AD2+AE2,∵S△DGF=12FG⋅DE,∴y=4+x22,∴解析式为:y=4+x22(0<x<2).(3)①当∠AEG=30∘时,在Rt△ADE中,∵∠DAE=90∘,AD=2,∠AED=90∘−30∘=60∘,∴AE=AD⋅tan30∘=2√33,②当∠AEG=60∘时,在Rt△ADE中,∵∠DAE=90∘,AD=2,∠AED=90∘−60∘=30∘,∴AE=AD⋅tan60∘=2√3,综上所述,满足条件的AE的值为2√3或2√33.【考点】四边形综合题【解析】(1)过点F作FH⊥DA,垂足为H,只要证明,△FHG≅△DAE即可解决问题;(2)由(1)可知DE=FG,所以△DGF的底与高可以关键勾股定理用含x的式子表示出来,所以解析式就可以表示出来;(3)分两种切线画出图形分别解决即可;【解答】(1)证明:过点F作FH⊥DA,垂足为H,∵在正方形ABCD中,∠DAE=∠B=90∘,∴四边形ABFH是矩形,∴FH=AB=DA,∵DE⊥FG,∴∠G=90∘−∠ADE=∠DEA,又∴∠DAE=∠FHG=90∘,∴△FHG≅△DAE,∴DE=GF.(2)∵△FHG≅△DAE∴FG=DE=√AD2+AE2,∵S△DGF=12FG⋅DE,∴y=4+x22,∴解析式为:y=4+x22(0<x<2).(3)①当∠AEG=30∘时,在Rt△ADE中,∵∠DAE=90∘,AD=2,∠AED=90∘−30∘=60∘,∴AE=AD⋅tan30∘=2√33,②当∠AEG=60∘时,在Rt△ADE中,∵∠DAE=90∘,AD=2,∠AED=90∘−60∘=30∘,∴AE=AD⋅tan60∘=2√3,综上所述,满足条件的AE的值为2√3或2√33.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
珠海市2016-2017学年度第二学期期末学生学业质量监测八年级数学试题
评分说明及参考答案
一、选择题(每题3分,共30分)
题号 1
2
3
4
5
6
7
8
9
10
答案
D A B C A B D C A C
二、填空题(每题4分,共24分)
11.23 12.3≥x 13.36 14.4- 15.12 16.6 三、解答题(一)(每题6分,共18分) 17.解:2)6332(⨯⨯- =()22324⨯
-(2分)=22⨯
(4分)=2 (6分)
18.证明:ABCD 平行四边形Θ
∴AB //CD …………………2分
CF AE =Θ
∴是平行四边形四边形ABCD …………………4分
CE AF =∴ …………………6分
19.解:()()y x y x y x -+=-22 …………………2分
)]13(13)[1313(--+-++= ……4分 232⨯= …………………5分 34= …………………6分 四、解答题(二)(每题7分,共21分) 20.(1) 1.2 , 1 …………2分
(2) 0.16 , 0.4 …………………6分
甲机床…………………7分 21.(1)解:设直线l 的解析式为:b kx y +=,得
⎩⎨⎧=+=b b k 420 …………………2分
解得⎩⎨
⎧=-=42
b k …………………3分
∴直线l 的解析式为42+-=x y …………4分
答题18图
答题21图
(2)解:设点()n m P , ∴42421
=⨯⨯=∆OAB S 221
=⨯=∴∆∆OAB AOP
S S
2
21
=⋅∴n OA
2±=∴n …………………5分 当2=n 时,1=m ,当2-=n 时,3=m (
)()2,32,121-∴P P 或 …………………7分 22.(1)证明:ABCD
矩形Θ
∴ AD //BC ,且=AD BC …………1分 ΘAE //BD
是平行四边形四边形AEBD ∴ BE AD =∴
BC BE =∴ …………………3分 (2)解: 6=BE Θ
由()1得6==BE BC ABCD 矩形Θ
CO BO ABC ==∠∴,900
60=∠AOB Θ
30=∠∴OCB …………………4分 在x AC x AB ABC Rt 2,即为中,设=∆
()2
22
62+=x x …………………5分
舍)(32,3221-==∴x x …………………6分
12342632+=⨯+=
∴)(的周长矩形ABCD ……7分 五、解答题(三)(每题9分,共27分)
E
O
D
C
B
A
题22图
答题24图
23.(1)解:由图知20=x 时,8
.34=y
元)
(74.1208
.34==
∴a
…………………2分 由图知9.6030==y x 时, b 108.349.60+=∴
元)(61.2=∴b …………………4分
(2) 解:当3020≤<x 时,设解析式为b kx y +=
把()8.34,20,()9.60,30代入得
⎩⎨
⎧+=+=b k b k 309.60208.34 解得⎩⎨
⎧-==4.1761.2b k
4.1761.2-=∴x y …………………8分
水费:2.61×25-17.4=47.85元…………………9分 24.(1)证明:ABCD 正方形Θ
045,=∠=∠=∠=∴OCB OBC ABO BC AB
0135=∠=∠∴BCE FBA …………………1分
ABCD 正方形Θ
BD AC ⊥∴
090=∠+∠∴FAC F ……2分
BE AG ⊥Θ
090=∠+∠∴FAC E
E F ∠=∠∴
BCE ABF ∆≅∆∴ …………………4分
(2)解:26,边长为正方形ABCD Θ
互相平分且平分与AC BD ∴
为等腰直角三角形OBC ∆∴
()
2
2226=+∴OC OB
6==∴OC OB …………………6分 8,+=∆≅∆x BE x BF BCE ABF ,为设Θ
中,在BOE Rt x BF CE ∆==∴
()()222866+=++x x
22==BF x 即解得…………………9分
25.(1)证明:当2=m 时,2=OC ,2=OB Θ()2,2A
轴轴,y AB x AC ⊥⊥∴
90=∠=∠∴ACO ABO
90=∠BOC Θ
是矩形四边形ABOC ∴
AC AB ⊥∴ ……………3分
(2)垂直,理由如下:…………………4分
连结BC
1682)4(2222+-=-+=m m m m BC …………………5分
842222
22+-=-+=m m m AC …………………6分 ()8442222
22+-=--+=m m m AB ………………7分
222BC AC AB =+∴ …………………8分 ︒=∠∴90BAC
即AC AB ⊥ …………………9分
【本卷所有答案只提供一种解法,其他解题方法只要正确,请参照本答案相应给分.】。