1.1回归分析的基本思想及其初步应用
《回归分析的基本思想及其初步应用》

线性关系, 则选用线性回归方程y bx a );
4 按一定规则估计回归方程中的参数 ( 如最小二
乘法); 5 得出结果后分析残差图是否有异常 (个别数据对
应残差过大, 或残差呈现不随机的规律性等等), 若存 在异常, 则检查数据是否有误, 或模型是否合适等.
2014-4-24
2014-4-24
b 0.849是斜率的估计值, 说明身高x每增加 1个单位时, 体重y就增加0.849个单位, 这表明 体重与身高具有正的线性相关关系如何描述 . 它们之间线性相关关系的强弱 ?
2014-4-24
探究 身高 172cm的 女大学生的体重一定 是 60.316kg 吗 ? 如果 不是, 其原因是什么? 显然, 身高172cm的女
x
180
ˆ y bx a 2014-4-24
图1.1 1
从图1.1 1中可以看出, 样本点呈条状分布 , 身 高和体 重有比 较好的 线性相关关系 ,因此可 以用线 性回归方程刻
y
70 65 60 55 50 45 40 150 155 160 165 170 175
x
180
画它们之间的关系. 根据探究中的公式 1 和 2 , 可以得到
函数关系中的两个变量间是一种确定性关系 相关关系是一种非确定性关系 函数关系是一种理想的关系模型 相关关系在现实生活中大量存在,是更一 般的情况
2014-4-24
在现实中 , 我们经常会遇到类似下 面的问题 : 肺癌是严重威胁人类性命的一种疾病 , 吸烟 与患肺癌有关系吗 ? 肥胖是影响人类健康的 一个重要因素,身高和 体重之间是否存在 线 性相关关系 ? 等等.
不能用女大学生的身高和体重之间的回归方程, 描述 女运动员的身高和体重之间的关系同样 . , 不能用生长 在南方多雨地区的树木的高与直径之间的回归方程, 描述北方干旱地区的树木的高与直径之间的关系.
1[1].1回归分析的基本思想及其初步应用
![1[1].1回归分析的基本思想及其初步应用](https://img.taocdn.com/s3/m/adaa57d3ad51f01dc281f1d2.png)
求根据女大学生的身高预报体重的回归方程,并 预报一名身高为172cm的女大学生的体重.
例1
从某大学中随机选出8名女大学生……
解:由于问题中要求根据身高预报体重,因此选取
61 (0.849 165 85.712) 6.627
0.849 x 85.712 y
编 号 身 高 体 重 1 165 48 2 165 57 3 157 50 4 170 54 5 175 64 6 165 61 7 155 43 8 170 59
残差平方和
把每一个残差所得的值平方后加起来,用数学符号表示为: n ( yi i ) 2 称为残差平方和 y
结合例1除了身高影响体重外的其他因素是不可测量的,不能希望有某种方法获 取随机误差的值以提高预报变量的估计精度,但却可以估计预报变量观测值中所 包含的随机误差,这对我们查找样本数据中的错误和模型的评价极为有用,因此 在此我们引入残差概念。
残差
数据点和它在回归直线上相应位置的差异 ei =yi 称为 yi 相应于点(xi,yi ) 的残差。 例:编号为6的女大学生,计算随机误差的效应(残差)
身 高 与 体 重 残 差 图
异 常 点
• 错误数据 • 模型问题
误差与残差,这两个概念在某程度上具有很大的相似性, 都是衡量不确定性的指标,可是两者又存在区别。 误差与测量有关,误差大小可以衡量测量的准确性,误差 越大则表示测量越不准确。误差分为两类:系统误差与 随机误差。其中,系统误差与测量方案有关,通过改进测 量方案可以避免系统误差。随机误差与观测者,测量工具, 被观测物体的性质有关,只能尽量减小,却不能避免。 残差――与预测有关,残差大小可以衡量预测的准确性。 残差越大表示预测越不准确。残差与数据本身的分布特性, 回归方程的选择有关。
人教版A版高中数学选修1-2课后习题解答

人教版A版高中数学选修1-2课后习题解答高中数学选修1-2课后题答案第一章统计案例1.1 回归分析的基本思想及其初步应用回归分析是一种统计分析方法,用于探究自变量与因变量之间的关系。
它的基本思想是通过建立数学模型,利用已知数据进行拟合,从而预测或解释未知数据。
回归分析的初步应用包括简单线性回归和多元线性回归。
