回归分析基本思想
回归分析的基本思想

思考:相关系数r与随机误差e有什么关系?
13
14
课后作业
作业
见B本第5a bx e
其中a和b为模型的未知参数,e是y与 y bx a 之间的误差,通常e为随机变量,称为随机误差.
y bx a e 线性回归模型的完整表达式为: 2 E (e ) 0, D(e )
线性回归模型适用范围比一次函数的适用范围大得多.
虽然这种向中心回归的现象只是特定领域里的结论,并不具有 普遍性,但从它所描述的关于X为自变量,Y为不确定的因变量这种 变量间的关系看,和我们现在的回归含义是相同的。
不过,现代回归分析虽然沿用了“回归”一词,但内容已有很大变 化,它是一种应用于许多领域的广泛的分析研究方法,在经济理论 5 研究和实证研究中也发挥着重要作用。
当随机误差e恒等于0时,线性回归模型就变成一次函 数模型.即:一次函数模型是线性回归模型的特殊形式, 线性回归模型是一次函数模型的一般形式.
12
其中:均值E(e)=0,方差D(e)=σ2>0
其他因素的影响
ˆ 与真实值y之间的误差的原因 随机误差是引起预报值 y 之一,其大小取决于随机误差的方差. ˆ 为截距和斜率的估计值,它们与真实值a和b之间 ˆ和 b a ˆ 与真实值y之间的误差的另一 存在误差是引起预报值 y
估计值 60.316kg. P83 认为她的平均体重的估计值是
10
因为所有的样本点不共线,所以线性函数 模型只能近似地刻画身高和体重之间的关系, 即:体重不仅受身高的影响,还受其他因素的 影响,把这种影响的结果用e来表示,从而把 线性函数模型修改为线性回归模型: y=bx+a+e.其中,e包含体重不能由身高的线性 函数解释的所有部分(如:饮食/运动/遗传…).
回归分析的基本思想及其初步应用

回归分析的基本思想及其初步应用1.回归分析回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法,回归分析的基本步骤是画出两个变量的散点图,求回归直线方程,并用回归直线方程进行预报. 2.线性回归模型(1)在线性回归直线方程y ^=a ^+b ^x 中,b ^=∑ni =1 (x i -x )(y i -y )∑ni =1(x i -x )2,a ^=y --b ^x -,其中x -=1n ∑ni =1x i ,y -=1n∑ni =1y i ,(x ,y )称为样本点的中心,回归直线过样本点的中心. (2)线性回归模型y =bx +a +e ,其中e 称为随机误差,自变量x 称为解释变量,因变量y 称为预报变量.[注意] (1)非确定性关系:线性回归模型y =bx +a +e 与确定性函数y =a +bx 相比,它表示y 与x 之间是统计相关关系(非确定性关系),其中的随机误差e 提供了选择模型的准则以及在模型合理的情况下探求最佳估计值a ,b 的工具.(2)线性回归方程y ^=b ^x +a ^中a ^,b ^的意义是:以a ^为基数,x 每增加1个单位,y 相应地平均增加b ^个单位.3.刻画回归效果的方式方式方法计算公式 刻画效果R 2R 2=1-∑ni =1(y i -y ^i )2∑n i =1(y i -y )2R 2越接近于1,表示回归的效果越好残差图e ^i 称为相应于点(x i ,y i )的残差,e ^i =y i -y ^i残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适,其中这样的带状区域的宽度越窄,说明模型拟合精度越高,回归方程的预报精度越高残差平方和∑ni =1(y i -y ^i )2 残差平方和越小,模型的拟合效果越好判断正误(正确的打“√”,错误的打“×”) (1)求线性回归方程前可以不进行相关性检验.( )(2)在残差图中,纵坐标为残差,横坐标可以选为样本编号.( )(3)利用线性回归方程求出的值是准确值.( ) 答案:(1)× (2)√ (3)×变量x 与y 之间的回归方程表示( )A .x 与y 之间的函数关系B .x 与y 之间的不确定性关系C .x 与y 之间的真实关系形式D .x 与y 之间的真实关系达到最大限度的吻合 答案:D在两个变量y 与x 的回归模型中,分别选择了4个不同的模型,它们的相关指数R 2如下,其中拟合效果最好的模型是( )A .模型1的相关指数R 2为0.98 B .模型2的相关指数R 2为0.80 C .模型3的相关指数R 2为0.50 D .