函数概念课件

合集下载

函数完整版PPT课件

函数完整版PPT课件
16
三角函数图像变换规律
振幅变换
通过改变函数前的系数,实现对函数图 像的纵向拉伸或压缩。
周期变换
通过改变函数内的系数,实现对函数图 像的横向拉伸或压缩。
2024/1/28
相位变换
通过改变函数内的常数项,实现对函数 图像的左右平移。
上下平移
通过在函数后加减常数,实现对函数图 像的上下平移。
17
三角函数周期性、奇偶性和单调性
了直线在 $y$ 轴上的位置。
03
性质
当 $k > 0$ 时,函数单调递增 ;当 $k < 0$ 时,函数单调递
减。
8
二次函数表达式与图像
2024/1/28
二次函数表达式
$y = ax^2 + bx + c$($a neq 0$)
图像特点
一条抛物线,开口方向由 $a$ 决定($a > 0$ 时向上开口 ,$a < 0$ 时向下开口),对称轴为 $x = -frac{b}{2a}$ ,顶点坐标为 $left(-frac{b}{2a}, c frac{b^2}{4a}right)$。
对数函数性质
单调性、定义域、值域等 。
13
指数对数方程求解
指数方程求解
通过换元法、配方法等方法将指数方 程转化为代数方程求解。
指数对数混合方程求解
综合运用指数和对数的性质及运算法 则进行求解。
对数方程求解
通过换底公式、消去对数等方法将对 数方程转化为代数方程求解。
2024/1/28
14
04
三角函数及其性质
函数完整版PPT课件
2024/1/28
1
目录
2024/1/28
• 函数基本概念与性质 • 一次函数与二次函数 • 指数函数与对数函数 • 三角函数及其性质 • 反三角函数及其性质 • 复合函数与分段函数 • 参数方程与极坐标方程

3.1.1函数的概念 课件(共23张PPT)

3.1.1函数的概念 课件(共23张PPT)
3
十 八 世 纪
伯努利称其为变量与常量的组合 欧拉认为其是某些变量依赖另一些变量的变化
4
十 九 世 纪
柯西,傅里叶,狄利克雷提出“对应关系”,也就是我们 初中学习到的函数的定义
5
一.知识回顾
初中学习的函数概念是什么?
设在某一变化过程中有两个变量x与y,如果 对于x的每一个值,y都有唯一确定的值与它对应, 则称y是x的函数。x是自变量,y是因变量。
22
例题六:已知函数 f (x) x 3 1
x2
(1)求该函数的定义域 (2)求当x=-3时该函数的值
答案:1.{x|x≥-3且x≠-2}
2.f (-3)= -1
23
例题五:
(1){x|x≤-3}用区间表示为
答案: (1)(-∞,-3]
(2)数集{x|x>5}用区间表示为
(2)(5,+∞)
(3)数集{x|1<x≤7}用区间表示为
(3)(1,7]
(4)数集{x|x<-2或x≥6}用区间表示为 (4)(-∞,-2)∪[6,+∞)
21
注意:
1.区间是集合 2.区间的左端点必须小于右端点 3.区间中的元素都是实数,可以在数轴上表示出来 4.以-∞或+∞为区间的一端时,这一端必须是小括号
值域也就随之确定了.如果两个函数的 这两个
完全相同就称
15
例题三:判断下列各组中两个函数是否为同一个函数
(1) f ( x) x 与g(x)= x 2;
(2)f ( x) x与g( x) 3 x3 ; (3) f ( x) x 1 x 1与g( x) x2 1; (4) f ( x) x2 2 x 1与g(t) t 2 2t 1.