1.2 独立性检验的基本思想及其初步应用独立性检验是一种用于检验两个变量之间是否存在关联的方法。
其基本思想是通过观察两个变量之间的频数或频率分布,来判断它们是否相互独立。
独立性检验的初步应用包括卡方检验和Fisher精确检验。
第二章推理证明2.1 合情推理与演绎推理合情推理是指根据已知事实和常识,推断出可能的结论。
演绎推理是指根据已知的前提和逻辑规则,推导出必然的结论。
两种推理方法都有其适用的场合,需要根据具体情况进行选择。
2.2 直接证明与间接证明直接证明是指通过逻辑推理,直接证明所要证明的命题成立。
间接证明是指采用反证法或归谬法,证明所要证明的命题的否定不成立,从而推出所要证明的命题成立。
第三章数系的扩充与复数的引入3.1 数系的扩充与复数的概念数系的扩充是指在实数系的基础上引入新的数,使得一些原来不可解的方程可以得到解。
复数是指由实部和虚部组成的数,可以表示在平面直角坐标系中的点。
复数的引入扩充了数系,使得一些原本无解的方程可以得到解。
3.2 复数的代数形式的四则运算复数的代数形式是指将复数表示为实部和虚部的和的形式。
复数的四则运算包括加减乘除四种运算,可以通过对实部和虚部分别进行运算来得到结果。
第四章框图4.1 流程图流程图是一种用图形表示算法或过程的方法。
它由各种基本符号和连线构成,用于描述算法或过程的各个步骤及其执行顺序。
流程图可以帮助人们更好地理解算法或过程,从而提高效率。
4.2 结构图结构图是一种用于描述程序结构的图形表示方法。
它包括顺序结构、选择结构和循环结构三种基本结构,可以用来表示程序的控制流程。
2014年人教A版选修1-2课件 1.1 回归分析的基本思想及其初步应用

例1. 从某大学中随机选取 8 名女大学生, 其身高和 体重数据如下表所示: 1 2 3 4 5 6 7 8 编号 165 165 157 170 175 165 155 170 身高 64 61 43 59 体重/kg 48 57 50 54 由最小二乘法得 求根据女大学生的身高预报体重的回归方程 , 并预报一名 n n n 1 1 身高为 172 cm 的女大学生的体重 . xi , y = yi . x = x y n x y i i n i =1 n i =1 i = 1 由身高预报体重 解: b= n ,, 则以身高为自变量 x, 体重为 2 2 得 b ≈0.849, x n x 因变量 y , 画出散点图 . i 70 i =1 a= 85.712. 60 由图看出样本点呈条状 a = y bx . 50 分布, 于是得回归直线的方程为 身高和体重有较好的 ˆ40 y = 0.849x 85.712. 30 线性相关关系. ˆ = 60.316. 20 当 x=172 时, y 10 设回归直线为 y=bx+a. 0 ∴ 预计这位大学生的体重大约 60 kg. 150 155 160 165 170 175 180
例1. 从某大学中随机选取 8 名女大学生, 其身高和 体重数据如下表所示: 编号 身高 体重/kg 1 2 3 4 5 6 7 8 165 165 157 170 175 165 155 170 48 57 50 54 64 61 43 59
求根据女大学生的身高预报体重的回归方程, 并预报一名 身高为 172 cm 的女大学生的体重. 解: 由身高预报体重, 则以身高为自变量 x, 体重为 因变量 y, 画出散点图. 70 60 由图看出样本点呈条状 50 分布, 身高和体重有较好的 40 30 线性相关关系. 20 10 设回归直线为 y=bx+a. 0
1-1 回归分析的基本思想及其初步应用

基础巩固强化一、选择题1.下列变量之间的关系不是相关关系的是( )A .已知二次函数y =ax 2+bx +c ,其中a ,c 是已知常数,取b 为自变量,因变量是这个函数的判别式Δ=b 2-4acB .光照时间和果树亩产量C .降雪量和交通事故发生D .每亩用肥料量和粮食亩产量 [答案] A2.(2010·湖南文,3)某商品销售量y (件)与销售价格x (元/件)负相关,则其回归方程可能是( )A.y ^=-10x +200B.y ^=10x +200C.y ^=-10x -200D.y ^=10x -200[答案] A[解析] 本题主要考查变量的相关性.由负相关的定义排除B ,D ,由x =1时,y >0排除C.3.