1.2.1《函数的概念》PPT课件(人教版A必修1)
合集下载
必修1课件1.2.1-2 函数的概念 (二)

3.分段函数:有些函数在它的定义域中,对于自变 量x的不同取值范围,对应法则不同,这样的函数通 常称为分段函数.分段函数是一个函数,而不是几个 函数. 4.复合函数:设 f(x)=2x3,g(x)=x2+2,
则称 f[g(x)] =2(x2+2)3=2x2+1
g[f(x)] =(2x3)2+2=4x212x+11为复合函数.
2
a2
实数a 的取值范围(0,2].
复合函数
例如、y f (u ) u 2 , u R u g ( x) 2 x 1, x R 则y f [ g ( x)] (2 x 1) , x R.
2
例4.已知
f ( x) 的定义域为[-1,3],
的定义域。 解:∵f(x)的定义域为[-1,3],∴ 1 ∴
例2、求函数 y x 4x 6, x [1,5] 的值域
解:配方,得 ( x 2) 2 y xR y 2
2
函数的值域为 y | y 2} {
7 7 ∴函数的定义域为: , ) ( , ) ( 3 3
例3. 若函数
1 y ax ax 的定义域是R, a
2
求实数a 的取值范围
解:∵定义域是R,
1 ∴ ax ax 0恒成立, a a0 0 1 等价于 2 a 4a 0 a
例6.已知y=f(x+1)的定义域为[1,2],求f(x),f(x-3) 的定义域。 解:∵y=f(x+1)的定义域为[1,2], 即f(x)的定义域为[2,3] 又∵f(x)的定义域为[2,3], ∴ ∴
∴ 2 x 1 3
2 x3 3
人教版高中数学必修一第一章函数的概念课件PPT

例3 (1)已知函数f(x)=2x+1,求f(0)和f [f (0)]; 解 f(0)=2×0+1=1. ∴f [f (0)]=f(1)=2×1+1=3. (2)求函数 g(x)=01,,xx为为无有理理数数, 的定义域,值域; 解 x为有理数或无理数,故定义域为R. 只有两个函数值0,1,故值域为{0,1}.
解 对于集合A中任意一个实数x,按照对应关系f:x→y=0在集合B中 都有唯一一个确定的数0和它对应,故是集合A到集合B的函数.
反思与感悟
解析答案
跟踪训练1 下列对应是从集合A到集合B的函数的是( C ) A.A=R,B={x∈R|x>0},f:x→|1x| B.A=N,B=N*,f:x→|x-1| C.A={x∈R|x>0},B=R,f:x→x2
答案
(5) x 1 2 3 ; y12
答案 不是.x=3没有相应的y与之对应.
答案
知识点二 函数相等
思考 函数f(x)=x2,x∈R与g(t)=t2,t∈R是不是同一个函数?
答案 两个函数都是描述的同一集合R中任一元素,按同一对应关系 “平方”对应B中唯一确定的元素,故是同一个函数.
一般地,函数有三个要素:定义域,对应关系与值域.如果两个函数
答案
(5) x 1 2 3 ; y12
答案 不是.x=3没有相应的y与之对应.
答案
知识点二 函数相等
思考 函数f(x)=x2,x∈R与g(t)=t2,t∈R是不是同一个函数?
答案 两个函数都是描述的同一集合R中任一元素,按同一对应关系 “平方”对应B中唯一确定的元素,故是同一个函数.
一般地,函数有三个要素:定义域,对应关系与值域.如果两个函数
返回
第一章 1.2 函数及其表示
1.2.1 函数的概念
解 对于集合A中任意一个实数x,按照对应关系f:x→y=0在集合B中 都有唯一一个确定的数0和它对应,故是集合A到集合B的函数.
反思与感悟
解析答案
跟踪训练1 下列对应是从集合A到集合B的函数的是( C ) A.A=R,B={x∈R|x>0},f:x→|1x| B.A=N,B=N*,f:x→|x-1| C.A={x∈R|x>0},B=R,f:x→x2
答案
(5) x 1 2 3 ; y12
答案 不是.x=3没有相应的y与之对应.
答案
知识点二 函数相等
思考 函数f(x)=x2,x∈R与g(t)=t2,t∈R是不是同一个函数?