模型4的相关指数R 2为0.25 答案:A已知线性回归方程y ^=0.75x +0.7,则x =11时,y 的估计值为________. 答案:8.95探究点1 线性回归方程在某种产品表面进行腐蚀刻线试验,得到腐蚀深度y 与腐蚀时间x 之间的一组观察值如下表.x (s) 5 10 15 20 30 40 50 60 70 90 120 y (μm)610101316171923252946(1)画出散点图;(2)求y 对x 的线性回归方程;(3)利用线性回归方程预测时间为100 s 时腐蚀深度为多少. 【解】 (1)散点图如图所示.(2)从散点图中,我们可以看出y 对x 的样本点分布在一条直线附近,因而求回归直线方程有意义.x =111(5+10+15+ (120)=51011,y =111(6+10+10+…+46)=21411,a ^=y -b ^x ≈21411-0.304×51011= 5.36. 故腐蚀深度对腐蚀时间的线性回归方程为y =0.304x + 5.36.(3)根据(2)求得的线性回归方程,当腐蚀时间为100 s 时,y ^=5.36+0.304×100=35.76(μm),即腐蚀时间为100 s 时腐蚀深度大约为35.76 μm.求线性回归方程的三个步骤(1)画散点图:由样本点是否呈条状分布来判断两个量是否具有线性相关关系. (2)求回归系数:若存在线性相关关系,则求回归系数.(3)写方程:写出线性回归方程,并利用线性回归方程进行预测说明.炼钢是一个氧化降碳的过程,钢水含碳量的多少直接影响冶炼时间的长短,必须掌握钢水含碳量和冶炼时间的关系.如果已测得炉料熔化完毕时钢水的含碳量x 与冶炼时间y (从炼料熔化完毕到出钢的时间)的数据(x i ,y i )(i =1,2,…,10)并已计算出=1589,i =110y i =1 720,故冶炼时间y 对钢水的含碳量x 的回归直线方程为y ^=1.267x -30.47. 探究点2 线性回归分析假定小麦基本苗数x 与成熟期有效穗y 之间存在相关关系,今测得5组数据如下:(1)以x 为解释变量,y 为预报变量,作出散点图;(2)求y 与x 之间的回归方程,对于基本苗数56.7预报有效穗; (3)计算各组残差,并计算残差平方和;(4)求相关指数R 2,并说明残差变量对有效穗的影响占百分之几? 【解】 (1)散点图如下.(2)由图看出,样本点呈条状分布,有比较好的线性相关关系,因此可以用回归方程刻画它们之间的关系.设回归方程为y ^=b ^x +a ^,x -=30.36,y -=43.5,(1)该类题属于线性回归问题,解答本题应先通过散点图来分析两变量间的关系是否线性相关,然后再利用求回归方程的公式求解回归方程,并利用残差图或相关指数R 2来分析函数模x 15.0 25.8 30.0 36.6 44.4 y39.442.942.943.149.2型的拟合效果,在此基础上,借助回归方程对实际问题进行分析. (2)刻画回归效果的三种方法①残差图法:残差点比较均匀地落在水平的带状区域内说明选用的模型比较合适; ②残差平方和法:残差平方和 i =1n(y i -y ^i )2越小,模型的拟合效果越好;关于x 与y 有如下数据:x 2 4 5 6 8 y3040605070由(2)可得y i -y ^i 与y i -y -的关系如下表:y i -y ^i -1 -5 8 -9 -3 y i -y --20-101020由于R 21=0.845,R 22=0.82,0.845>0.82, 所以R 21>R 22.所以(1)的拟合效果好于(2)的拟合效果. 探究点3 非线性回归分析某地今年上半年患某种传染病的人数y (人)与月份x (月)之间满足函数关系,模型为y =a e bx ,确定这个函数解析式.月份x /月 1 2 3 4 5 6 人数y /人526168747883【解】 设u =ln y ,c =ln a , 得u ^=c ^+b ^x ,则u 与x 的数据关系如下表:x12 3 4 56u =ln y 3.95 4.114.224.3044.356 7 4.418 8非线性回归方程的步骤(1)确定变量,作出散点图.(2)根据散点图,选择恰当的拟合函数.(3)变量置换,通过变量置换把非线性回归问题转化为线性回归问题,并求出线性回归方程. (4)分析拟合效果:通过计算相关指数或画残差图来判断拟合效果. (5)根据相应的变换,写出非线性回归方程.