列方程解应用题94479

合集下载

列方程解应用题100道附详解

列方程解应用题100道附详解

列方程解应用题100道附详解(1) 【浓度问题】甲、乙两种酒精的质量分数分别为80%和60%,现在要配制质量分数为65%的酒精4000克,应当从这两种酒精中各取多少克?(2) 【盈亏问题】同学们聚餐,若每桌坐8个人,则有6个人没座位;若每桌坐10人,则剩下一张桌子无人坐.问共有多少名同学?(3) 【行程问题】北京和上海相距1320千米.甲乙两列直快火车同时从北京和上海相对开出,6小时后两车相遇,甲车每小时行120千米,乙车每小时行多少千米?(4) 【和倍问题】甲、乙、丙三个数的和为112,丙数比乙数多4,乙数是甲数的4倍,求这三个数.(5) 【分数应用题】为了庆祝六一儿童节,学校买来红气球和黄气球共200个,红气球的14比黄气球的15多14个.学校买来红气球和黄气球各多少个? (6) 【盈亏问题】四(2)班同学去公园租船游玩,如果每条船坐6人,则空出1人的位置;如果每条船坐7人,则空出8人的位置.问有学生多少人?共租了多少条船?(7) 【盈亏问题】甲、乙、丙三人去看同一部电影,如用甲带的钱买三张电影票,还差39元;如果用乙带的钱去买三张电影票,还差50元;如果用甲、乙、丙三个人带去的钱买三张电影票,就多26元,已知丙带了25元钱,请问:一张电影票多少元?(8)【工程问题】大、小两个水池都未注满水.若从小池抽水将大池注满,则小池还剩5吨水;若从大池抽水将小池注满,则大池还剩30吨水.已知大池容积是小池的1.5倍,问:两池中共有多少吨水?(9)【和倍问题】甲水池有水60吨,乙水池有水30吨,如果甲水池的水以每分钟3吨的速度流入乙水池,那么多少分钟后乙水池的水是甲水池的2倍?(10)【位值原理】一个六位数的左边第一位数字是1.如果把这个数字移到最右边,那么所得的六位数是原数的3倍,求原数.(11)【浓度问题】甲容器中有质量分数为10%的盐水400克,乙容器中有质量分数为15%的盐水240克,往甲、乙两容器中倒入等量的水,使两个容器中盐水的质量分数相同,每个容器应加入多少水?(12)【位值原理】一个两位数,个位数字与十位数字之和为8,将个位数字与十位数字对调后,所得的新数比原来的数大54,求原来的两位数.(13)【鸡兔同笼】一共有5只鸡和兔放在同一个笼子里,它们一共有12只脚,那么笼子里一共有几只鸡?几只兔?(14)【盈亏问题】同学们来到探险世界,由勇敢的船长带领大家去体验原始森林中的河流之旅.如果每条船坐10人,则有8人没有座位;如果每条船改坐12人,则有4人没有座位.一共有多少名同学来到探险世界?(15)【分数应用题】小华和小红共有910元存款,小华存款的25和小红存款的14相等,她们俩入各有存款多少元?(16)【平均数问题】有两组数,第一组9个数的和是63,第二组的平均数是11,两个组中所有数的平均数是8.问:第二组有多少个数?(17)【盈亏问题】一个小组去山坡植树,如果每人栽4棵,还剩12棵;如果每人栽8棵,则缺4棵,这个小组有几人?一共有多少棵树苗?(18)【差倍问题】红盒子里有32个球,蓝盒子里有57个球,以后红盒子里每次放入9个,蓝盒子里每次放入4个,几次后两盒球数相等?(19)【盈亏问题】学校给一批新入学的学生分配宿舍.如果每个房间住12人,则34人没有位置;如果每个房间住14人,则空出4个房间.求学生宿舍有多少间?住宿学生有多少人?(20)【行程问题】某人要到60千米外的农场去,开始他以5千米/时的速度步行,后来有辆速度为18千米/时的拖拉机把他送到了农场,总共用了5.5时.问:他步行了多远?(21)【盈亏问题】有一棵古树,用一根绳子绕树三圈,余8米,如果绕树五圈,则绳子余下2米.你知道树周长是几米吗?绳子有多长?(22) 【分数应用题】阅览室看书的学生中,男生比女生多10人,后来男生减少14,女生减少16,剩下的男、女生人数相等,原来一共有多少名学生在阅览室看书? (23) 【和倍问题】有甲、乙、丙三个数,乙数是甲数的5倍,丙数比乙数少4,且三个数的和是95,求这三个数.(24) 【盈亏问题】孙悟空采到一堆桃子,平均分给花果山的小猴子吃.每只小猴子分9个,有4只小猴子没有分到;第二次重分,每只小猴分7个,刚好分完.问:孙悟空采到多少个桃子?小猴子有多少只?(25) 【分数应用题】甲仓有货物52吨,从乙仓运出15到甲仓,这时乙仓比甲仓多19,求乙仓原有货物多少吨.(26) 【鸡兔同笼】绘画室中有3腿的凳子和4腿的椅子共40张,房间里恰好有40位小朋友坐在这40张凳子和椅子上.昊昊数了一下,凳子的腿、椅子的腿和小朋友的腿数,总数是225.那么绘画室中,凳子有几张?(27) 【倍数问题】某建筑公司有红、灰两种颜色的砖,红砖量是灰砖量的2倍,计划修建住宅若干座.若每座住宅使用红砖80立方米,灰砖30立方米,那么,红砖缺40立方米,灰砖剩40立方米.问:计划修建住宅多少座?(28) 【和倍问题】六年级有三个班,共有153人.六(1)班人数是六(3)班的1.12倍,六(2)班比六(3)班少3人,三个班各有多少人?(29)【和倍问题】甲、乙两个农场一共收获了80万吨小麦,甲农场收获的小麦比乙农场的4倍多10万吨,则甲、乙两个农场各收获了多少万吨小麦?(30)【盈亏问题】小羽带了一些钱去买香蕉,如果买4千克,则还剩下8元钱;如果买6千克,则少4元,问:香蕉每千克多少元?小羽带了多少元?(31)【行程问题】已知铁路桥长1000米,一列火车从桥上通过,测得火车从开始上桥到完全下桥共用120秒,整列火车完全在桥上的时间为80秒.求火车的速度和长度.(32)【分数应用题】有—个水池,第一次放出全部水25,第二次放出40立方米,第三次又放出剩下水的25,池里还剩水57立方米,全池蓄水多少立方米?(33)【年龄问题】今年奶奶的岁数是小亮岁数的9倍,去年奶奶的岁数是小亮岁数的10倍,小亮和奶奶在去年和今年的岁数分别是多少岁?(34)【和倍问题】甲、乙、丙三个数的和是218,已知甲数除以乙数、乙数除以丙数都是商3余2,甲、乙、丙三个数各是多少?(35)【平均数问题】一次数学测验,全班平均分是91.2分,已知女生有21人,平均每人92分;男生平均每人90.5分.求这个班男生有多少人?(36)【行程问题】小明从家出发到学校,如果每分钟走40米,则要迟到2分钟,如果每分钟走50米,则早到4分钟,小明家到学校有多远?(37)【倍数问题】布袋里有红球和黄球若干个,红球比黄球的3倍多6个,若每次取出8个红球和4个黄球,当黄球正好取完时,红球还剩30个,袋子里原有红球、黄球各多少个?(38)【工程问题】筑路队计划每天筑路720米,正好按期筑完.实际每天多筑80米,这样,比原计划提前3天完成了筑路任务.要筑的路有多长?(39)【行程问题】甲、乙二人分别从A,B两地同时出发,两人同向而行,甲26分钟赶上乙;两人相向而行,6分钟可相遇.已知乙每分钟行50米,求A,B两地的距离.