答案 两个函数都是描述的同一集合R中任一元素,按同一对应关系 “平方”对应B中唯一确定的元素,故是同一个函数.
一般地,函数有三个要素:定义域,对应关系与值域.如果两个函数
答案
(5) x 1 2 3 ; y12
答案 不是.x=3没有相应的y与之对应.
答案
知识点二 函数相等
思考 函数f(x)=x2,x∈R与g(t)=t2,t∈R是不是同一个函数?
答案 两个函数都是描述的同一集合R中任一元素,按同一对应关系 “平方”对应B中唯一确定的元素,故是同一个函数.
一般地,函数有三个要素:定义域,对应关系与值域.如果两个函数
返回
第一章 1.2 函数及其表示
1.2.1 函数的概念
高中数学第一章集合与函数概念121函数的概念课件新人教A版必修1

A.11
B.12
C.13
D.10
【答案】C
【解析】f[f(1)]=f(3)=9+3+1=13.
4.下列各组函数中,表示同一个函数的是( )
A.y=x-1 和 y=xx2+-11
B.y=x0 和 y=1
C.f(x)=x2 和 g(x)=(x+1)2
D.f(x)=
xx2和 g(x)=
x x2
【答案】D
【答案】B 【解析】根据函数的存在性和唯一性(定义)可知,B不 正确.
2.函数 f(x)= xx--21的定义域为(
)
A.[1,2)∪(2,+∞) B.(1,+∞)
C.[1,2)
D.[1,+∞)
【答案】A 【解析】由题意可知,要使函数有意义,需满足xx--21≠≥00,,
即 x≥1 且 x≠2.
3.已知f(x)=x2+x+1,则f[f(1)]的值是( )
休息时间到啦
同学们,下课休息十分钟。现在是休息时间,你们休 睛,
看看远处,要保护好眼睛哦~站起来动一动,久坐对 哦~
2.(1)y=x+x+120; (2)y= 2x+3- 21-x+1x. 【解析】(1)由于 00 无意义,故 x+1≠0,即 x≠-1. 又 x+2>0,x>-2,所以 x>-2 且 x≠-1. 所以函数 y=x+x+120的定义域为{x|x>-2 且 x≠-1}.
求函数的定义域
【例 2】求下列函数的定义域: (1)y=2x+3;(2)f(x)=x+1 1; (3)y= x-1+ 1-x;(4)y=xx2+-11. 【解题探究】求函数的定义域,即是求使函数有意义的那 些自变量 x 的取值集合.
【解析】(1)函数 y=2x+3 的定义域为{x|x∈R}. (2)要使函数有意义,即分式有意义,则 x+1≠0,x≠-1. 故函数的定义域为{x|x≠-1}. (3)要使函数有意义,则1x--1x≥≥00,, 即xx≥≤11,, 所以 x=1, 从而函数的定义域为{x|x=1}. (4)因为当 x2-1≠0,即 x≠±1 时,xx2+-11有意义,所以原函 数的定义域是{x|x≠±1}.
高中数学新课标人教A版必修一:1.2.1 函数的概念 课件 (共16张PPT)

3 两个函数相同:当且仅当三要素相同。
例1 y= x 3 + 2 x 是函数吗?
——函数的定义域和值域均为非空的数集
例2 y=± x 是函数吗?
——对于函数定义域中每一个x,值域中都有 唯一确定的y和它对应。(不是函数)
练习:下列图形哪个可以表示函数的图象?
y
0x
A
y
0x
B
y
0x
C
四、如何求函数的定义域
想 f(1)表示什么意思? 一 想 f(1)与f(x)有什么区别?
一般地,f(a)表示当x=a时的函数值,是一个常量。 f(x)表示自变量x的函数,一般情况下是变量。 14
例:已知函数f(x)=3x2-5x+2.求f(0),f(a)和 f(a+1)
想一想 f[f(0)]等于多少?
练习:f(x)=|x+1|,则f(-1) +f(1)等于多少?
六、小结
1 函数的概念
2 定义域的求法 3 对函数符号y=f(x)的理解
七、布置作业
一、复习回顾
初中时学过函数的概念,它是怎样叙述的? 设在一个变化过程中,有两个变量x和y,
如果对于x的每一个值,y都有唯一的值与 它对应.那么就说y是x的函数. 其中x叫做 自变量,y是函数值。
想一想
y=1(x∈R)是函数吗?