某化工厂为预测某产品的回收率y ,需要研究它和原料有效成分含量x 之间的相关关系,现取了8对观察值,计算得∑i =18x i =52,∑i =18yi =228,∑i =18x 2i =478,∑i =1nx i y i =1 849,则y 与x 的回归方程是( )A.y ^=11.47+2.62xB.y ^=-11.47+2.62xC.y^=2.62+11.47xD.y^=11.47-2.62x[答案] A4.对变量x、y有观测数据(x i,y i)(i=1,2,…,10),得散点图①;对变量u、v有观测数据(u i,v i)(i=1,2,…,10),得散点图②.由这两个散点图可以判断()A.变量x与y正相关,u与v正相关B.变量x与y正相关,u与v负相关C.变量x与y负相关,u与v正相关D.变量x与y负相关,u与v负相关[答案] C[解析]观察图象易知选项C正确.5.已知某车间加工零件的个数x与所花费时间y(h)之间的线性回归方程为y^=0.01x+0.5,则加工600个零件大约需要__________h.()A.6.5 B.5.5C.3.5 D.0.5[答案] A[解析]将x=600代入回归方程即得A.6.关于随机误差产生的原因分析正确的是()(1)用线性回归模型来近似真实模型所引起的误差;(2)忽略某些因素的影响所产生的误差;(3)对样本数据观测时产生的误差;(4)计算错误所产生的误差.A.(1)(2)(4)B.(1)(3)C.(2)(4) D.(1)(2)(3)[答案] D[解析]理解线性回归模型y=bx+a+e中随机误差e的含义是解决此问题的关键,随机误差可能由于观测工具及技术产生,也可能因忽略某些因素产生,也可以是回归模型产生,但不是计算错误.二、填空题7.回归分析是处理变量之间________关系的一种数量统计方法.[答案]相关[解析]回归分析是处理变量之间相关关系的一种数量统计方法.8.已知回归直线方程为y^=0.50x-0.81,则x=25时,y的估计值为________.[答案]11.69[解析]y的估计值为0.50×25-0.81=11.69.9.在线性回归模型中,R2表示________对预报变量变化的贡献率,R2越________,表示回归模型的拟合效果越好.[答案]解释变量接近1三、解答题10.某工厂的产品产量与单位成本的资料如下表所示,请进行线性回归分析.[解析] 设回归直线方程为y =b x +a, x =216,y =4266=71,∑i =16x 21=79,∑i =16x i y i =1 481,∴b ^=1481-6×216×7179-6×⎝ ⎛⎭⎪⎫2162=-105.5≈-1.818 2,a ^=71-(-1.818 2)×216≈77.36. 回归直线方程为y ^=77.36-1.818 2x .由回归系数b ^为-1.818 2知,产量每增加1 000件,单位成本下降约1.82元.。
1.1回归分析的基本思想及其初步应用

ˆ y
160
(2)从散点图还可以看到,样本点散布在某一条 直线的附近,而不是一条直线上,所以不能用一次 函数y=bx+a来描述它们之间的关系。这时我 们用下面的线性回归模型来描述身高和体重的关系: y=bx+a+e其中a和b为模型的未知参数,e ˆ 是y与 y之间的误差,通常e称为随机误差。
图表标题 80 60 40 20 0 150 160 170 180
模 分 析 拟
y = f(x)
y = f(x)
1、定义: 自变量取值一定时,因变量的取值带有一定随
机性的两个变量之间的关系叫做相关关系。 1):相关关系是一种不确定性关系; 注 2):对具有相关关系的两个变量进行
统计分析的方法叫回归分析。 2、现实生活中存在着大量的相关关系。
如:人的身高与年龄;产品的成本与生产数量;
建立回归模型的基本步骤:
(1)确定研究对象,明确哪个变量是解释变量,哪个变 量是预报变量;
(2)画出确定好的解释变量和预报变量的散点图,观察 它们之间的关系(是否存在线性关系); 是否存在线性关系
(3)由经验确定回归方程的类型(如观察到数据呈线性关 系,则选用线性回归方程y=bx+a); (4)按一定规则估计回归方程中的参数(如最小二乘 法); (5)得出结果后分析残差图是否异常(个别数据对应残 差过大,或残差呈现不随机的规律性等),若存在异常, 则检查数据是否有误,或模型是否合适等.