某种书每册的成本费y (元)与印刷册数x (千册)有关,经统计得到数据如下:x(千册)1 2 3 5 10 20 30 50 100 200 y (元)10.155.524.082.852.111.621.411.301.211.15检验每册书的成本费y (元)与印刷册数的倒数1x之间是否具有线性相关关系,如有,求出y 对x 的回归方程,并画出其图形.解:首先作变量置换u =1x,题目中所给的数据变成如下表所示的10对数据.u i 1 0.5 0.33 0.2 0.1 0.05 0.03 0.02 0.01 0.005 y i10.155.524.082.852.111.621.411.301.211.15然后作相关性检测.经计算得r ≈0.999 8>0.75,从而认为u 与y 之间具有线性相关关系,由公式得a ^≈1.125,b ^≈8.973,所以y ^=1.125+8.973u ,最后回代u =1x ,可得y ^=1.125+8.973x.这就是题目要求的y 对x 的回归方程.回归方程的图形如图所示,它是经过平移的反比例函数图象的一个分支.1.关于回归分析,下列说法错误的是( ) A .回归分析是研究两个具有相关关系的变量的方法 B .散点图中,解释变量在x 轴,预报变量在y 轴C .回归模型中一定存在随机误差D .散点图能明确反映变量间的关系解析:选D.用散点图反映两个变量间的关系时,存在误差. 2.下列关于统计的说法:①将一组数据中的每个数据都加上或减去同一个常数,方差恒不变; ②回归方程y ^=b ^x +a ^必经过点(x ,y ); ③线性回归模型中,随机误差e =y i -y ^i ;④设回归方程为y ^=-5x +3,若变量x 增加1个单位,则y 平均增加5个单位. 其中正确的为________(写出全部正确说法的序号).解析:①正确;②正确;③线性回归模型中,随机误差的估计值应为e ^i =y i -y ^i ,故错误;④若变量x 增加1个单位,则y 平均减少5个单位,故错误. 答案:①②3.某商场经营一批进价是30元/台的小商品,在市场试销中发现,此商品的销售单价x (x 取整数)(元)与日销售量y (台)之间有如下关系:x 35 40 45 50 y56412811(1)画出散点图,并判断y 与x 是否具有线性相关关系;(2)求日销售量y 对销售单价x 的线性回归方程(方程的斜率保留一个有效数字); (3)设经营此商品的日销售利润为P 元,根据(2)写出P 关于x 的函数关系式,并预测当销售单价x 为多少元时,才能获得最大日销售利润.解:(1)散点图如图所示,从图中可以看出这些点大致分布在一条直线附近,因此两个变量具有线性相关关系.(2)因为x -=14×(35+40+45+50)=42.5,(3)依题意有P =(161.5-3x )(x -30) =-3x 2+251.5x -4 845=-3⎝⎛⎭⎪⎫x -251.562+251.5212-4 845. 所以当x =251.56≈42时,P 有最大值,约为426元.故预测当销售单价为42元时,能获得最大日销售利润.知识结构深化拓展线性回归模型的模拟效果(1)残差图法:观察残差图,如果残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适,这样的带状区域的宽度越窄,说明模型拟合精度越高,回归方程的预报精度越高.(2)残差的平方和法:一般情况下,比较两个模型的残差比较困难(某些样本点上一个模型的残差的绝对值比另一个模型的小,而另一些样本点的情况则相反),故通过比较两个模型的残差的平方和的大小来判断模型的拟合效果.残差平方和越小的模型,拟合的效果越好.(3)R 2法:R 2的值越大,说明残差平方和越小,也就是说模型拟合的效果越好.[注意] r 的绝对值越大说明变量间的相关性越强,通常认为r 的绝对值大于等于0.75时就是有较强的相关性,同样R 2也是如此,R 2越大拟合效果越好.[A 基础达标]1.废品率x %和每吨生铁成本y (元)之间的回归直线方程为y ^=256+3x ,表明( ) A .废品率每增加1%,生铁成本增加259元 B .废品率每增加1%,生铁成本增加3元 C .废品率每增加1%,生铁成本平均每吨增加3元 D .废品率不变,生铁成本为256元解析:选C.回归方程的系数b ^表示x 每增加一个单位,y ^平均增加b ^,当x 为1时,废品率应为1%,故当废品率增加1%时,生铁成本平均每吨增加3元.2.