Go to 13
研究函数y 1 x
为了研究的方便,取几组特殊的x值和对应的y值
当x=1时,y=1
当x=2时,y
1 2
当xБайду номын сангаас3时,y 1
3
A
B
y1
x
1
1
1
2
2
人教版高中数学必修一1.2.1函数的的概念_ppt课件

题型三 求函数的定义域 【例3】 求下列函数的定义域:
(1)y=xx+ +112- 1-x; (2)y= 2x+5+x- 1 1; (3)y= x2-1+ 1-x2; (4)y=1+ 1 1x.
解:(1)要使函数有意义,自变量 x 的取值必须满
足x1+ -1x≠ ≥00 ,即xx≠ ≤- 1 1 , 所以函数定义域为{x|x≤1 且 x≠-1}. (2)要使函数有意义,需满足
解析:y=f(x)与y=f(t)定义域,对应关系都相同,故①正确;f(x)
=1,x∈R,而g(x)=x0,x≠0,故不是同一函数;y=x,x∈[0,1],与
=x2,x∈[0,1]的定义域、值域都相同,但不是同一个函数.
答案:B
3.函数 y= x3+-12x0 的定义域是________.
解析:要使函数有意义, 需满足x3+ -12≠ x>00 ,即 x<32且 x≠-1. 答案:(-∞,-1)∪-1,32
(3)由x|x+ |-1x≠≠00 ,得|xx≠ |≠-x 1 , ∴x<0 且 x≠-1, ∴原函数的定义域为{x|x<0 且 x≠-1}.
误区解密 因求函数定义域忽视对二次项 系数的讨论而出错
【例 4】 已知函数 y=k2x22+ kx3-kx8+1的定义域为 R,求实数 k 的值.
x≠0 1+1x≠0
,即 xx≠ +
0 1≠
0
.
即 x≠0 且 x≠-1,
∴原函数定义域为{x|x≠0 且 x≠-1}.
点评:求函数定义域的原则:(1)分式的分母不等于零;(2)偶次根 式的被开方数(式)为非负数;(3)零指数幂的底数不等于零等.
3.求下列函数的定义域:
(1)f(x)=x2-36x+2;
人教版高中数学必修一(1.2.1-1函数的概念)ppt课件

定义域
f:x 2x1
值域
函数解析式:f(x)=2x+1或y=2x+1
-3
-5
-2
-3
-1
-1 f(x)2x1
0
1
1
3
2
5
3
7 对应法则
对应法则施
加的运算对
f ( 3 ) 2 ( 3 ) 象 1 5
对应法 则
运算对象
运算内容:乘以2加一
象,即y的值
-3 -2 -1 0 1 2 3
f(a )f,(a 1 )
练习:
g(x) 2x3 5x2 3x2,求g(3),
h(x) | 4x|,求h(8),h(a) x2
1 r(x) 3
x5,求r(3),r(6)
x
已知函数
x 2
f
(x)
x
2
2
x
(1)求 f ( 2 ) , f的( 1值);
2
集合B中有唯一元素和A中某个元素对应
开平方
B
A
3
300
-3
2
450
-2 1
600
-1
900
求正弦
A
一对多不是映射
求平方
B
1
1
-1
一对一是映射
A
乘以2
1
2
4
-2
2
3 -3
9
3
多对一是映射
一对一是映射
集合A中任何一个元素都在B中有对应
乘以2加1
A
1
3
5
1B
2 3 4 5 6 7
集合A中的元素5在集合B中没有元素与之对 应,不能称为映射。
高中数学 第一章 集合与函数概念 函数的概念课件 新人教A必修1

❖ 本节重点:函数的概念、定义域、值域的求 法.
❖ 本节难点:(1)函数概念的理解.
❖ (2)实际应用问题中函数的定义域和复合函数 定义域.
❖ (一)对函数y=f(x)涵义的理解,应明确以 下几点:
❖ ①“A,B是非空数集”,若求得自变量取 值范围为∅,则此函数不存在.