(40)【鸡兔同笼】商店有胶鞋、布鞋共46双,胶鞋每双7.5元,布鞋每双5.9元,全部卖出后,胶鞋比布鞋多收入10元.问:胶鞋有多少双?(41)【行程问题】小红从家到火车站赶乘火车,每小时行4千米,火车开时她还离车站1千米;每小时行5千米,她就早到车站12分钟.小红家离火车站多少千米?(42)【和倍问题】在一个雾霾天,狐狸,兔子和狗熊去卖口罩.狐狸说:狗熊卖1元一个,我就卖4元一个;狗熊卖2元一个,我就卖8元一个;狗熊卖3元一个,我就卖12元一个…….兔子说:“我卖的价格是狐狸的一半.”结果它们卖了相同数量的口罩,一共卖了210元,那么狐狸卖了多少元?(43)【工程问题】甲、乙两队合修一条公路.甲队单独修要15天修完,乙队单独修要20天修完,现在两队同时修了几天后,由甲队单独修了8天修完,求乙队修了几天?(44)【差倍问题】甲仓有86吨货物,乙仓有42吨货物,从甲仓运多少吨货物到乙仓,才能使乙仓的货物比甲仓的2倍还少4吨?(45)【和倍问题】甲、乙、丙、丁四人共做零件265个,如果甲多做15个,乙少做5个,丙做的个数乘以2,丁做的个数除以3,那么四个人做的零件数恰好相等,问:丙做了多少?(46)【平均数问题】有两组数,第一组9个数的和是63,第二组的平均数是11,两组中所有数的平均数是8.问:第二组有多少个数?(47)【盈亏问题】商店卖一批小收音机.如果每台卖58元,则可盈利1200元;如果每台卖55元,则可盈利600元.问:商店原有多少台收音机?进价多少元?(48)【倍数问题】学学和思思有一些大白兔奶糖,本来学学的大白兔奶糖数量是思思的6倍,后来两人又各自得到了40块,结果学学的大白兔奶糖数量是思思的2倍,那么原来他们一共有块大白兔奶糖?(49)【位值原理】一个两位数,十位上的数字比个位上的数字少1,如果十位上的数字扩大到4倍,个位上的数字减去2,那么,所得的两位数比原来大58,求原来的两位数.(50) 【差倍问题】某区小学生进行两次数学竞赛,第一次及格的比不及格的3倍多4人;第二次及格人数增加了5人,正好是不及格人数的6倍.问共有多少学生参加数学竞赛.(51) 【分数应用题】一个班女同学比男同学的23多4人,如果男生减少3人,女生增加4人,男、女生人数正好相等.这个班男、女生各有多少人?(52) 【倍数问题】一群小朋友去春游,男孩每人戴一顶黄帽,女孩每人戴一顶红帽.在每个男孩看来,黄帽子比红帽子多5顶;在每个女孩看来,黄帽子是红帽子的2倍.问:男孩、女孩各有多少人?(53) 【行程问题】两个集镇之间的公路除了上坡就是下坡,没有平路,客车上坡的速度保持为每小时15千米,下坡则保持为每小时30千米.现知客车在两地之间往返一次,需在路上行驶6小时,求两地之间的距离(54) 【行程问题】小强从家到学校,如果每分钟走50米,上课就要迟到3分钟,如果每分钟走60米,就可以比上课时间提前2分钟到校.小强从家到学校的路程是多少米?(55) 【和倍问题】甲、乙、丙三数的和是100,甲数除以乙数与丙数除以甲数的结果都是商5余1.问:乙数是多少?(56) 【分数应用题】甲、乙两班各有一个图书室,共有303本书,已知甲班图书的513和乙班图书的14合在一起是95本.那么甲班图书有多少本?(57) 【盈亏问题】五年级同学去划船,如果增加一只船,正好每只船上坐7人;如果减少一只船,正好每只船上坐8人.五年级共有多少人?(58) 【和倍问题】某小学图书馆里科技书的本数是故事书的3倍,活动课上,每班借7本科技书,5本故事书,故事书借完时,科技书还剩96本,图书馆里有科技书和故事书各多少本?(59) 【倍数问题】教室里有若干学生,走了10个女生后,男生是女生人数的2倍,又走了9个男生后,女生是男生人数的5倍.问:最初有多少个女生?(60) 【平均数问题】两组学生进行跳绳比赛,平均每人跳152下.甲组有6人,平均每人跳140下,乙组平均每人跳160下.乙组有多少人?(61) 【倍数问题】教室里有若干学生,走了10个女生后,男生人数是女生的1.5倍,又走了10个女生后,男生人数是女生的4倍.问:教室里原有多少个学生?(62) 【分数应用题】小伟和小刚共有800元存款,王伟取出自己存款的45,李刚取出自己存款的34,这时两人还共有存款170元,王伟和李刚原来各有存款多少元? (63) 【分数应用题】赵师傅以每只2.80元的价格购进一批玩具狗,然后以每只3.60元的价格卖出,当卖出总数的56时,不仅收回了全部成本,还盈利24元,赵师傅一共购进多少只玩具狗?(64)【百分数应用题】某商店出售一种商品,每售出1件可获利润18元,售出40%后每件减价10元出售,全部售完,共获利3000元.问商店共售出这种商品多少件?(65)【行程问题】大毛、二毛从相距1000米的学校和图书馆同时出发相向而行,8分钟后两人相遇,已知大毛的速度是二毛的4倍,求大毛每分钟走多少米?二毛每分钟走多少米?(66)【盈亏问题】同学们来到游乐园游玩,他们乘坐观光车.如果每车坐6人,则多出6人;如果每车坐8人,则少2人.一共多少辆观光车?共有多少名同学?(67)【盈亏问题】老师给同学们分苹果,每人分10个,就多出8个,每人分11个则正好分完,那么一共有多少名学生?多少个苹果?(68)【倍数问题】六(1)班有58人,六(2)班有26人,从六(1)班调多少人到六(2)班,才能使六(2)班人数比六(1)班人数的2倍少9人?(69)【盈亏问题】幼儿园买来一些玩具,如果每班分8个玩具,则多出2个玩具;如果每班分10个玩具,则少12个玩具,幼儿园有几个班?这批玩具有多少个?(70)【分数应用题】两座粮仓,甲仓装粮食100吨,如果从乙仓中运出13放到甲仓,这时,乙仓的粮食比甲仓少19.求乙仓原有粮食多少吨?(71) 【倍数问题】教室里有若干学生,走了10个女生后,男生是女生人数的2倍,又走了9个男生后,女生是男生人数的5倍.问:最初有多少个女生?(72) 【倍数问题】甲、乙二人2时共可加工54个零件,甲加工3时的零件比乙加工4时的零件还多4个.问:甲每时加工多少个零件?(73) 【分数应用题】甲、乙、丙三人同乘汽车到外地旅行,三人所带行李的重量都超过了可免费携带行李的重量,需另付行李费,三人共付4元,而三人行李共重150千克.如果一个人带150千克的行李,除免费部分外,应另付行李费8元.求每人可免费携带的行李重量.(74) 【分数应用题】两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟?(75) 【分数应用题】甲书架上的书是乙书架上的56,两个书架上各借出154本后,甲书架上的书是乙书架上的47,甲、乙两书架上原有书各多少本? (76) 【分数应用题】甲、乙两校共有22人参加竞赛,甲校参加人数的15比乙校参加人数的14少1人,甲、乙两校各有多少人参加?(77)【倍数问题】有6筐苹果,每筐苹果个数相等.如果从每筐拿出40个,6筐苹果剩下的总和正好是原来2筐苹果的个数相等.