已知某产品连续4个月的广告费用为x i (i =1,2,3,4)千元,销售额为y i (i =1,2,3,4)万元,经过对这些数据的处理,得到如下数据信息:①x 1+x 2+x 3+x 4=18,y 1+y 2+y 3+y 4=14;②广告费用x 和销售额y 之间具有较强的线性相关关系;③回归直线方程y ^=b ^x +a ^中,b ^=0.8(用最小二乘法求得),那么当广告费用为6千元时,可预测销售额约为( )A .3.5万元B .4.7万元C .4.9万元D .6.5万元解析:选B.依题意得x =4.5,y =3.5,由回归直线必过样本点中心得a ^=3.5-0.8×4.5=-0.1,所以回归直线方程为y ^=0.8x -0.1.当x =6时,y ^=0.8×6-0.1=4.7.3.某化工厂为预测某产品的回收率y ,需要研究它和原料有效成分含量之间的相关关系,现取了8对观测值,计算得的线性回归方程是( )A.y ^=11.47+2.62xB.y ^=-11.47+2.62x C.y ^=2.62+11.47x D.y ^=11.47-2.62x 解析:选A.由题中数据得x =6.5,y =28.5,a ^=y -b ^x =28.5-2.62×6.5=11.47,所以y 与x 的线性回归方程是y ^=2.62x +11.47.故选A.4.若某地财政收入x 与支出y 满足线性回归方程y =bx +a +e (单位:亿元),其中b =0.8,a =2,|e |≤0.5.如果今年该地区财政收入10亿元,则年支出预计不会超过( )A .10亿元B .9亿元C .10.5亿元D .9.5 亿元解析:选C.代入数据y =10+e ,因为|e |≤0.5, 所以9.5≤y ≤10.5,故不会超过10.5亿元.5.某种产品的广告费支出x 与销售额y (单位:万元)之间的关系如下表:y 与x 的线性回归方程为y =6.5x +17.5,当广告支出5万元时,随机误差的效应(残差)为________.解析:因为y 与x 的线性回归方程为y ^=6.5x +17.5,当x =5时,y ^=50,当广告支出5万元时,由表格得:y =60,故随机误差的效应(残差)为60-50=10. 答案:106.若一组观测值(x 1,y 1),(x 2,y 2),…,(x n ,y n )之间满足y i =bx i +a +e i (i =1,2,…,n ),且e i 恒为0,则R 2为________.解析:由e i 恒为0,知y i =y ^i ,即y i -y ^i =0, 故R 2=1-∑ni =1 (y i -y ^i )2∑n i =1 (y i -y )2=1-0=1.答案:17.某个服装店经营某种服装,在某周内获纯利y (元)与该周每天销售这种服装件数x 之间的一组数据关系见表:已知∑7i =1x 2i =280,∑7i =1x i y i =3 487. (1)求x ,y ;(2)已知纯利y 与每天销售件数x 线性相关,试求出其回归方程. 解:(1)x =3+4+5+6+7+8+97=6,y =66+69+73+81+89+90+917=5597.(2)因为y 与x 有线性相关关系,所以b ^=∑7i =1x i y i-7x y ∑7i =1x 2i -7x 2=3 487-7×6×5597280-7×36=4.75,a ^=5597-6×4.75=71914≈51.36.故回归方程为y ^=4.75 x +51.36.8.已知某校5个学生的数学和物理成绩如下表:(1)假设在对这5名学生成绩进行统计时,把这5名学生的物理成绩搞乱了,数学成绩没出现问题,问:恰有2名学生的物理成绩是自己的实际分数的概率是多少?(2)通过大量事实证明发现,一个学生的数学成绩和物理成绩具有很强的线性相关关系,在上述表格是正确的前提下,用x 表示数学成绩,用y 表示物理成绩,求y 与x 的回归方程; (3)利用残差分析回归方程的拟合效果,若残差和在(-0.1,0.1)范围内,则称回归方程为“优拟方程”,问:该回归方程是否为“优拟方程”?参考数据和公式:y ^=b ^x +a ^,其中.解:(1)记事件A 为“恰有2名学生的物理成绩是自己的实际成绩”, 则P (A )=2C 25A 55=16.(2)因为x =80+75+70+65+605=70,y =70+66+68+64+625=66,学生的编号i 1 2 3 4 5 数学x i 80 75 70 65 60 物理y i7066686462[B 能力提升]9.