❖ ②定义域、对应法则和值域是函数的三要 素,实际上,值域是由定义域和对应法则 决定的,所以看两个函数是否相等,只要 看这两个函数的定义域与对应法则是否相 同.
❖ (1)当每辆车的月租金定为3600元时,能租 出多少辆车?
❖ (2)当每辆车的月租金定为多少元时,租赁
[解析] (1)当每辆车的月租金为 3600 元时,未租出的 车辆数为:(3600-3000)÷50=12,所以这时租出了 88 辆车.
(2)设每辆车的月租金为 x 元,则租赁公司的月收益为: f(x)=(100-x-530000)(x-150)-x-530000×50,整理得:f(x) =-5x02 +162x-2100=-510(x-4050)2+307050.所以当 x= 4050 元时,f(x)最大,其最大值为 307050.即当每辆车的月租 金为 4050 元时,租赁公司的月收益最大,最大值为 307050 元.
❖ [分析] (1)据函数的定义:“对于集合A中的 任意一个元素,在集合B中有唯一确定的元素 与之对应”进行判断.
❖ (2)给定函数的解析式,也就给定了由定义域 到值域的对应法则,只要将自变量允许值代 入,就可以求得对应的函数值.
[解析] (1)①由 x2+y2=2 得 y=± 2-x2,因此由它不能 确定 y 是 x 的函数,如当 x=1 时,由它所确定的 y 的值有两 个±1.
②由 x-1+ y-1=1,得 y=(1- x-1)2+1,所以当 x 在{x|x≥1}中任取一个值时,由它可以确定唯一的 y 值与之 对应,故由它可以确定 y 是 x 的函数.
高中数学第一章集合与函数概念1.2.1函数的概念课件新人教A版必修1

.
(2){x|x>1,且 x≠2}用区间表示为
解析:(1){x|2<x≤4}用区间表示为(2,4].
(2){x|x>1,且 x≠2}用区间表示为(1,2)∪(2,+∞).
答案:(1)(2,4] (2)(1,2)∪(2,+∞)
第七页,共29页。
思考辨析
判断下列说法是否正确,正确的在后面(hòu mian)的括号内画“√”,
非正数
y
1
-1
A.
x
0
奇数
偶数
y
1
0
-1
B.
x
有理数
无理数
y
1
-1
C.
x
自然数 整数
有理数
y
1
0
-1
D.
第二十四页,共29页。
2
3
4
5
1
2
3
4
5
解析:A中,当x=0时,y=±1;B中0是偶数,当x=0时,y=0或y=-1;D中自然数、整数、
有理数之间存在(cúnzài)包含关系,如x=1∈N(Z,Q),故y的值不唯一,故A,B,D
即(x-2)(x+3)≠0,
所以 x-2≠0 或 x+3≠0,即 x≠2 或 x≠-3.
故所求函数的定义域为{x|x≠2,或 x≠-3}.
第二十一页,共29页。
探究(tànjiū)
一
探究(tànjiū)
二
探究(tànjiū)
三
思维辨析
第二十二页,共29页。
探究(tànjiū)
一
探究
(tànjiū)二
即
-1 ≠ 0,
≤ 4,
(2){x|x>1,且 x≠2}用区间表示为
解析:(1){x|2<x≤4}用区间表示为(2,4].
(2){x|x>1,且 x≠2}用区间表示为(1,2)∪(2,+∞).
答案:(1)(2,4] (2)(1,2)∪(2,+∞)
第七页,共29页。
思考辨析
判断下列说法是否正确,正确的在后面(hòu mian)的括号内画“√”,
非正数
y
1
-1
A.
x
0
奇数
偶数
y
1
0
-1
B.
x
有理数
无理数
y
1
-1
C.
x
自然数 整数
有理数
y
1
0
-1
D.
第二十四页,共29页。
2
3
4
5
1
2
3
4
5
解析:A中,当x=0时,y=±1;B中0是偶数,当x=0时,y=0或y=-1;D中自然数、整数、
有理数之间存在(cúnzài)包含关系,如x=1∈N(Z,Q),故y的值不唯一,故A,B,D
即(x-2)(x+3)≠0,
所以 x-2≠0 或 x+3≠0,即 x≠2 或 x≠-3.
故所求函数的定义域为{x|x≠2,或 x≠-3}.