原来每筐苹果有多少个?(78)【浓度问题】质量分数为20%,18%和16%的三种盐水混合后得到100克18.8%的盐水.如果18%的盐水比16%的盐水多30克,三种盐水各有多少克?(79)【和倍问题】甲布袋有280个玻璃球,乙布袋有40个玻璃球,从甲布袋取多少个放入乙布袋,才能使甲布袋的玻璃球比乙布袋的2倍还多35个?(80)【行程问题】甲、乙两人沿400米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去.相遇后甲比原来速度增加2米/秒,乙比原来速度减少2米/秒,结果都用24秒同时回到原地.求甲原来的速度.(81)【百分数应用题】小华到商店买红、蓝两种笔共66支,红笔每支定价5元,蓝笔每支定价9元.由于买的数量较多,商店就给予优惠,红笔按定价85%付钱,蓝笔按定价80%付钱.如果她付的钱比按定价少付了18%,那么她买了红笔多少支?(82)【行程问题】一辆汽车从甲地到乙地.第一小时行了全程的16,第二小时行了80千米,第三小时行了剩下的25,这时距乙地还有100千米,甲、乙两地相距多少千米?(83)【倍数问题】学校体育器材室里,足球的个数是排球的2倍.体育课上,每班借8个足球,5个排球,排球借完时,足球还有48个.体育器材室原有足球、排球各多少个?(84)【倍数问题】苹果的个数是梨的3倍,如果每天吃2个苹果、1个梨,若干天后,梨正好吃完,而苹果还剩下7个,原来的苹果有多少个?(85)【差倍问题】哥哥与弟弟做题比赛,哥哥做的数学题比弟弟多18道,哥哥做的题是弟弟的4倍.两人各做了多少道数学题?(86)【和倍问题】第一个正方形的边长比第二个正方形边长的2倍多1厘米,它们的周长之和是88厘米,它们的面积之和是多少?(87)【盈亏问题】三年级给优秀学生发奖品书,如果每个学生发5册还剩32册;如果其中10个学生发4册,其余每人发8册,就恰好发完.那么优秀学生有多少人?奖品书有多少册?(88)【行程问题】学校规定上午8时到校,小明去上学,如果每分钟走60米,可提早10分钟到校;如果每分钟走50米,可提早8分钟到校,由家到学校的路程是多少?(89)【行程问题】甲、乙两人沿400米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去.相遇后甲比原来速度增加2米/秒,乙比原来速度减少2米/秒,结果都用24秒同时回到原地.求甲原来的速度.(90)【平均数问题】一个技术工带5个普通工人完成了一项任务,每个普通工人各得120元,这位技术工人的收入比他们6人的平均收入还多20元.问这位技术工得多少元?(91)【鸡兔同笼】六年级举行数学竞赛,共20道试题.做对一题得5分,没有做一题或做错一题倒扣3分.刘刚得了60分,则他做对了多少道题?(92)【分数应用题】甲、乙两个仓库共有510吨货物,从甲仓运走14,从乙仓运走13后,两仓库剩下的货物正好相等,甲、乙两个仓库原有货物各多少吨?(93)【平均数问题】五一班同学数学考试平均成绩91.5分,事后复查发现计算成绩时将一位同学的98分误作89分计算了.经重新计算,全班的平均成绩是91.7分,五一班有多少名同学?(94)【和倍问题】西红柿和黄瓜共有180千克,西红柿的3倍比黄瓜的2倍少10千克,西红柿和黄瓜各多少千克?(95)【盈亏问题】杨老师将一叠练习本分给第一小组同学.如果每人分7本还多7本;如果每人分8本则正好分完.请算一算,第一小组有几个学生?这叠练习本一共有多少本?(96)【百分数应用题】某文体商店用2200元进了一批篮球和足球,篮球比足球多15个,商店出售足球的定价是20元,篮球的定价比足球增加20%,这批球售完后共得利润1020元,足球和篮球各有多少个?(97) 【分数应用题】师徒两人合作加工400个零件,师傅加工的15比徒弟加工的14还多8个,师徒两人各加工了多少个?(98) 【盈亏问题】王老板承接了建筑公司一项运输1200块玻璃的业务,并签了合同.合同上规定:每块玻璃运费2元;如果运输过程中有损坏,每损坏一块,除了要扣除一块的运费外,还要赔偿25元.王老板把这1200块玻璃运送到指定地点后,建筑公司按合同付给他2076元.问:运输过程中损坏了多少块玻璃?(99) 【浓度问题】在质量分数为25%的食盐水20千克中加入10%的食盐水和白开水各若干千克,加入的食盐水是白开水的2倍,得到了质量分数为20%的食盐水,求加入10%的食盐水多少千克.(100) 【分数应用题】某车间生产甲、乙两种零件,生产的甲种零件比乙种零件多12个,乙种零件全部合格,甲种零件只有45合格,两种零件合格的共有42个,两种零件个生产了多少个?列方程解应用题100道详细解答(1)解:设甲种酒精取了x克,则乙种酒精取了(4000-x)克,可得方程x×80%+(4000-x)×60=4000×65%,x=1000.4000-1000=3000(克).所以从甲种酒精中取了1000克,从乙种酒精中取了3000克.(2)解:设有x张桌子,则8x+6=10x-10,x=8,同学:8×8+6=70(名)答:共有70名同学.(3)解:设乙车每小时行x千米.(120+x)×6=1320,x=100答:乙车每小时行100千米.(4)解:设甲数为x,则x+4x+(4x+4)=112,x=12.答:甲数是12,乙数是48,丙数是52.(5)解:设红气球有x个,根据题意列方程,14x-15×(200-x)=14,x=120.200-120=80(个),所以,学校买来红气球120个,黄气球80个.(6)解:设共租了x条船,则6x-1=7x-8,解得:x=7,6×7-1=41(人).答:学生共有41人,共租了7条船.(7)解:设一张电影票x元,则甲带了3x-39元,乙带了3x-50元,列出方程:3x-39+3x-50+25=3x+26,解得:x=30.答:一张电影票30元.(8)解:设小池注满水为x吨,则大池注满水为1.5x吨.由两池共有水量,可列方程1.5x+5=x+30.解得=50.两池共有水50+30=80(吨)(9)解:设x分钟以后乙水池的水是甲水池的2倍,30+3x=2(60-3x),x=10,答:10分钟以后乙水池的水是甲水池的2倍.(10)解:设这个六位数除去最左边的第一位数字1以后,所剩下的数为x,那么原六位数是100000+x,新六位数是10x+1,则10x+1=3(100000+x),x=42857.原六位数是142857.(11)解:设每个容器中应加入水x克,则根据题意,有40010%24015% 400240x x⨯⨯=++,x=1200.答:每个容器中应加入水1200克.(12)解:设原来两位数的十位数字为x,则个位数字是(8-x).10x+(8-x)+54=10(8-x)+x,x=1.答:原来的两位数为17.(13)解:设兔是ⅹ只,那么,鸡的只数就是(5-ⅹ)只,4x+2(5-x)=12,x=1,答:鸡有4只,兔有1只.