假设关于某设备的使用年限x和所支出的维修费用y(万元)有如表的统计资料:使用年限x 2 3 4 5 6 维修费用y 2.2 3.8 5.5 6.5 7.010.(选做题)某地区不同身高的未成年男性的体重平均值如表所示:身高x(cm)60708090100110体重y(kg) 6.137.909.9912.1515.0217.50身高x(cm)120130140150160170体重y(kg)20.9226.8631.1138.8547.2555.05 (1)(2)如果体重超过相同身高男性体重平均值的1.2倍为偏胖,低于0.8倍为偏瘦,那么这个地区一名身高175 cm 、体重82 kg 的在校男生体重是否正常? 解:(1)根据题表中的数据画出散点图如图所示.由图可看出,样本点分布在某条指数函数曲线y =c 1e c 2x的周围, 于是令z =ln y ,得下表:x 60 70 80 90 100 110 z 1.81 2.07 2.30 2.50 2.71 2.86 x 120 130 140 150 160 170 z3.043.293.443.663.864.01作出散点图如图所示:由表中数据可得z 与x 之间的回归直线方程为 z ^=0.662 5+0.020x ,则有y ^=e 0.662 5+0.020x .(2)当x =175时,预报平均体重为y ^=e 0.662 5+0.020×175≈64.23, 因为64.23×1.2≈77.08<82,所以这个男生偏胖.。
人教版A版高中数学选修1-2课后习题解答

人教版A版高中数学选修1-2课后习题解答高中数学选修1-2课后题答案第一章统计案例1.1 回归分析的基本思想及其初步应用回归分析是一种统计分析方法,用于探究自变量与因变量之间的关系。
它的基本思想是通过建立数学模型,利用已知数据进行拟合,从而预测或解释未知数据。
回归分析的初步应用包括简单线性回归和多元线性回归。
1.2 独立性检验的基本思想及其初步应用独立性检验是一种用于检验两个变量之间是否存在关联的方法。
其基本思想是通过观察两个变量之间的频数或频率分布,来判断它们是否相互独立。
独立性检验的初步应用包括卡方检验和Fisher精确检验。
第二章推理证明2.1 合情推理与演绎推理合情推理是指根据已知事实和常识,推断出可能的结论。
演绎推理是指根据已知的前提和逻辑规则,推导出必然的结论。
两种推理方法都有其适用的场合,需要根据具体情况进行选择。
2.2 直接证明与间接证明直接证明是指通过逻辑推理,直接证明所要证明的命题成立。
间接证明是指采用反证法或归谬法,证明所要证明的命题的否定不成立,从而推出所要证明的命题成立。
第三章数系的扩充与复数的引入3.1 数系的扩充与复数的概念数系的扩充是指在实数系的基础上引入新的数,使得一些原来不可解的方程可以得到解。
复数是指由实部和虚部组成的数,可以表示在平面直角坐标系中的点。
复数的引入扩充了数系,使得一些原本无解的方程可以得到解。
3.2 复数的代数形式的四则运算复数的代数形式是指将复数表示为实部和虚部的和的形式。
复数的四则运算包括加减乘除四种运算,可以通过对实部和虚部分别进行运算来得到结果。
第四章框图4.1 流程图流程图是一种用图形表示算法或过程的方法。
它由各种基本符号和连线构成,用于描述算法或过程的各个步骤及其执行顺序。
流程图可以帮助人们更好地理解算法或过程,从而提高效率。
4.2 结构图结构图是一种用于描述程序结构的图形表示方法。
它包括顺序结构、选择结构和循环结构三种基本结构,可以用来表示程序的控制流程。
1.1回归分析的基本思想及初步应用

返回
[类题通法] 求线性回归方程的步骤
(1)列表表示 xi,yi,xiyi;
(2)计算-x
-y ,
n
x2i ,
n
xiyi;
i=1
i=1
(3)代入公式计算^a,^b的值; (4)写出回归直线方程.
返回
[活学活用] 某种产品的广告费支出x(单位:百万元)与销售额y(单位:百 万元)之间有如下对应数据:
Hale Waihona Puke yi 100 200 210 185 155 135 170 205 235
36 39 32 22 18 25
47
xiyi 10 400
39 155
000 900 745 785 090 500
940
121 125
15 125
x =159.8, y =172,
10
10
x2i =265 448,xiyi=287 640
x
14
16
18
20
22
y
12
10
7
5
3
求y关于x的回归直线方程,并说明回归模型拟合效果的 好坏.