n (xi -x)(yi -y) b= i=1 ˆ = n 2 (xi -x) i=1 ˆ a=y-bx. ˆ
x y
i=1 n
n
i i 2
- nxy - nx
2
x
i=1
高中数学《1.1回归分析的基本思想及其初步应用》教案2 新人教A版选修1-2
11.1回归分析的基本思想及其初步应用(二)教学要求:通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用. 教学重点:了解评价回归效果的三个统计量:总偏差平方和、残差平方和、回归平方和. 教学难点:了解评价回归效果的三个统计量:总偏差平方和、残差平方和、回归平方和. 教学过程:一、复习准备:1.由例1知,预报变量(体重)的值受解释变量(身高)或随机误差的影响.2.为了刻画预报变量(体重)的变化在多大程度上与解释变量(身高)有关?在多大程度上与随机误差有关?我们引入了评价回归效果的三个统计量:总偏差平方和、残差平方和、回归平方和. 二、讲授新课:1. 教学总偏差平方和、残差平方和、回归平方和:(1)总偏差平方和:所有单个样本值与样本均值差的平方和,即21()ni i SST y y ==-∑.残差平方和:回归值与样本值差的平方和,即21()ni i i SSE y y ==-∑. 回归平方和:相应回归值与样本均值差的平方和,即21()ni i SSR y y ==-∑. (2)学习要领:①注意i y 、 i y 、y 的区别;②预报变量的变化程度可以分解为由解释变量引起的变化程度与残差变量的变化程度之和,即222111()()()n n ni i i i i i i y y y y y y ===-=-+-∑∑∑;③当总偏差平方和相对固定时,残差平方和越小,则回归平方和越大,此时模型的拟合效果越好;④对于多个不同的模型,我们还可以引入相关指数 22121()1()nii i n ii yy R yy ==-=--∑∑来刻画回归的效果,它表示解释变量对预报变量变化的贡献率. 2R 的值越大,说明残差平方和越小,也就是说模型拟合的效果越好. 2. 教学例题:为了对x 、Y 两个变量进行统计分析,现有以下两种线性模型: 6.517.5y x =+,717y x =+,试比较哪一个模型拟合的效果更好.分析:既可分别求出两种模型下的总偏差平方和、残差平方和、回归平方和,也可分别求出两种模型下的相关指数,然后再进行比较,从而得出结论. (答案:52211521()155110.8451000()i i i ii y y R y y ==-=-=-=-∑∑,221R =-521521()18010.821000()iii ii y y y y ==-=-=-∑∑,84.5%>82%,所以甲选用的模型拟合效果较好.)3. 小结:分清总偏差平方和、残差平方和、回归平方和,初步了解如何评价两个不同模型拟合效果的好坏.第三课时。
1.11 回归分析的基本思想及其初步应用(文、理)
1.1 回归分析的基本思想及其初步应用【学习目标】1. 通过对实际问题的分析,了解回归分析的必要性与回归分析的一般步骤。
2. 能作出散点图,能求其回归直线方程。
3. 会用所学的知识对简单的实际问题进行回归分析。
【要点梳理】要点一、变量间的相关关系1. 变量与变量间的两种关系:(1) 函数关系:这是一种确定性的关系,即一个变量能被另一个变量按照某种对应法则唯一确定.例如圆的面积.S 与半径r 之间的关系S=πr 2为函数关系.(2)相关关系:这是一种非确定性关系.当一个变量取值一定时,另一个变量的取值带有一定的随机性,这两个变量之间的关系叫做相关关系。
例如人的身高不能确定体重,但一般来说“身高者,体重也重”,我们说身高与体重这两个变量具有相关关系. 2. 相关关系的分类:(1)在两个变量中,一个变量是可控制变量,另一个变量是随机变量,如施肥量与水稻产量; (2)两个变量均为随机变量,如某学生的语文成绩与化学成绩. 3. 散点图:将两个变量的各对数据在直角坐标系中描点而得到的图形叫做散点图.它直观地描述了两个变量之间有没有相关关系.这是我们判断的一种依据. 4. 回归分析:与函数关系不同,相关关系是一种非确定性关系,对具有相关关系的两个变量进行统计分析的方法叫做回归分析。
要点二、线性回归方程:1.回归直线如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫作回归直线。
2.回归直线方程ˆˆˆybx a =+ 对于一组具有线性相关关系的数据11(,)x y ,22(,)x y ,……,(,)n n x y ,其回归直线ˆˆˆybx a =+的截距和斜率的最小二乘法估计公式分别为:121()()ˆ()niii ni i x x y y bx x ==--=-∑∑,ˆˆay bx =- 其中x 表示数据x i (i=1,2,…,n )的均值,y 表示数据y i (i=1,2,…,n )的均值,xy 表示数据x i y i (i=1,2,…,n )的均值.a、b 的意义是:以 a 为基数,x 每增加一个单位,y 相应地平均变化b 个单位. 要点诠释:①回归系数121()()ˆ()niii nii x x y y bx x ==--=-∑∑,也可以表示为1221ˆni ii nii x y nx ybxnx==-=-∑∑,这样更便于实际计算。