(14)解:设有x条船,则10x+8=12x+4,解得:x=2,10×2+8=28(人).答:一共有28名同学.(15)解:设小华有x元,则小红有(910-x)元,根据题意列方程,25x=14(910-x),x=350.910-350=560(元).故小华有350元,小红有560元(16)解:设第二组有x个数,则63+11x=8×(9+x),解得x=3.答:第二组有3个数.(17)解:设这个小组有x人,则4x+12=8x-4,解得:x=4,4×4+12=28(棵).答:这个小组有4人,一共有28棵树苗.(18)解:设x次后两盒球数相等.则32+9x=57+4x,解得x=5.答:5次后两盒球数相等.(19)解:设学生宿舍有x间,则12x+34=14(x-4),解得:x=45,14×(45-4)=574(人),答:学生宿舍有45间,住宿生有574人.(20)解:设他步行了x千米,则有x÷5+(60-x)÷18=5.5.解得x=15(千米)(21)解:设树的周长是x米,则3x+8=5x+2,解得:x=3,3×3+8=17(米).答:树周长3米,绳子长17米.(22)解:设女生有x人,则男生有(x+10)人,(1-16)x=(x+10)×(1-14),x=90,90+90+10=190人(23)解:设甲数为x,则乙为5x,丙为5x-4,得:x+5x+5x-4=95.解得:x=9.答:三个数分别为9,45,41.(24)解:设小猴子有x只,则9(x-4)=7x,解得:x=18,7×19=126(个).答:桃子有126个,小猴子有18只.(25)解:设乙仓原有货物x吨,则(52+15x)×(1+19)=(1-15)x,x=100.答:乙仓原有货物100吨.(26)解:设有凳子x张,椅子(40-x)张,则3x+(40-x)×4+80=225,解得:x=15答:绘画室中共有15张凳子(27)解:设计划修建住宅x座,则红砖有(80x-40)立方米,灰砖有(30x+40)立方米.根据红砖量是灰砖量的2倍,列出方程80x-40=(30x+40)×2,解得:x=6.答:计划修建住宅6座.(28)解:设六(3)班有x人,则1.12x+(x-3)+x=153,x=50.答:六(1)班有56人,六(2)班有47人,六(3)班有50人.(29)解:设乙农场收获了x万吨,甲农场收获了(4x+10)万吨,x+(4z+10)=80,x=14,甲:4×14+10=66(万吨),答:甲农场收获了66万吨,乙农场收获了14万吨.(30)解:设香蕉每千克x元,则4x+8=6x-4,解得:x=6,4×6+8=32(元).答:香蕉每千克6元,小羽带了32元.(31)解:设火车长为x米.根据火车的速度得(1000+x)÷120=(1000-x)÷80.解得x=200(米),火车速度为(1000+200)÷120=10(米/秒)(32)解:设全池蓄水量为x,那么第一次放出的水应为25x,第二次放出的水是40立方米,第三次放出的水应是剩下的水的(x-25x-40)×25,则25x+40+(x-25x-40)×25+57=x,解得:x=225.答:全池蓄水量为225立方米.(33)解:设小亮今年x岁,则10×(x-1)=9x-1,x=9,答:小亮今年9岁,去年8岁;奶奶今年81岁,去年80岁.(34)解:设丙数为x,则(3x+2)×3+2+(3x+2)+x=218,x=16.甲数为152,乙数为50,丙数为16.(35)解:设这个班有男生=人.则90.5×x+21×92=91.2(x+21),解得:x=24人.答,这个班男生有24人.(36)解:设小明到学校原计划需要x分钟,则40(x+2)=50(x-4),解得:x=28.40×(28+2)=1200(米).答:小明家到学校1200米.(37)解:设取了x次,则4x×3+6=8x+30,x=6.答:红球有78个,黄球有24个.(38)解:设原计划x天完成,则720x=(720+80)(x-3),解得:x-30,720×30=21600(米).答:要筑的路长21600米.(39)解:设甲每分钟走x米.由A,B两地距离可得(x+50)×6=(x-50)×26.解得x=80(米).答:A,B两地距离为(80+50)×6=780(米). (40)解:设有胶鞋x双,则有布鞋(46-x)双.7.5x-5.9(46-x)=10,解得:x=21.答:胶鞋有21双.(41)解:设小红出发时离火车开还有x时.由到车站的距离可列方程4x+1=5(x-0.2),解得x=2,所以距离火车站2×4+1=9千米.答:小红家离火车站9千米.(42)解:假设狗熊卖了x元,由题意知,狐狸就是4x,兔子就是2x.那么4x+2x+x=210,x=30,狐狸卖了4×30=120元.(43)解:设甲先工作了x天后乙接着做,共用了(18-x)天完成,根据题意,有(1-1 20×x)÷115=18-x,x=12.18-x=6.所以甲工作了12天,乙工作了6天.(44)解:设从甲仓运x吨货物到乙仓,则42+x=(86-x)×2-4,x=42.答:应从甲仓运42吨货物到乙仓.(45)解:设相等的零件数为x个,则x-15+x+5+0.5x+3x=265,x=50.丙做了25个.(46)解:设第二组有x个数,则63+11x=8×(9+x),解得x=3.(47)解:设商店原有x台收音机,则58x-1200=55x-600,解得:x=200.(58×200-1200)÷200=52(元).答:商店原有200台收音机,每台进价52元.(48)解:设思思原有x块,学学原有6x块,2×(x+40)=6x+40,x=10,学学:6×10=60(块),两人一共:10+60=70(块).答:原来他们一共有70块大白兔奶糖.(49)解:设两位数的个位数字是x,则十位上的数字是(x-1),原来这个两位数是10×(x-1)+x,把十位数字扩大到4倍,是4(x-1),个位上的数字减去2,是(x-2),现在的两位数为10×4(x-1)+(x-2),根据题意可列出方程:10×4(x-1)+(x-2)=10×(x-1)+x+58,解得:x=3.所以原来的两位数是23.(50)解:设第一次不及格x人,则及格(3x+4)人,3x+4+5=6(x-5),x=13,13×3+4+13=56(人).答:共有56名学生参加数学竞赛.(51)解:设男生有x人,则女生有(23x+4)人.x-3=23x+4+4,x=33,23×33+4=26(人),答:这个班男生有33人,女生有26人.(52)解:设有x个男孩.因为每个人看不到自己的帽子,根据男孩看的情况,有女孩(x-5-1)个.再根据女孩看的情况,可列方程x=[(x-5-l)-1]×2.解得x=14人(53)解:设两地之间的距离为x,则x15+x30=6,x=60.答:两地之间的距离是60千米.(54)解:设小强到学校原计划需要x分钟,则50(x+3)=60(x-2),解得:x。