返回
解: x =15(14+16+18+20+22)=18, y =15(12+10+7+5+3)=7.4,
5
x2i =142+162+182+202+222=1 660,
i=1
5
xiyi=14×12+16×10+18×7+20×5+22×3=620,
返回
[类题通法] 残差分析应注意的问题
利用残差分析研究两个变量间的关系时,首先要根据 散点图来粗略判断它们是否线性相关,是否可以用线性回 归模型来拟合数据.然后通过图形来分析残差特性,用残 差^e1,^e2,…,^en 来判断原始数据中是否存在可疑数据,用 R2 来刻画模型拟合的效果.
回归分析的基本思想及其初步应用三

常用的回归分析软件介绍
常用的回归分析软件包括R、Python、SPSS和Excel等。这些软件提供了丰富的函数和工具,可以帮助 我们进行数据分析和回归分析。
怎样设计合适的回归分析实验
设计合适的回归分析实验需要明确问题、确定自变量和因变量、选择合适的模型和方法、并进行数据预 处理和模型评价。关键是理清思路,严谨可靠,才能得出具有实际意义的结论。
多元线性回归分析
多元线性回归分析可以同时涉及多个自变量和一个因变量。这种方法十分灵活,可用于分析更加复杂的 问题和模型。
模型的拟合程度
模型的拟合程度是指回归方程对数据的拟合优度。一个好的模型应该拟合得 越好,R-squared 值越高。
残差分析及其意义
残差是因变量与回归方程预测值之间的差异。残差分析是评估模型拟合优度 的一种方式。
神经网络回归分析
神经网络回归分析是一种拟合嵌套非线性模型的回归分析方法。它可以允许多层非线性关系,并适用于 多维度问题。
回归分析与时间序列分析的联 系
回归分析和时间序列分析都是用来分析数据和预测未来的方法。回归分析可 以用于研究变量之间的关系,时间序列分析可以用于预测时间趋势。
实际业务中的回归分析应用
回归方程的含义
回归方程是描述自变量和因变量之间关系的数学公式。通过回归方程,我们可以预测因变量的值,也可 以研究自变量的影响。
回归分析的基本假设
回归分析有三个基本假设:线性性、独立性、和正态性。只有这些假设得到了满足,回归分析才能有效 地进行。
简单线性回归分析
简单线性回归分析是指只涉及一个自变量和一个因变量的回归分析。这种方法简单易懂,但是其时间序 列结果并不完全准确,需要更加复杂的分析方法。
回归分析基本思想及应用条件

回归分析基本思想及应用条件回归分析是一种常用的统计分析方法,用于研究变量之间的关系,并预测一个或多个自变量对因变量的影响。
本文将介绍回归分析的基本思想以及应用条件。
一、回归分析的基本思想回归分析的基本思想是基于最小二乘法,通过拟合曲线或平面,找到自变量与因变量之间的最佳关系模型。
这个模型可以用来预测因变量在给定自变量的情况下的取值。
回归分析的思想可以用以下数学公式表示:Y = β0 + β1X1 + β2X2 + ... + βnXn + ε其中,Y表示因变量,X1~Xn表示自变量,β0~βn表示回归系数,ε表示误差项。
回归分析的目标是通过最小化误差项来确定回归系数的值,使得拟合曲线与实际观测值之间的误差最小化。
二、回归分析的应用条件回归分析适用于以下条件:1. 自变量与因变量之间存在线性关系:回归分析假设自变量与因变量之间存在线性关系。
因此,在应用回归分析之前,需要通过观察数据和作图等方式来验证自变量与因变量之间的线性关系。
2. 自变量之间相互独立:回归分析要求自变量之间相互独立,即自变量之间不应存在多重共线性的问题。
多重共线性会导致回归系数的估计出现问题,降低模型的准确性。
3. 自变量和误差项之间不存在系统性关联:回归分析假设误差项与自变量之间不存在系统性关联。
如果存在系统性关联,会导致回归系数的估计出现偏差,影响模型的准确性。
4. 数据具有代表性:回归分析要求样本数据具有代表性,能够反映总体的特征。
因此,在进行回归分析之前,需要对样本数据的采集方法和样本容量进行科学设计,以确保数据的可靠性和准确性。
5. 误差项满足正态分布:回归分析假设误差项满足正态分布。
如果误差项不满足正态分布,可能会导致回归系数的估计出现偏差,使得模型的准确性降低。
总之,回归分析是一种重要的统计分析方法,可以用于研究变量之间的关系并进行预测。
但在应用回归分析时,需要注意以上提到的应用条件,以保证分析结果的准确性和可靠性。