高中数学选修1-2第一章课后习题解答
新课程标准数学选修1—2第一章课后习题解答第一章统计案例1.1回归分析的基本思想及其初步应用练习(P8)1、画散点图的目的是通过变量的散点图判断两个变量更近似于什么样的函数关系,以确定是否直接用线性回归模型来拟合原始数据.说明:学生在对常用的函数图象比较了解的情况下,通过观察散点图可以判断两个变量的关系更近似于哪种函数.2、分析残差可以帮助我们解决以下两个问题:(1)寻找异常点,就是残差特别大的点,考察相应的样本数据是否有错.(2)分析残差图可以发现模型选择是否合适.说明:分析残差是回归诊断的一部分,可以帮助我们发现样本数据中的错误,分析模型选择是否合适,是否有其他变量需要加入到模型中,模型的假设是否正确等. 本题只要求学生能回答上面两点即可,主要让学生体会残差和残差图可以用于判断模型的拟合效果.3、(1)解释变量和预报变量的关系式线性函数关系.R=.(2)21说明:如果所有的样本点都在一条直线上,建立的线性回归模型一定是该直线,所以每个=+,没有随机误差项,是严样本点的残差均为0,残差平方和也为0,即此时的模型为y bx aR=.格的一次函数关系. 通过计算可得21习题1.1 (P9)1、(1)由表中数据制作的散点图如下:从散点图中可以看出GDP值与年份近似呈线性关系.y表示GDP值,t表示年份. 根据截距和斜率的最小二乘计算公式,得(2)用tˆ14292537.729a≈-,ˆ7191.969b≈从而得线性回归方程ˆ7191.96914292537.729=-.y t残差计算结果见下表.GDP 值与年份线性拟合残差表(年实际GDP 值为117251.9,所以预报与实际相差4275.540-.(4)上面建立的回归方程的20.974R =,说明年份能够解释约97%的GDP 值变化,因此所建立的模型能够很好地刻画GDP 和年份的关系.说明:关于2003年的GDP 值的来源,不同的渠道可能会有所不同.2、说明:本题的结果与具体的数据有关,所以答案不唯一.3、由表中数据得散点图如下:从散点图中可以看出,震级x 与大于或等于该震级的地震数N 之间不呈线性相关关系,随着x 的减少,所考察的地震数N 近似地以指数形式增长. 做变换lg y N =,得到的数据如下表所示.x 和y 的散点图如下:从这个散点图中可以看出x 和y 之间有很强的线性相关性,因此可以用线性回归模型拟合它们之间的关系. 根据截距和斜率的最小二乘计算公式,得ˆ 6.704a≈,ˆ0.741b ≈-, 故线性回归方程为 ˆ0.741 6.704y x =-+. 20.997R ≈,说明x 可以解释y 的99.7%的变化.因此,可以用回归方程 0.741 6.704ˆ10x N-+= 描述x 和N 之间的关系. 1.2独立性检验的基本思想及其初步应用练习(P15)列联表的条形图如图所示.由图及表直观判断,好像“成绩优秀与班级有关系”. 因为2K 的观测值0.653 6.635k ≈<,由教科书中表1-11克重,在犯错误的概率不超过0.01的前提下,不能认为“成绩与班级有关系”.说明:(1)教师应要求学生画出等高条形图后,从图形上判断两个分类变量之间是否有关系. 这里通过图形的直观感觉的结果可能会出错.(2)本题与例题不同,本题计算得到的2K 的观测值比较小,所以没有理由说明“成绩优秀与班级有关系”. 这与反证法也有类似的地方,在使用反证法证明结论时,假设结论不成立的条件下如果没有推出矛盾,并不能说明结论成立也不能说明结论不成立. 在独立性检验中,没有推出小概率事件发生类似于反证法中没有推出矛盾.习题1.2 (P16)1、假设“服药与患病之间没有关系”,则2K 的值应该比较小;如果2K 的值很大,则说明很可能“服药与患病之间没有关系”. 由列联表中数据可得2K 的观测值 6.110 5.024k ≈>,而由教科书表1-11,得2( 5.024)0.025P K ≥≈,所以在犯错误的概率不超过0.025的前提下可以认为“服药与患病之间有关系”. 又因为服药群体中患病的频率0.182小于没有服药群体中患病的频率0.400,所以“服药与患病之间关系”可以解释为药物对于疾病有预防作用. 因此在犯错误的概率不超过0.025的前提下,可以认为药物有效.说明:仿照例1,学生很容易完成此题,但希望学生能理解独立性检验在这里的具体含义,即“服药与患病之间关系”可以解释为“药物对于疾病有预防作用”.2、如果“性别与读营养说明之间没有关系”,由题目中所给数据计算,得2K 的观测值为8.416k ≈,而由教科书中表1-11知2(7.879)0.005P K ≥≈,所以在犯错误的概率不超过0.005的前提下认为“性别与读营养说明之间有关系”.3、说明:需要收集数据,所有没有统一答案. 