第二十一页,共29页。
探究(tànjiū)
一
探究(tànjiū)
二
探究(tànjiū)
三
思维辨析
第二十二页,共29页。
探究(tànjiū)
一
探究
(tànjiū)二
即
-1 ≠ 0,
≤ 4,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2.1《函数的概念》
初中函数的概念:
在某变化过程中,有两个变量x、y,如果给定 一个x ,相应地有唯一确定的一个y 值。那么就称 y是x 的函数,其中x是自变量,y是因变量。
从上面概念知道:可以用函数描述变量x, y之间的依赖关系。下面我们将进一步的 学习函数及其构成要素。 首先请看这几例子:
x≤b
x<b
(-∞,b)
[a,+∞)
区间注意点:
1、区间是集合 2、区间的左端点必小于右端点 3、区间中的元素都是点,可以用数字表示 4、任何区间均可在数轴上表示出来 5、以 - 或 为区间的一端时,这一端 必须是小括号
作业布置:
教材P24 4、5
引例一
一枚炮弹发射后,经过26s落到地面击中目标。炮 弹的射高为845m,且炮弹距地面的高度h(单位: m)随时间t(单位:s)变化的规律是 h=130t-5t2 思考以下问题: (1) 炮弹飞行1秒、5秒、10秒、1000秒时距地面多高? (2) 炮弹何时距离地面最高? (3) 你能指出变量t和h的取值范围吗?分别用集合A和集 合B表示出来。 (4)对于集合A中的任意一个时间t,按照对应关系,在B中 是否都有唯一确定的高度h和它对应?
→
引例三
“八五”计划以来我国城镇居民恩格尔系数变化情 况如下表:
年份 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 家庭 恩格 53.8 尔系 数%
52.9
50.1
49.9
49.9
48.6
46.4
44.5
41.9
39.2
37.9
食物支出金额 恩格尔系数 支出总金额
2 4 ac b } 当a 0时,B { y | y 4a 2 4 ac b } 当a 0时,B { y | y 4a
x
y a x2 bx c(a 0)
(3)反比例函数
定义域为{x|x 0}
k y k 0 x
值域为{y|y 0}
定义 {x|a≤x ≤b} {x|a<x < b} {x|a≤x < b}
名称 闭区间 开区间 半开半闭区间
符号 [a,
{x|a<x ≤ b}
半开半闭区间
(a,b]
a
b
实数集R可以表示为(-∞,+ ∞)
x≥a x >a
( -∞ ,b] (a,+∞)
y f x , xA
x叫做自变量,x的取值范围A叫做函数的定义域,
与x的值对应的y值叫做函数值。 函数值的集合{f x | x A}叫做函数的值域。
值域是集合B的子集
初中接触过的一些函数
(1)一次函数y=ax+b(a≠0) 值域为R 定义域为R y=ax+b (a≠0) x (2)二次函数 y a x2 bx c(a 0) 定义域为R 值域为B
x
k y k 0 x
设a,b是两个实数,而且a<b,我们规定:
⒈满足不等式a≤x≤b的实数x的集合叫做闭区间, 表示为[a,b] ⒉满足不等式a<x<b的实数x的集合叫做开区间, 表示为(a,b)
⒊满足不等式a≤x<b或a<x≤b的实数x的集合叫做 半开半闭区间,表示为[a,b)或(a,b] 这里的实数a,b叫做相应区间的端点
思考: (1)恩格尔系数与年份之间的关系是否和前两个 事例中的两个变量之间的关系相似?
(2)如何用集合与对应的语言来描述这个关系?
以上三个实例有那些公共的特点?
都涉及两个数集 对于数集A中的每一个x,按照某种对应 关系f,在数集B中都有唯一确定的y和它 对应。
函数的概念:
设A和B是两个非空集合,如果按照某种对应关 系f,使对于集合A的任何一个x,在B中都有唯 一确定的f(x)和它对应,那么就称 f:A B为 从集合A到集合B的一个函数。记作:
→
引例二
近几十年来,大气层中的臭氧迅速减少,因而出 现了臭氧层空洞问题.下图中的曲线显示了南极上 空臭氧层空洞的面积从1979~2001年的变化情况
思考: (1)能从图中看出哪一 年臭氧层空洞的面积 最大? (2)哪些年的臭氧层空 洞的面积大约为1500 万平方千米? (3)变量t的取值范围是 多少?