人教版高中数学必修一第一章函数的概念课件PPT

人教版高中数学必修一第一章函数的概念课件PPT
例3 (1)已知函数f(x)=2x+1,求f(0)和f [f (0)]; 解 f(0)=2×0+1=1. ∴f [f (0)]=f(1)=2×1+1=3. (2)求函数 g(x)=01,,xx为为无有理理数数, 的定义域,值域; 解 x为有理数或无理数,故定义域为R. 只有两个函数值0,1,故值域为{0,1}.
解 对于集合A中任意一个实数x,按照对应关系f:x→y=0在集合B中 都有唯一一个确定的数0和它对应,故是集合A到集合B的函数.
反思与感悟
解析答案
跟踪训练1 下列对应是从集合A到集合B的函数的是( C ) A.A=R,B={x∈R|x>0},f:x→|1x| B.A=N,B=N*,f:x→|x-1| C.A={x∈R|x>0},B=R,f:x→x2
答案
(5) x 1 2 3 ; y12
答案 不是.x=3没有相应的y与之对应.
答案
知识点二 函数相等
思考 函数f(x)=x2,x∈R与g(t)=t2,t∈R是不是同一个函数?
答案 两个函数都是描述的同一集合R中任一元素,按同一对应关系 “平方”对应B中唯一确定的元素,故是同一个函数.
一般地,函数有三个要素:定义域,对应关系与值域.如果两个函数
答案
(5) x 1 2 3 ; y12
答案 不是.x=3没有相应的y与之对应.
答案
知识点二 函数相等
思考 函数f(x)=x2,x∈R与g(t)=t2,t∈R是不是同一个函数?
答案 两个函数都是描述的同一集合R中任一元素,按同一对应关系 “平方”对应B中唯一确定的元素,故是同一个函数.
一般地,函数有三个要素:定义域,对应关系与值域.如果两个函数
返回
第一章 1.2 函数及其表示
1.2.1 函数的概念

函数复习ppt课件

函数复习ppt课件
函数复习ppt课件
目 录
• 函数的基本概念 • 函数的分类 • 函数的运算 • 函数的图像 • 函数的实际应用
01
函数的基本概念
函数的定义
总结词
描述函数的基本定义
详细描述
函数是数学中一个重要的概念,它描述了两个集合之间的对应关系。在一个函 数中,每一个输入值唯一对应一个输出值。函数的定义通常由输入和输出值的 集合以及它们之间的对应关系来描述。
函数的性质
总结词
描述函数的性质
详细描述
函数的性质包括有界性、单调性、奇偶性、周期性和凹凸性等。有界性是指函数在一定 范围内变化;单调性是指函数在某一区间内单调递增或单调递减;奇偶性是指函数是否 关于原点对称或关于y轴对称;周期性是指函数是否具有周期性变化;凹凸性则是指函
数的图象是否是凹或凸的。
02
函数加法的性质
与普通数的加法类似,函数加法也满足交换律、结合律等 基本性质。
函数的加法
将两个函数的图像看作是平面上的两个点集,函数加法就 是将这两个点集中的每一个点对应坐标相加,得到新的点 集,即新的函数图像。
举例
$f(x) = x^2$ 和 $g(x) = 2x$ 的和函数为 $h(x) = f(x) + g(x) = x^2 + 2x$。
举例
与普通数的乘法类似,函数乘法也满足交换律、结合 律等基本性质。
函数的除法
总结词
理解函数除法的基本概念和性质
函数的除法
将一个函数的图像上的每一个点对应坐标除以另一个函数的相应坐标 ,得到新的点集,即新的函数图像。
函数除法的性质
与普通数的除法类似,函数除法也满足类似的性质,如商的可加性和 可交换性。
物理中的函数应用

函数的概念ppt课件

函数的概念ppt课件

基础 梳理
解析:A.定义域不同;B.定义域不同;C.虽然自变量所用 字母不同,但两个函数的定义域和对应法则都分别相同,因此 是同一个函数;D.对应法则不同. 答案:C
思考 应用 1.怎样检验两个变量之间是否具有函数关系?
解析: 由函数近代定义知, 我们要检验两个变量之间是否具有函 数关系, 只要检验: ①定义域和对应关系是否给出且定义域为非空数 栏 目 集;②根据给出的对应关系,自变量在其定义域内任一个值,是否都 链 接 能确定唯一的函数值.
2.形如f(x)=ax2+bx+c(a≠0)的函数叫二次函数,它的图 象为抛物线.
例如:已知f(x)=x2+2x+3,函数值为6时,相对应的自变 x=1或x=-3 量的值为____________ .
栏 目 链 接
基础 梳理 3 .一般地,设 A、 B是非空的数集,如果按照某个确定的 对应关系 f ,使对于集合 A 中的任意一个数 x ,在集合 B中都有 唯一确定的数f(x)和它对应,那么f:A→B就称为从集合A到集 合B的一个函数.记作y=f(x),x∈A.其中,x叫做自变量, x 的取值范围A叫做函数的定义域;与x的值相对应y的值叫做函 数值,函数值的集合{f(x)|x∈A}叫做函数的值域. 例如:正方形边长为 x,与 x的值相对应的面积为 y,把 y表 y=x2 {x|x>0} ; 示为 x 的函数: ____________ ;该函数的定义域为 ________ 16 {y|y>0} ;当边长为 4 的时候,面积为 ________ 值域为 ________ ;当面 2 积为4的时候,相应的边长为________ .
链 时,{x|a≤x≤b} 接
自测 自评 1 . 下列各图中,可表示函数 y = f(x) 的图象的只可能是 ( D )