第一步,要求学生收集并整理数据后得到列联表;第二步,类似上面的习题做出判断.4、说明:需要从媒体上收集数据,学生关心的问题不同,收集的数据会不同. 第一步,要求学生收集并整理数据后得到列联表;第二步,类似上面的习题做出判断.第一章 复习参考题A 组(P19)根据散点图,可以认为中国人口总数与年份呈现很强的线性相关关系,因此选用线性回归模型建立回归方程.由最小二乘法的计算公式,得 2095141.503a ≈-,1110.903b ≈,则线性回归方程为 ˆ1110.9032095141.503yx =-. 由2R 的计算公式,得 20.994R ≈,明线性回归模型对数据的拟合效果很好.根据回归方程,,预计2003年末中国人口总数约为129997万人,而实际情况为129227万人,预测误差为770万人;预计2004年末中国人口总数约为131108万人,而实际情况为129988万人,预测误差为1120万人.说明:数据来源为《中国统计年鉴》(2003). 由于人数为整数,所以预测的数据经过四舍五入的取整运算.2、(1)将销售总额作为横轴,利润作为纵轴,根据表中数据绘制散点图如下:由于散点图中的样本点基本上在一个带形区域内分布,猜想销售总额与利润之间呈现线性相关关系.(2)由最小二乘法的计算公式,得 ˆ1334.5a≈,ˆ0.026b ≈, 则线性回归方程为 ˆ0.0261334.5yx =+ 其残差值计算结果见下表:(3)对于(2)中所建立的线性回归方程,20.457R ≈,说明在线性回归模型中销售总额只能解释利润变化的46%,所以线性回归模型不能很好地刻画销售总额和利润之间的关系. 说明:此题也可以建立对数模型或二次回归模型等,只要计算和分析合理,就算正确.3、由所给数据计算得2K 的观测值为 3.689k ≈,而由教科书中表1-11知2( 2.706)0.10P K ≥=所以在犯错误的概率不超过0.10的前提下认为“婴儿的性别与出生的时间有关系”.第一章 复习参考题B 组(P19)1、因为 21(,)()ni i i Q a b y a bx ==--∑21(()())n i i i y bx y bx a y bx ==--+--+∑ 2211()()n n i i i i y bx y bx a y bx ===--++-+∑∑12()()ni i i y bx y bx a y bx =---+-+∑ 并且221()()n i a y bx n a y bx =-+=-+∑,12()()n i i i y bx y bx a y bx =--+-+∑ 1()(())ni i i a y bx y bx ny nbx ==-+--+∑ ()()0a y b x n y n b xn y n b x=-+--+= 所以 221(,)()()ni i i Q a b y bx y bx n a y bx ==--++-+∑.考察上面的等式,等号右边的求和号中不包含a ,而另外一项非负,所以ˆa和ˆb 必然使得等号右边的最后一项达到最小值,即 ˆˆ0ay bx -+=, 即ˆˆy a bx =+. 2、总偏差平方和21()n i i y y =-∑表示总的效应,即因变量的变化效应;残差平方和21ˆ()ni i y y =-∑表示随机误差的效应,即随机误差的变化效应;回归平方和21ˆ()ni yy =-∑表示表示变量的效应,即自变量的变化效应. 等式 222111ˆˆ()()()n n n i ii i i y y y y y y ===-=-+-∑∑∑ 表示因变量的变化总效应等于随机误差的变化效应与自变量的变化效应之和.3、说明:该题主要是考察学生应用回归分析模型解决实际问题的能力,解答应该包括如何获取数据,如何根据散点图寻找合适的模型去拟合数据,以及所得结果的解释三方面的内容.。
最新回归分析练习题(有答案)
最新回归分析练习题(有答案)1.1回归分析的基本思想及其初步应⽤⼀、选择题 1. 某同学由x 与y 之间的⼀组数据求得两个变量间的线性回归⽅程为y bx a =+,已知:数据x 的平均值为2,数据y 的平均值为3,则 ( )A .回归直线必过点(2,3)B .回归直线⼀定不过点(2,3)C .点(2,3)在回归直线上⽅D .点(2,3)在回归直线下⽅2. 在⼀次试验中,测得(x,y)的四组值分别是A(1,2),B(2,3),C(3,4),D(4,5),则Y 与X 之间的回归直线⽅程为()A .$yx 1=+B .$y x 2=+C .$y 2x 1=+ D.$yx 1=-3. 在对两个变量x ,y 进⾏线性回归分析时,有下列步骤:①对所求出的回归直线⽅程作出解释;②收集数据(i x 、i y ),1,2i =,…,n ;③求线性回归⽅程;④求未知参数;⑤根据所搜集的数据绘制散点图如果根据可⾏性要求能够作出变量,x y 具有线性相关结论,则在下列操作中正确的是() A .①②⑤③④ B .③②④⑤① C .