初中函数的概念:
在某变化过程中,有两个变量x、y,如果给定 一个x ,相应地有唯一确定的一个y 值。那么就称 y是x 的函数,其中x是自变量,y是因变量。
从上面概念知道:可以用函数描述变量x, y之间的依赖关系。下面我们将进一步的 学习函数及其构成要素。 首先请看这几例子:
x≤b
x<b
(-∞,b)
[a,+∞)
区间注意点:
1、区间是集合 2、区间的左端点必小于右端点 3、区间中的元素都是点,可以用数字表示 4、任何区间均可在数轴上表示出来 5、以 - 或 为区间的一端时,这一端 必须是小括号
作业布置:
教材P24 4、5
引例一
一枚炮弹发射后,经过26s落到地面击中目标。炮 弹的射高为845m,且炮弹距地面的高度h(单位: m)随时间t(单位:s)变化的规律是 h=130t-5t2 思考以下问题: (1) 炮弹飞行1秒、5秒、10秒、1000秒时距地面多高? (2) 炮弹何时距离地面最高? (3) 你能指出变量t和h的取值范围吗?分别用集合A和集 合B表示出来。 (4)对于集合A中的任意一个时间t,按照对应关系,在B中 是否都有唯一确定的高度h和它对应?
→
引例三
“八五”计划以来我国城镇居民恩格尔系数变化情 况如下表:
年份 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 家庭 恩格 53.8 尔系 数%
52.9
50.1
49.9
49.9
48.6
46.4
44.5
41.9
39.2
37.9
食物支出金额 恩格尔系数 支出总金额
2 4 ac b } 当a 0时,B { y | y 4a 2 4 ac b } 当a 0时,B { y | y 4a
x
y a x2 bx c(a 0)
(3)反比例函数
定义域为{x|x 0}
k y k 0 x
值域为{y|y 0}
定义 {x|a≤x ≤b} {x|a<x < b} {x|a≤x < b}
名称 闭区间 开区间 半开半闭区间
符号 [a,
{x|a<x ≤ b}
半开半闭区间
(a,b]
a
b
实数集R可以表示为(-∞,+ ∞)
x≥a x >a
( -∞ ,b] (a,+∞)
y f x , xA
x叫做自变量,x的取值范围A叫做函数的定义域,
与x的值对应的y值叫做函数值。 函数值的集合{f x | x A}叫做函数的值域。
值域是集合B的子集
初中接触过的一些函数
(1)一次函数y=ax+b(a≠0) 值域为R 定义域为R y=ax+b (a≠0) x (2)二次函数 y a x2 bx c(a 0) 定义域为R 值域为B
x
k y k 0 x
设a,b是两个实数,而且a<b,我们规定:
⒈满足不等式a≤x≤b的实数x的集合叫做闭区间, 表示为[a,b] ⒉满足不等式a<x<b的实数x的集合叫做开区间, 表示为(a,b)
⒊满足不等式a≤x<b或a<x≤b的实数x的集合叫做 半开半闭区间,表示为[a,b)或(a,b] 这里的实数a,b叫做相应区间的端点
思考: (1)恩格尔系数与年份之间的关系是否和前两个 事例中的两个变量之间的关系相似?
(2)如何用集合与对应的语言来描述这个关系?
以上三个实例有那些公共的特点?
都涉及两个数集 对于数集A中的每一个x,按照某种对应 关系f,在数集B中都有唯一确定的y和它 对应。
函数的概念:
设A和B是两个非空集合,如果按照某种对应关 系f,使对于集合A的任何一个x,在B中都有唯 一确定的f(x)和它对应,那么就称 f:A B为 从集合A到集合B的一个函数。记作:
→
引例二
近几十年来,大气层中的臭氧迅速减少,因而出 现了臭氧层空洞问题.下图中的曲线显示了南极上 空臭氧层空洞的面积从1979~2001年的变化情况
思考: (1)能从图中看出哪一 年臭氧层空洞的面积 最大? (2)哪些年的臭氧层空 洞的面积大约为1500 万平方千米? (3)变量t的取值范围是 多少?