函数的概念与表示法课件(共19张PPT)

函数的概念与表示法课件(共19张PPT)

( x 1) 1 x 的定义域为_____ (2)函数 y ( x 1)
解题回顾:求函数f(x)的定义域,只需使解析式有 意义,列不等式组求解.
抽象函数定义域问题:
抽象函数 :没有给出具体解析式的函数 2. (1)已知函数 y
1 y f ( x 1) 的定义域为______ 2
探究提高: 分段函数是一类重要的函数模型.解决分段函数问题,
关键要抓住在不同的段内研究问题.
如本例,需分x>0时,f(x)=x的解的个数
和x≤0时,f(x)=x的解的个数.
“分段函数分段考察”
五 抽象函数
定义在R上的函数f(x)满足f(x+y)=f(x)+f(y)+2xy(x,y∈R),
f(1)=2,则f(-3)等于( C ) A.2 B.3 C.6
推广,函数是一种特殊的映射,要注意构成函数 的两个集合A、B必须是非空数集.
典型例题:
一:函数的基本概念:
1.设集合M={x|0≤x≤2},N={y|0≤y≤2},那么下面 的4个图形中,能表示集合M到集合N的函数关系的有 ( )
A.①②③④
B.①②③
C.②③
D.②
解析:由函数的定义,要求函数在定义域上都有图 象,并且一个x对应着一个y,据此排除①④,选C.
A
B
x
f ( x)
(2)函数的定义域、值域: 在函数 y f ( x ), x A 中,x叫做自变量,x的取 值范围A叫做函数的定义域;与x的值相对应的y值 叫做函数值,函数值的集合f ( x) x A 叫做函数的 值域。 (3)函数的三要素:定义域、值域和对应法则 . (4)相等函数:如果两个函数的定义域和对应法则完 全一致,则这两个函数相等,这是判断两函数相等的 依据.

函数的概念ppt课件


→s=x 十y;
⑥A={x|—1≤x≤1,x∈R},B={0}, 对应关系f:x→
y=0.
A.①⑤⑥
B.②④⑤⑥
C.②③④
D.①②③⑤
【思维·引】
1.在x 轴上区间[0,2]内作与x 轴垂直的直线,此直线 与函数的图象恰有一个公共点.
2.先看集合A,B 是否为非空数集,再判断非空数集A 中任取一个数,在非空数集 B 中是否有唯一的数与之 对应.
②求f(g(a)): 已 知f(x) 与 g(x), 求 f(g(a)) 的值应遵 循由里往外的原则.
(2)关注点:用来替换解析式中x 的 数a 必须是函数定 义域内的值,否则函数无意义.
习练 ·破
1.若f(x)=ax²—√2,a 为正实数,且f(f(√2))=—√2, 则 a=
2.设f(x)=2x²+2,
函数的定义,所以A 不是函数.B.由 |x—1|+√y²-1=
0得, |x—1|=0,√y²-1=0, 所以x=1,y=±1, 所以

( 1 ) 求 f(2),f(a+3),g
—2),g(f(2)). (2)求g(f(x)).
(a)+g(0)(a≠
≠—2),
【加练·固】

(x≠—1), 求 f(0),f(1),
f(1—a)(a≠2),f(f(2)) 的值.
课堂达标检测
1.下列图形中,不能确定y 是x 的函数的是
y
3
(
)
3
x
⑥对于由实际问题的背景确定的函数,其定义域还要受 实际问题的制约.
★习练·破
求下列函数的定义域:
(1
;(2)y=√x- 1·√1—x;