②④③①⑤ D .②⑤④③①4. 下列说法中正确的是()A .任何两个变量都具有相关关系B .⼈的知识与其年龄具有相关关系C .散点图中的各点是分散的没有规律D .根据散点图求得的回归直线⽅程都是有意义的5. 给出下列结论:(1)在回归分析中,可⽤指数系数2R 的值判断模型的拟合效果,2R 越⼤,模型的拟合效果越好;(2)在回归分析中,可⽤残差平⽅和判断模型的拟合效果,残差平⽅和越⼤,模型的拟合效果越好;(3)在回归分析中,可⽤相关系数r 的值判断模型的拟合效果,r 越⼩,模型的拟合效果越好;(4)在回归分析中,可⽤残差图判断模型的拟合效果,残差点⽐较均匀地落在⽔平的带状区域中,说明这样的模型⽐较合适.带状区域的宽度越窄,说明模型的拟合精度越⾼.以上结论中,正确的有()个.A .1B .2C .3D .4 6. 已知直线回归⽅程为2 1.5y x =-,则变量x 增加⼀个单位时(A.y 平均增加1.5个单位B.y 平均增加2个单位C.y 平均减少1.5个单位D.y 平均减少2个单位7. 下⾯的各图中,散点图与相关系数r 不符合的是()8. ⼀位母亲记录了⼉⼦3~9岁的⾝⾼,由此建⽴的⾝⾼与年龄的回归直线⽅程为?7.1973.93yx =+,据此可以预测这个孩⼦10岁时的⾝⾼,则正确的叙述是()A .⾝⾼⼀定是145.83cmB .⾝⾼超过146.00cmC .⾝⾼低于145.00cmD .⾝⾼在145.83cm 左右9. 在画两个变量的散点图时,下⾯哪个叙述是正确的( ) (A)预报变量在x 轴上,解释变量在y 轴上 (B)解释变量在x 轴上,预报变量在y 轴上 (C)可以选择两个变量中任意⼀个变量在x 轴上 (D)可以选择两个变量中任意⼀个变量在y 轴上10. 两个变量y 与x 的回归模型中,通常⽤2R 来刻画回归的效果,则正确的叙述是()A. 2R 越⼩,残差平⽅和⼩B. 2R 越⼤,残差平⽅和⼤C. 2R 于残差平⽅和⽆关 D. 2R 越⼩,残差平⽅和⼤ 11. 两个变量y 与x 的回归模型中,分别选择了4个不同模型,它们的相关指数2R 如下,其中拟合效果最好的模型是( )A.模型1的相关指数2R 为0.98B.模型2的相关指数2R 为0.80C.模型3的相关指数2R 为0.50 D.模型4的相关指数2R 为0.2512. 在回归分析中,代表了数据点和它在回归直线上相应位置的差异的是( ) A.总偏差平⽅和 B.残差平⽅和 C.回归平⽅和 D.相关指数R 2产率为1000元时,⼯资为90元14. 下列结论正确的是()①函数关系是⼀种确定性关系;②相关关系是⼀种⾮确定性关系;③回归分析是对具有函数关系的两个变量进⾏统计分析的⼀种⽅法;④回归分析是对具有相关关系的两个变量进⾏统计分析的⼀种常⽤⽅法.A.①②B.①②③C.①②④D.①②③④15. 已知回归直线的斜率的估计值为1.23,样本点的中⼼为(4,5),则回归直线⽅程为()A.$1.234y x =+B.$1.235y x =+ C.$1.230.08y x =+ D.$0.08 1.23y x =+ ⼆、填空题16. 在⽐较两个模型的拟合效果时,甲、⼄两个模型的相关指数2R 的值分别约为0.96和0.85,则拟合效果好的模型是.17. 在回归分析中残差的计算公式为.18. 线性回归模型y bx a e =++(a 和b 为模型的未知参数)中,e 称为.19. 若⼀组观测值(x 1,y 1)(x 2,y 2)…(x n ,y n )之间满⾜y i =bx i +a+e i (i=1、2.…n)若e i 恒为0,则R 2为_____三、解答题20. 调查某市出租车使⽤年限x和该年⽀出维修费⽤y(万元),得到数据如下:使⽤年限x 2 3 4 5 6维修费⽤y2.2 3.8 5.5 6.5 7.0(2)由(1)中结论预测第10年所⽀出的维修费⽤.(121()()()ni iiniix x y yb==-?-=-=-∑∑)21. 以下是某地搜集到的新房屋的销售价格y和房屋的⾯积x的数据:(1)画出数据对应的散点图;(2)求线性回归⽅程,并在散点图中加上回归直线;(3)据(2)的结果估计当房屋⾯积为2150m时的销售价格.(4)求第2个点的残差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1,在下列各量之间存在相关关系的是( )
① ①正方体的体积与棱长之间的关系
② ②一块农田的水稻产量与施肥量之间的关系;
③ ③人的身高与年龄;
④ ④ 家庭的支出与收入;
⑤ ⑤某户家庭的用电量与电价之间的关系
A.②③
B. ③④
C. ④⑤
D. ②③④
答案:D
2,有下列说法:
① 线性回归分析就是由样本点去寻找一条直线,使之贴近这些样本点的数学方法;②利用
样本点的散点图可以直观判断两个变量的关系是否可以用线性关系表示;③通过回归方
程ˆˆˆy
bx a =+,可以估计和观测变量的取值和变化趋势;④因为由任何一组观测值都可以求的一个线性回归方程,所以没有必要进行相关性检验.