回归分析的基本思想及其初步应用

t检验用于检验单个自变量对因变量的影响是否显著。如果t检验的P值小于显著性水平,则认为该自变 量对因变量的影响是显著的。
回归系数的解释
偏效应
回归系数表示在其他自变量保持不变 的情况下,某一自变量变化一个单位 时因变量的平均变化量。它反映了自 变量对因变量的偏效应。
标准化回归系数
为了消除自变量量纲的影响,可以对 回归系数进行标准化处理。标准化回 归系数表示自变量和因变量的标准化 值之间的相关系数,具有可比性。
03
回归分析的初步应用
一元线性回归分析
01
建立一元线性回归模型
通过收集样本数据,以自变量 和因变量的线性关系为基础, 建立一元线性回归模型。
02
参数估计
利用最小二乘法等估计方法, 对模型中的参数进行估计,得 到回归方程的系数。
03
假设检验
对回归方程进行显著性检验, 判断自变量和因变量之间是否 存在显著的线性关系。
通过调整模型参数或引入新的 变量等方式优化模型,提高模 型的拟合精度和预测能力。
逐步回归分析
1 引入变量
从所有自变量中逐步引入对因变量有显著影响的变量, 建立初始回归模型。
2 检验与调整
从所有自变量中逐步引入对因变量有显著影响的变量, 建立初始回归模型。
3 逐步筛选
从所有自变量中逐步引入对因变量有显著影响的变量, 建立初始回归模型。
立
详细阐述了线性回归模型的构建 过程,包括模型的假设、参数的 估计和模型的检验等步骤。
回归分析的初步应
用
通过实例演示了回归分析在解决 实际问题中的应用,包括预测、 解释变量关系和控制变量等方面 的应用。
对未来学习的建议与展望
深入学习回归分析的理论知识
回归分析基本思想

i
y) y)
2
2
2
i
i
R2 1,说明回归方程拟合的越好;R20,说明回归 方程拟合的越差。
26
归纳建立回归模型的基本步骤
一般地,建立回归模型的基本步骤为: (1)确定研究对象,明确哪个变量是解析变量,哪个变量是预报变量。 (2)画出确定好的解析变量和预报变量的散点图,观察它们之间的关系 (如是否存在线性关系等)。 (3)由经验确定回归方程的类型(如我们观察到数据呈线性关系,则 选用线性回归方程y=bx+a).
思考P3
产生随机误差项e 的原因是什么?
3、从散点图还看到,样本点散布在某一条直线的附 我们可以用下面的线性回归模型来表示: 近,而不是在一条直线上,所以不能用一次函数 y=bx+a+e,其中a和b为模型的未知参数, y=bx+a 简单描述它们关系。 e称为随机误差。
思考P3 产生随机误差项e的原因是什么?
必修3(第二章 统计)知识结构
收集数据
(随机抽样) 整理、分析数据 估计、推断
用样本估计总体
变量间的相关关系
简 单 随 机 抽 样
分 层 抽 样
系 统 抽 样
用样本 的频率 分布估 计总体 分布
用样本 数字特 征估计 总体数 字特征
线 性 回 归 分 析
问题1:现实生活中两个变量间的关系有哪 些呢? 不相关
(2)画出确定好的解析变量和预报变量的散点图,观察 它们之间的关系(如是否存在线性关系等)。
(3)由经验确定回归方程的类型(如我们观察到数据呈线 性关系,则选用线性回归方程y=bx+a).
(4)按一定规则估计回归方程中的参数(如最小二乘法)。
(5)得出结果后分析残差图是否有异常(个别数据对应残差 过大,或残差呈现不随机的规律性,等等),过存在异常,则 检查数据是否有误,或模型是否合适等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《回归分析的基本思想及初步应用》课例反思
一、教材分析
1、教材的地位和作用
在《数学③(必修)》之后,学生已经学习了两个变量之间的相关关系,包括画散点图,最小二乘法求回归直线方程等内容.在人教A版选修1-2第一章第一节“回归分析的基本思想及其初步应用”这一节中进一步介绍回归分析的基本思想及其初步应用.这部分内容共计4课时,第一课时:复习必修三内容,介绍线性回归模型的数学表达式;第二课时:解释随机误差项产生的原因,使学生能正确理解回归方程的预报结果,并能从残差分析角度讨论回归模型的拟合效果;第三课时:从相关系数、相关指数角度探讨回归模型的拟合效果,以及建立回归模型的基本步骤;第四课时:介绍两个变量非线性相关关系,回归分析的应用. 本节课是第二课时的内容.