列方程解应用题--优选.docx

列方程解应用题--优选.docx

第四讲列方程解应用题A1 教材分析列方程解应用题我们前面其实已经多次涉及到,它作为一个重要的解决问题的方法和策略,在整个小学阶段的学习中都是非常重要的!在小学数学中,列方程解应用题与用算术方法解应用题是有密切联系的。

它们都是以四则运算和常见的数量关系为基础,通过分析题里的数量关系,根据四则运算的意义列式解答的。

但是,两种解答方法的解题思路却不同。

由于数量关系的多样性和叙述方式的不同,用算术方法解答应用题,时常要用逆向思考,列示比较困难,解法的变化也比较多。

用列方程的方法解答应用题,由于引进了字母表示未知数,可以使未知数直接参与运算,使题目中的数量关系更加清楚,把未知数当成已知数来用,使我们很容易理清数量关系,正确解决问题。

特别是在解比较复杂的或有特殊解法的应用题时,用方程往往比较容易。

A2 知识维度数学知识:能熟练的解一些稍复杂的方程,并熟练运用方程法解决一些较复杂的实际问题。

数学思考:体会恒等思想,认识到方程法解题的优越性和便利性。

A3 知识起跑线一.解方程(1)3x 5 x 7(2)4x 5 2x(3)12(3 x) x7(4)85( 1x1) 2x352二.小新去动物园看猩猩,有的猩猩在洞中,有的在外面玩耍。

他就问管员叔叔共有多少只猩猩,管员叔叔开心的答到:“头数加只数,只数减头数,头数乘只数,只数除头数,把四个得数相加恰好是 100.”那么聪明的你知道有多少只猩猩吗你可以准确、快速的解答出上面的问题吗B我来探究例1.熊大从甲地去乙地,去时每小时走 6 千米,回来时每小时走 9 千米,来回共用 5 小时,熊大来回共走了多少千米例2.王老师给小朋友分苹果和桔子,苹果数是桔子数的 2 倍,桔子每人分 3 个,多四个;苹果每人分 7 个,少 5 个。

有多少个小朋友多少个苹果和桔子例3.甲、乙、丙、丁四个人共做零件 270 个。

如果甲多做 10 个,乙少做 10 个,丙做的个数乘以 2,丁做的个数除以 2,那么四个人做的零件数恰好相等。

初中数学列方程解应用题

初中数学列方程解应用题

列方程解应用题1.增加率问题增加量=原有量×增加率此刻量=原有量+增加量=原有量×(1+增加率)2.市场经济问题×100%(1)商品利润率=商品利润商品成本价(2)销售额=销售价×销售量(3)一件商品的利润=售价-本钱价=本钱价×利润率(4)总利润=一件商品的利润×销售量=(销售价-本钱价)×销售量(5)商品打几折出售,确实是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.费用=各项费用之和=量×价钱3.工程问题:工作量=工作效率×工作时刻工作时刻=工作量÷工作效率,工作效率=工作量÷工作时刻完成某项任务的各工作量的和=总工作量=1注意:当题目与工作量大小、多少无关时,通经常使用“1”表示总工作量4.行程问题:路程=速度×时刻时刻=路程÷速度速度=路程÷时刻(1)相遇问题:相向而行,甲走的路程+乙走的路程=总路程(2)追及问题:快行距-慢行距=原距(3)环形问题:同向动身甲走的路程—乙走的路程=环形周长反向动身甲走的路程+乙走的路程=环形周长(4)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.5.等积变形问题常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式V=底面积×高=S·h=πr2h②长方体的体积V=长×宽×高=abc③圆锥的面积V=底面积×高÷3=S·h/3=πr2h/36.数字问题一样可设个位数字为a,十位数字为b,百位数字为c.十位数可表示为10b+a,百位数可表示为100c+10b+a.然后抓住数字间或新数、原数之间的关系找等量关系列方程.7.年龄问题甲年龄增加数=乙年龄增加数年龄问题的要紧特点是:时刻发生转变,年龄在增加,可是年龄差始终不变。

(完整word)沪教版五年级列方程解应用题

(完整word)沪教版五年级列方程解应用题

4、运用列表法表格是处理数据的重要工具, 运用表格可以直观、简明地梳理复杂的数量关系, 寻找隐藏的规律。

如: 学校组织植树活动,已知在甲处植树的有23人,在乙处植树的有17人,现调20人去支援,使在甲处植树的人数是乙处植树人数的2倍,应调甲处乙处往甲、乙两处各多少人? 设应调往甲处x人, 题目中所涉及的有关数量及其关系可用下表表示:原有人数23 17增加人数x 20-x增加后的人数23+x 17+20-x4.用线形示意图法例.某小组计划做一批“中国结”, 如果每人做5个, 那么比计划多了9个;如果每人做4个, 那么比计划少了15个.该小组共有多少人?计划做多少个“中国结”?如何把问题中的等量关系的分析过程直观地展示出来?画线形示意图进行分析. (1)仿照(1)画出(2)的线形示意图.分析:解: 设该小组共有x人.(1)如果每人做5个“中国结”, 那么共做了5x个, 比计划多了9个.(2)如果每人做4个“中国结”, 那么共做了4x个, 比计划少了15个.3.食堂有煤若干, 原来每天烧煤3t, 用去15t后, 改进设备, 耗煤量为原来的一半, 结果多烧了10天. 求原存煤量.5.工程问题例 1.将一批资料录入电脑, 甲单独做需18h完成, 乙单独做需12h完成. 现在先由甲单独做8h, 剩下的部分由甲、乙合做完成,甲、乙两人合做了多少时间?思考1:工程类问题涉及三个量:工作量、工作时间、工作效率, 其中工作量=.思考2:如果把全部甲单独做的工作量甲、乙合做的工作量。