其中正确命题的个数是( )
A.1
B.2
C.3
D.4
答案:C ①反映的是最小二乘法思想,故正确;②反映的是画散点图的作用,也正确;
③解释的是回归方程ˆˆˆy
bx a =+的作用,故也正确;④是不正确的,在求回归方程之前必须进行相关性检验,以体现两变量的关系.
3, 已知一组具有线性相关关系的数据 ,其样本点的中心为(2,3),若其回归直线的斜率估计值为-1,2,则该回归直线的方程为( )
A. ˆ 1.22y
x =+ B. ˆ 1.23y x =+ C. ˆ 1.2 5.4y x =-+ D. ˆ 1.20.6y x =-+ 答案:C 由题意可设回归直线为,由于回归直线过样本点的中心(2,3),故有
ˆ3 1.22a
=-⨯+,解得ˆ 5.4a =,故回归直线方程为ˆ 1.2 5.4y x =-+.
4,设有一个回归方程为ˆ2 2.5y
x =-,当变量x 增加一个单位时,则( ) A. y 平均增加2.5个单位 B. y 平均增加2个单位
C. y 平均减少2.5个单位
D. y 平均减少2个单位
答案:C 因为题目给出的回归方程中x 的系数是-2.5,所以当x 增加一个单位时,y 平均减少2.5个单位.
5,根据如下样本数据:
得到的回归方程为ˆy
bx a =+,则( )
A. a>0,b<0
B. a>0,b>0
C.a<0,b<0
D.a<0,b>0
答案:A 可大致画出散点图如图所示,可判断a>0,b<0,故选A.
6,某产品的广告费用x 与销售额y 的统计数据如下表:
根据上表可得回归方程ˆˆˆy
bx a =+的ˆb 为9.4,据此模型预报广告费用为6万元时销售额为( )
A. 63.6万元
B. 65.5万元
C. 67.7万元
D.72.0万元
答案:B 因为4235492639543.5,4244
x y ++++++====,由数据的样本点的中心在回归线上且回归方程中的ˆ9.4b
=,所以ˆ429.4 3.5a =⨯+,即ˆa =9.1,所以线性回归方程是ˆ9.49.1y
x =+,所以当广告费用为6万元时,ˆ9.469.165.5y =⨯+=(万元)
7,已知回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则回归直线方程是_______.
答案:ˆ 1.230.08y
x =+ 由斜率的估计值为1.23,且回归直线一定经过样本点的中心(4,5),可得ˆ5 1.234a
=⨯+,解得ˆ0.08a
=,即ˆ 1.230.08y x =+.
8,已知x,y 的取值如下表:
若x,y 具有线性相关关系,且回归方程为ˆ0.95y
x a =+,则a 的值为___________.
答案:2.6 由已知得2, 4.5x y ==,而回归方程过点(,)x y ,则4.50.952a =⨯+,所以a=2.6.
9,某商场为了了解某品牌服装的月销量y (件)与月平均气温x (℃)之间的关系,随机统计了某4个月的月销量与当月平均气温,数据如下表:
由表中数据算出线性回归方程ˆˆˆy
bx a =+中的ˆ2b ≈-.气象部门预测下个月的平均气温约为6℃,据此估计,该商场下个月该品牌服装的销售量件数约为_________.
答案:46 由表格得(,)x y 为(10,38),又(,)x y 在回归直线ˆˆˆy
bx a =+上,且ˆ2b ≈-, ˆˆ38210,58a
a ∴=-⨯+=, ˆ258y
x ∴=-+,当x=6时,ˆ265846y =-⨯+=.
10,某物价部门对本市5家商场的某商品的一天销售量及价格进行调查,5家商场的售价x (元)和销售价y (件)之间的一组数据如表所示:
由散点图(图略)可知,销售量y 与价格x 之间有较强的线性相关关系,其线性回归直线方
程是ˆ 3.240y
x =-+,且m+n=20,则其中的n=_________. 答案:10
11(99.510.511)(40)55
x m m =++++=+, 11(11865)(30)55
y n n =++++=+. 因为其线性回归直线方程是ˆ 3.240y
x =-+, 所以11(30) 3.2(40)4055
n m +=-⨯++
即30 3.2(40)200n m +=-++,
又m+n=20,解得m=n=10.
11,在某种产品表面进行腐蚀刻线实验,得到腐蚀深度y与腐蚀时间x的一组数据如下表所示:
(1)请画出这组数据的散点图。
(2)根据散点图,你能得出什么结论?
(1)作出的散点图如图所示.
(2)根据散点图,可得结论:x与y是。