函数的概念及其表示法ppt课件


∴2aa+=b1=,-1,
即ab= =12-,32.
∴f(x)=12x2-32x+2.
(3)在 f(x)=2f1x· x-1 中, 将 x 换成1x,则1x换成 x,
得 f1x=2f(x)· 1x-1,
由fx=2f1x· x-1, f1x=2fx· 1x-1,
解得 f(x)=23 x+13.
答案
2 (1)lgx-1(x>1)
解析 (1)f56=3×56-b=52-b, 若52-b<1,即 b>32时, 则 ff56=f52-b=352-b-b=4, 解之得 b=78,不合题意舍去. 若52-b≥1,即 b≤32,则 =4,解得 b=12.
(2)当 x<1 时,ex-1≤2,解得 x≤1+ln 2, 所以 x<1.
当 x≥1 时, ≤2,解得 x≤8,所以 1≤x≤8.
解析 (1)令 t=2x+1(t>1),则 x=t-2 1, ∴f(t)=lgt-2 1,即 f(x)=lgx-2 1(x>1). (2)设 f(x)=ax2+bx+c(a≠0), 由 f(0)=2,得 c=2, f(x+1)-f(x)=a(x+1)2+b(x+1)+2-ax2-bx-2=x-1, 则 2ax+a+b=x-1,
2.下列给出的四个对应中: ①A=B=N*,对任意的 x∈A,f:x→|x-2|; ②A=R,B={y|y>0},对任意的 x∈A,f:x→x12; ③A=B=R,对任意的 x∈A,f:x→3x+2; ④A={(x,y)|x,y∈R},B=R,对任意的(x,y)∈A,f:(x,y)→x +y. 其中对应为函数的有________(填序号).
第1讲 函数的概念及其表示法
考试要求 1.函数的概念,求简单函数的定义域和值域,B 级要求;2.选择恰当的方法(如图象法、列表法、解析法)表 示函数,B级要求;3.简单的分段函数及应用,A级要求.

《函数的概念与性质——函数的基本性质》数学教学PPT课件(8篇)

3.2 函数的基本性质3.2.2 奇偶性第4课时 函数奇偶性的应用(习题课)
第三章 函数的概念与性质
本部分内容讲解结束
第三章 函数的概念与性质
3.2 函数的基本性质3.2.1 单调性与最大(小)值第1课时 函数的单调性
Thank you for watching !
第三章 函数的概念与性质
3.2 函数的基本性质3.2.1 单调性与最大(小)值第2课时 函数的最大(小)值
Thank you for watching !
第三章 函数的概念与性质
3.2 函数的基本性质3.2.2 奇偶性第3课时 奇偶性的概念
ቤተ መጻሕፍቲ ባይዱ
Thank you for watching !
第三章 函数的概念与性质
3.2 函数的基本性质 3.2.2 奇偶性第4课时 奇偶性的应用
Thank you for watching !
3.2 函数的基本性质3.2.1 单调性与最大(小)值第1课时 函数的单调性
第三章 函数的概念与性质
单调递增
单调递减
单调递增
单调递减
单调区间
×
×

×
×
本部分内容讲解结束
3.2 函数的基本性质3.2.1 单调性与最大(小)值第2课时 函数的最大值、最小值
第三章 函数的概念与性质
×

×
本部分内容讲解结束
3.2 函数的基本性质3.2.2 奇偶性第3课时 函数奇偶性的概念
第三章 函数的概念与性质
y轴

×
×

本部分内容讲解结束

函数的概念ppt课件


函数的特性
确定性
对于给定的输入值,函数总是产生一个唯一的 输出值。
可计算性
函数可以在有限的步骤内计算出输出值。
可重复性
对于相同的输入值,函数总是产生相同的输出值。
函数的类别
多项式函数
由多项式组成的函数,如二次 函数、三次函数等。
指数函数
输出值与输入值的指数相关的 函数。
线性函数
输出值与输入值成正比关系的 函数。
极限的分类
根据函数趋于某点的不同方 式,极限分为左极限和右极 限。
极限的性质
极限具有唯一性、有界性、 局部保号性等性质。
极限的运算性质
极限的加减乘除法则
极限的加减乘除运算法则可以用来计算极限。
极限的复合运算
复合运算是指将多个基本运算组合在一起进行计算。
重要极限及其推论
重要极限是极限计算中常用的几个基本极限,它们具 有形式简单、应用广泛的特点。
优化组织管理
在组织管理中,函数可以用来优化流程和资源配置,提高组织效率和 绩效。
1.谢谢聆 听
对应关系
自变量与因变量之 间的对应关系。
变量
函数中的自变量和 因变量。
定义域
函数中自变量的取 值范围。
解析式
用数学表达式来表 示函数关系。
值域
函数中因变量的取 值范围。
图表法表示函数
坐标系
建立直角坐标系,以横轴表示自变量,纵轴 表示因变量。
连线
描点
根据函数的对应关系,在坐标系上描出相应 的点。
用平滑的曲线将这些点连接起来,形成函数 图像。
函数的连续性
连续性的定义
如果函数在某一点处的极限等于该点的函数 值,则函数在该点连续。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档