完整版)小学列方程解应用题

完整版)小学列方程解应用题

完整版)小学列方程解应用题1.列方程解应用题的意义列方程解应用题是一种解决应用问题的方法,通过将问题转化为方程,求得未知量的值。

这种方法可以应用于各种领域,如数学、物理、化学等。

2.列方程解答应用题的步骤列方程解答应用题的步骤包括:理解问题,确定未知数,找出等量关系,列方程,解方程,检查或验算,并写出答案。

3.列方程解应用题的方法列方程解应用题的方法有两种:综合法和分析法。

综合法是从已知到未知的思考过程,先将已知数和未知数列成代数式,再找出它们之间的等量关系,最后列出方程。

分析法是从未知到已知的思考过程,先找出等量关系,再根据需要列出代数式和方程。

4.列方程解应用题的范围列方程解应用题的范围包括一般应用题、倍数、差倍数问题、几何形体的周长、面积、体积计算、分数、百分数应用题、比和比例应用题等。

5.常见的一般应用题一般应用题的解法是以总量为等量关系建立方程。

例如,两列火车同时从距离536千米的两地相向而行,4小时相遇,慢车每小时行60千米,快车每小时行多少千米?解法是将快车和慢车的路程相加等于总路程,列出方程4X+60×4=536,解得快车每小时行驶74千米。

其他练题也可以用同样的方法解决。

电机厂计划生产1980台电动机,已经生产了4天,每天生产45台,由于改进了技术,以后每天比原来增产15台,实际完成任务需几天?假设完成任务需要x天,则前4天生产的电动机数量为4*45=180台,剩余的电动机数量为1980-180=1800台。

由于以后每天比原来增产15台,所以每天的产量为45+15=60台。

因此,完成剩余的1800台电动机需要1800/60=30天。

所以,实际完成任务需要4+30=34天。

练一练:①学校买来乒乓球和蓝球一共135个,买来的乒乓球是蓝球的8倍,两种球各多少个?设蓝球有x个,则乒乓球有8x个。

因此,x+8x=135,解得x=15,即蓝球有15个,乒乓球有120个。

②有一个上下两层的书架一共放了240书,上层放的书是下层的2倍,两层书架各放书多少本?设下层放的书有x本,则上层放的书有2x本。

(完整版)小学列方程解应用题练习题

(完整版)小学列方程解应用题练习题

The shortest way to do many things is
精品文档
少 80 千克.运来苹果多少千克?
10、买 4 枝钢笔比买 5 枝圆珠笔要多花 2.2 元,每
枝圆珠笔的价钱是 0.6 元,每枝钢笔是多少元?
11、甲乙两地相距 360 千米,一辆货车从甲地开往
乙地 1.5 小时后,一辆客车从乙地往甲地开出,货车每小时
布鞋每双 5.9 元,全部卖出后,胶鞋比布鞋多收入 10 元。
问:胶鞋有多少双?
32、 两袋大米,甲袋重 65 千克,乙袋重 45 千
克,要使两袋大米的重量相等,应从甲袋里取出多少千克
放入乙袋?
33、 学校分苹果,五年级老师分 50 千克,比四
年级老师分的 2 倍少 2 千克。四年级老师分多少千克?
The shortest way to do many things is
精品文档
小学列方程解应用题练习题
1、 运送 29.5 吨煤,先用一辆载重 4 吨的汽车运 3 次,
剩下的用一辆载重为 2.5 吨的货车运。还要运几次才能运
完?
2、一块梯形田的面积是 90 平方米,上底是 7 米,
下底是 11 米,它的高是几米?
8、一批煤,每天烧 3.6 吨,可以烧 30 天,如果
每天烧 2.4 吨,可以烧多少天?
2016 全新精品资料-全新公文范文-全程指导写作 –独家原创 1 / 13
The shortest way to do many things is
精品文档
9、 一只足球 46.8 元,比一只排球价钱的 3 倍少
18、一个等腰三角形的周长是 86 厘米,底是 38
厘米.它的腰是多少厘米?

第四讲 列方程解应用题

第四讲列方程解应用题第四讲列方程解应用题知识点:一、列方程解应用题的解题思路列方程解应用题就是用字母表示应用题中的未知数,根据等量关系列出方程,再解所列的方程,得到答案。

二、列方程解应用题的一般步骤1、弄清题意,找出未知数并用x表示2、找出应用题中数量间的相等关系,列方程。

这里等量关系大体有三种:(1)、以一般数量关系为等量关系式(2)、以公式为等量关系式(3)、以典型“关系句”为等量关系式3、解方程4、检验或验算,写出答案。

例题:1、水果店运来苹果490千克,比运来的梨的2倍还多10千克,运来梨多少千克?解:设运来的梨有x千克,根据题意可以列出方程:解得:答:运来的梨有千克。

问:你认为此题还可以列出别的方程吗?如果可以,请尝试再列出两个:由此,我们可以得出:同一个问题,可以列出不只个方程。

这些方程都有一个共同特点,就是它们都满足此题的。

2、甲、乙两辆汽车从相距324千米的两地同时相对开出,经6小时后在途中相4遇,甲车的速度是乙车的速度的。

甲车每小时行多少千米?5解:设甲车每小时行x千米,根据题意列出方程:解得:答:甲车每小时行千米。

问:你认为此题还可以列出别的方程吗?如果可以,请尝试再列出两个:53、某小学六年级(1)班有若干个学生,其中男生占,后来又转来了6个男121生,这时男生正好占全班人数的,这个班现在有男生多少个?24、父子俩今年的年龄和是70岁,7年后,父亲的年龄是儿子的2倍。