2、教学目标
知识和技能:认识随机误差,认识残差以及相关指数。
根据散点分布特点,建立线性回归模型。
了解模型拟合效果的分析工具——残差分析。
过程与方法:经历数据处理全过程,培养对数据的直观感觉,体会统计方法的应用。
通过一次函数模型和线性回归模型的比较,使学生体会函数思想。
情感、态度与价值观:
通过案例分析,了解回归分析的实际应用,感受数学“源于生活,用于
生活”,提高学习兴趣。
教学中适当地利用学生合作与交流,使学生在学习的同时,体会与他
人合作的重要性.。
3、教学重难点
重点:1、了解回归模型与函数模型的区别
2、了解任何模型只能近似描述实际问题
3、了解模型拟合效果的分析工具——残差分析
难点:参差分析
二、教法学法分析
通过创设情境——运用已有知识——发现新问题——启发引导——合作交流——得到新知识。
整个活动过程,学生始终是学习活动的主体,教师是组织者、引导者、合作者。
三、学情分析
1.通过必修3的学习,学生已掌握了线性回归方程的相关知识和应用,已具有一定的对数据的直观感觉,具备了较好的数据整理和分析能力。
2.学生思维活泼,积极性高,但探究问题的能力和合作交流的能力发展还不够。
3.普高学生层次参次不齐,个体差异比较明显。
四、教学过程
五、课后反思
1、为使教学真正做到以学生为本,我对教材的知识进行了适当地重组和加工,力求给学生提供研究、探讨的时间与空间,让学生充分经历“做数学”的过程,促使学生在自主中求知,在合作中获取,在探究中发展.
2、本节课的教法特点:通过分析教材和学生认知规律,创造性地使用教材,做到既重视教材,更重视学生.具体说来有以下改造:(1)创设生活情景.利用学生的“体检经验”设置问题,既没有脱离课本例题1的相关内容,又能激发学生对数学的亲切感,引发学生看个究竟的冲动,兴趣盎然地投入学习. (2)充分体现随机观念.课本上仅仅希望利用8组数据就要学生体会到统计的思想和后继课程中回归分析的必要性,实在是为难学生了.在本课教学设计学生操作时强调“增多数据,加强比较”. 帮助学生体会“不同事件(如课本例1女大学生和高二女生)”,则统计结果不同、“同一事件(如都是高二女生),采样不同结果也不同”的基本事实.
本课教学以问题引导学习活动,通过恰时恰点地提出问题,提好问题,给学生提问的示范,使他们领悟发现和提出问题的艺术,引导他们更加主动和有兴趣地学,逐步培养学生的问题意识,孕育创新精神.例如,在“结果的分析”中预测出的体重值都不同,那么它还有参考价值吗?”目的是让学生充分认识随机误差e的来源和对预报变量的影响,而这一问题的提出,立刻吸引学生细细体会随机观念,同时激发出学生的好奇心,提升深入探求的欲望。
3 合作、探究的学习方式。
本节课的合作学习体现在两个方面:除了体现在每个小组
内部成员之间,还体现在整堂课的教学结构上.小组成员内部提倡“不同的人作不同的事”,面对不同分组,学生可以自主选择的不同工作,动手带动动脑,遇到小的问题,通过探讨和帮助,能做到“学生的问题由学生自己解决”,促进对某一问题更清晰的认识,还能感受到团结合作的好处与必要.同时,每个小组的劳动成果共同构成课堂教学需要的多条回归方程,组与组之间的合作推动整节课的比较与区分得以实现. 通过本节课的教学实践,我再次体会到什么是由“关注知识”转向“关注学生”,在教学过程中,注意到了由“给出知识”转向“引起活动”,由“完成教学任务”转向“促进学生发展”,课堂上的真正主人应该是学生.一堂好课,师生一定会有共同的、积极的情感体验.本节课的教学中,知识点均是学生通过探索“发现”的,学生充分经历了探索与发现的过程.教学中没有以练习为主,而是定位在知识形成过程的探索,注重数学的思想性,如统计思想、随机观念、函数思想、数形结合的思想方法等,引导学生体验数学中的理性精神,加强数学形式下的思考和推理。