求父亲和儿子今年各是多少岁。

5、松鼠妈妈采松子,晴天每天可采20个,雨天每天可采12个。

它一连几天采了112个松子,平均每天采14个。

问:这几天中有几天是雨天?6、甲、乙、丙、丁四个数的和是100,如果甲数加4,乙数减4,丙数乘4,丁数除以4,则四个数相等。

四个数原来各是多少?练习:一、填空。

根据题意列出方程。

1、车上原有46名乘客,到甲站后,下去了一些乘客又上来8名乘客,现在车上正好有50名乘客,从甲站下去了几名乘客?设从甲站下去了x名乘客,方程是:或。

五年级下册数学 总复习 列方程解应用题沪教版


叫做方程的解。
3.(
)叫解方程。
)的未知数的( )
课前回顾
三、用含有字母的式子表示下列数量关系。
①比 X 多7的数是(

②X 的1.5倍是(

③每支铅笔 X 元,买25支铅笔要用 (
)元。
④小明13岁,小红比小明大 X 岁,小红(
)岁。
⑤张丽去年身高 X 厘米,过一年长了3厘米,张丽今年

)厘米。
学以致用 二.
蓝鲸的寿命大约是100年。
比海象的3倍少20年。 海象的寿命大约是多少年?
五 年 级 下 册 数学 总 复 习 列 方 程 解应用 题沪教 版
五 年 级 下 册 数学 总 复 习 列 方 程 解应用 题沪教 版
学以致用 三.
地球上每分钟大约出生300个婴儿, 平均每秒大约有多少个婴儿出生?
列方程解应用题
(又快又准,才最棒!)
2.3×3= 1.2×6= 4.5×2= 0.22×4= 1.12×4=
7.2÷9= 5.4÷6= 4.8÷6= 3.6÷0.6= 0.36÷0.2=
3X=18 5X=35 7X=42 6X=36
0.2X=10
课前练习
填一填:
1.(
)叫方程。
2.使(
)左右两边(
五 年 级 下 册 数学 总 复 习 列 方 程 解应用 题沪教 版
谢谢!
五 年 级 下 册 数学 总 复 习 列 方 程 解应用 题沪教 版
五 年 级 下 册 数学 总 复 习 列 方 程 解应用 题沪教 版 五 年 级 下 册 数学 总 复 习 列 方 程 解应用 题沪教 版
五 年 级 下 册 数学 总 复 习 列 方 程 解应用 题沪教 版

小学思维数学:列方程解应用题-带详解

1、会解一元一次方程2、根据题意寻找等量关系的方法来构建方程3、合理规划等量关系,设未知数、列方程知识点说明:一、等式的基本性质1、等式的两边同时加上或减去同一个数,结果还是等式.2、等式的两边同时乘以或除以同一个不为零的数,结果还是等式.二、解一元一次方程的基本步骤1、去括号;2、移项;3、未知数系数化为1,即求解。

三、列方程解应用题(一)、列方程解应用题是用字母来代替未知数,根据等量关系列出含有未知数的等式,然后解出未知数的值.这个含有未知数的等式就是方程.列方程解应用题的优点在于可以使未知数直接参加运算.解这类应用题的关键在于能够正确地设立未知数,找出等量关系从而建立方程.(二)、列方程解应用题的主要步骤是1、审题找出题目中涉及到的各个量中的关键量,这个量最好能和题目中的其他量有着紧密的数量关系;2、设这个量为x ,用含x 的代数式来表示题目中的其他量;3、找到题目中的等量关系,建立方程;4、运用加减法、乘除法的互逆关系解方程;5、通过求到的关键量求得题目答案.板块一、直接设未知数【例1】长方形周长是64厘米,长比宽多3厘米,求长方形的长和宽各是多少厘米?【考点】列方程解应用题【难度】2星【题型】解答【解析】解:设长方形的宽是x 厘米,则长方形的长3x ()厘米例题精讲知识精讲教学目标列方程解应用题[3]266366233323015x x x x x x x x ()() 15318(厘米)答:长方形的长18厘米,长方形的宽是15厘米.【答案】长方形的长18厘米,长方形的宽是15厘米【巩固】一个三角形的面积是18平方厘米,底是9厘米,求三角形的高是多少厘米?【考点】列方程解应用题【难度】2星【题型】解答【解析】解:设三角形的高是x 厘米,则有92189364x x x 答:三角形的高是4厘米.【答案】三角形的高是4厘米【巩固】(全国小学数学奥林匹克)一个半圆形区域的周长等于它的面积,这个半圆的半径是.(精确到0.01,π 3.14)【考点】列方程解应用题【难度】2星【题型】解答【解析】设半圆的半径为r ,则21π2π2r r r ,即π2π2r ,所以,半圆的半径42 3.27πr .【答案】半圆的半径42 3.27πr 【例2】用边长相同的正六边形白色皮块、正五边形黑色皮块总计32块,缝制成一个足球,如图所示,每个黑色皮块邻接的都是白色皮块;每个白色皮块相间地与3个黑色皮块及3个白色皮块相邻接.问:这个足球上共有多少块白色皮块?【考点】列方程解应用题【难度】3星【题型】解答【解析】设这个足球上共有x 块白色皮块,则共有3x 条边是黑白皮块共有的.另一方面,黑色皮块有32x ()块,共有532x ()条边是黑白皮块共有的(如图).由于在这个足球上黑白皮块共有的边是个定值,列得方程:3532x x (),解得20x .即这个足球上共有20块白色皮块.【答案】共有20块白色皮块【例3】(2003年全国小学数学奥林匹克)某八位数形如2abcdefg ,它与3的乘积形如4abcdefg ,则七位数abcdefg 应是.【考点】列方程解应用题【难度】3星【题型】解答【解析】设x abcdefg ,则(20000000)3104x x ,759999996x ,8571428x ,即七位数应是8571428【答案】8571428【巩固】有一个六位数1abcde 乘以3后变成1abcde ,求这个六位数.【考点】列方程解应用题【难度】3星【题型】解答【解析】解:设x abcde ,则有六位数1x 和1x ,有1000003101x x (),解得42857x ,所以原六位数是142857.【点评】本题的巧妙之处在于abcde 始终没有分开,所以我们把它看作一个整体.【答案】142857【巩固】有一个五位数,在它后面写上一个7,得到一个六位数;在它前面写上一个7,也得到一个六位数.如果第二个六位数是第一个六位数的5倍,那么这个五位数是.【考点】列方程解应用题【难度】3星【题型】解答【关键词】迎春杯【解析】设五位数是x ,那么第一个六位数是107x ,第二个六位数是700000x .依题意列方程7000005107x x (),解得14285x .【答案】14285【例4】有三个连续的整数,已知最小的数加上中间的数的两倍再加上最大的数的三倍的和是68,求这三个连续整数.【考点】列方程解应用题【难度】3星【题型】解答【解析】设最小的那个数为x ,那么中间的数和最大的数分别为1x 和2x .则2(1)3(2)68x x x 6868x 660x 10x .所以这三个连续整数依次为10、11、12.【答案】10、11、12【巩固】已知三个连续奇数之和为75,求这三个数。

(2021年整理)北师大版小学数学专题讲解——列方程解应用题

北师大版小学数学专题讲解——列方程解应用题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(北师大版小学数学专题讲解——列方程解应用题)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为北师大版小学数学专题讲解——列方程解应用题的全部内容。

北师大版小学数学专题讲解--列方程解应用题【基础训练】(一)根据题意把方程补充完整:1、三角形的面积是25。

6平方厘米,高是6.4厘米,底边长x厘米。

=25。

62、一个圆锥的体积是25。

12立方分米,它的底面半径是x分米,高是6分米。

= 25。

123、李娟同学买了2支圆珠笔与3本练习本,共付7.2元,每本练习本X元,每本练习本Y元。

=7。

24、水果店运来苹果420千克,每25千克装一箱,装了x箱后还剩下20千克。

=205、洗衣机厂今年每日生产洗衣机260台,比去年平均日产量的2.5倍少40台,去年平均日产洗衣机多少台?解:设。

6、用一根铁丝可以围成一个边长是4厘米的正方形,还用这根铁丝,围成一个宽是2厘米的长方形,这个长方形的长是多少厘米?解:设 .7、两艘货船同时从一个码头出发,各往东西方向行驶。

甲船每小时行驶30千米,乙船每小时行驶42千米,航行几小时后两轮船相距252千米?解:设。

(二)列方程解应用题:1、某建筑队修筑一段公路,原计划每天修56米,15天完成,实际上每天多修4米,实际用了几天?2、两个车间共有150人,如果从一车间调出50人,这时一车间人数是二车间的32,二车间原有多少人?3、甲筐苹果的重量是乙筐的3倍.如果从甲筐取出20千克放入乙筐,那么两筐苹果的重量就相等。

两筐原来各有苹果多少千克?4、师徒二人共加工208个零件,师傅加工的零件数比徒弟的2倍还多4个。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学五年级奥数专题讲座23:列方程解应用题
奥数梦园 2009-12-11 21:58:57 阅读2655 评论3 字号:大中小订阅
第23讲列方程解应用题
有些数量关系比较复杂的应用题,用算术方法求解比较困难。

此时,如果能恰当地假设一个未知量为x(或其它字母),并能用两种方式表示同一个量,其中至少有一种方式含有未知数x,那么就得到一个含有未知数x的等式,即方程。

利用列方程求解应用题,数量关系清晰、解法简洁,应当熟练掌握。

例1商店有胶鞋、布鞋共46双,胶鞋每双7.5元,布鞋每双5.9元,全部卖出后,胶鞋比布鞋多收
入10元。

问:胶鞋有多少双?
分析:此题几个数量之间的关系不容易看出来,用方程法却能清楚地把它们的关系表达出来。

设胶鞋有x双,则布鞋有(46-x)双。

胶鞋销售收入为7.5x元,布鞋销售收入为5.9(46-x)元,
根据胶鞋比布鞋多收入10元可列出方程。

解:设有胶鞋x双,则有布鞋(46-x)双。

7.5x-5.9(46-x)=10,
7.5x-271.4+5.9x=10,
13.4x=281.4,
x=21。

答:胶鞋有21双。

分析:因为题目条件中黄球、蓝球个数都是与红球个数进行比较,所以
答:袋中共有74个球。

在例1中,求胶鞋有多少双,我们设胶鞋有x双;在例2中,求袋中共有多少个球,我们设红球有x 个,求出红球个数后,再求共有多少个球。

像例1那样,直接设题目所求的未知数为x,即求什么设什么,这种方法叫直接设元法;像例2那样,为解题方便,不直接设题目所求的未知数,而间接设题目中另外一个未知数为x,这种方法叫间接设元法。

具体采用哪种方法,要看哪种方法简便。

在小学阶段,大多数题目可
以使用直接设元法。

例3某建筑公司有红、灰两种颜色的砖,红砖量是灰砖量的2倍,计划修建住宅若干座。

若每座住宅使用红砖80米3,灰砖30米3,那么,红砖缺40米3,灰砖剩40米3。

问:计划修建住宅多少座?
分析与解一:用直接设元法。

设计划修建住宅x座,则红砖有(80x-40)米3,灰砖有(30x+
40)米3。

根据红砖量是灰砖量的2倍,列出方程
80x-40=(30x+40)×2,
80x-40=60x+80,
20x=120,
x=6(座)。

分析与解二:用间接设元法。

设有灰砖x米3,则红砖有2x米3。

根据修建住宅的座数,列出方程。

(x-40)×80=(2x+40)×30,
80x-3200=60x+1200,
20x=4400,
x=220(米3)。

由灰砖有220米3,推知修建住宅(220-40)÷30=6(座)。

同理,也可设有红砖x米3。

留给同学们做练习。

例4教室里有若干学生,走了10个女生后,男生是女生人数的2倍,又走了9个男生后,女生
是男生人数的5倍。

问:最初有多少个女生?
分析与解:设最初有x个女生,则男生最初有(x-10)×2个。

根据走了10个女生、9个男生后,
女生是男生人数的5倍,可列方程
x-10=[(x-10)×2-9]×5,
x-10=(2x-29)×5,
x-10=10x-145,
9x=135,
x=15(个)。

例5一群学生进行篮球投篮测验,每人投10次,按每人进球数统计的部分情况如下表:
还知道至少投进3个球的人平均投进6个球,投进不到8个球的人平均投进3个球。

问:共有多
少人参加测验?
分析与解:设有x人参加测验。

由上表看出,至少投进3个球的有(x-7-5-4)人,投进不到8个球的有(x-3-4-1)人。

投中的总球数,既等于进球数不到3个的人的进球数加上至少投进3个球的人的进球
数,
0×7+1×5+2×4+6×(x-7-5-4)
=5+8+6×(x-16)
= 6x-83,
也等于进球数不到8个的人的进球数加上至少投进8个球的人的进球数,
3×(x-3-4-1)+8×3+9×4+10×1,
= 3×(x-8)+24+36+10
= 3x+46。

由此可得方程
6x-83=3x+46,
3x=129,
x=43(人)。

例6甲、乙、丙三人同乘汽车到外地旅行,三人所带行李的重量都超过了可免费携带行李的重量,需另付行李费,三人共付4元,而三人行李共重150千克。

如果一个人带150千克的行李,除免费部分外,应另付行李费8元。

求每人可免费携带的行李重量。

分析与解:设每人可免费携带x千克行李。

一方面,三人可免费携带3x千克行李,三人携带150千克行李超重(150-3x)千克,超重行李每千克应付4÷(150-3x)元;另一方面,一人携带150千克行李超重(150-x)千克,超重行李每千克应付8÷(150-x)元。

根据超重行李每千克应付的钱数,可列方程
4÷(150-3x)=8÷(150-x),
4×(150-x)=8×(150-3x),
600-4x=1200-24x,
20x=600,
x=30(千克)。

练习23
还剩60元。

问:甲、乙二人各有存款多少元?
有多少溶液?
3.大、小两个水池都未注满水。

若从小池抽水将大池注满,则小池还剩5吨水;若从大
池抽水将小池注满,则大池还剩30吨水。

已知大池容积是小池的1.5倍,问:两池中共有多少吨
水?
4.一群小朋友去春游,男孩每人戴一顶黄帽,女孩每人戴一顶红帽。

在每个男孩看来,黄
帽子比红帽子多5顶;在每个女孩看来,黄帽子是红帽子的2倍。

问:男孩、女孩各有多少人?
5.教室里有若干学生,走了10个女生后,男生人数是女生的1.5倍,又走了10个女生后,
男生人数是女生的4倍。

问:教室里原有多少个学生?
含金多少克?
7.一位牧羊人赶着一群羊去放牧,跑出一只公羊后,他数了数羊的只数,发现剩下的羊中,公羊与母羊的只数比是9∶7;过了一会跑走的公羊又回到了羊群,却又跑走了一只母羊,牧羊人又数了数羊的只数,发现公羊与母羊的只数比是7∶5。

这群羊原来有多少只?。

相关文档
最新文档