2013年中考数学模拟试题及答案(共三套)
2013年中考数学模拟题(含答案)

2013年中考数学模拟题一、选择题(每小题3分,共15分)1.下列运算正确的是 ( )A. x 2·x 3=x 6B. –2x -2=- 14x 2 C.(-x 2)3=x 5 D.-x 2-2x 2=-3x 2 2.在平面直角坐标系中,点P (-1,-1)关于x 轴的对称点在( ) A.第一象限 B. 第二象限C.第三象限D. 第四象限3.某班5位同学的身高(单位:厘米)分别155,160,160,161,169,这组数据中,下列说法错误的是 ( )A.众数是160B.中位数是160C.平均数是161D.方差是24.如图,PA 切⊙O 于A ,∠P=30°,OP =2,则⊙O 的半径的是 ( )A.21B.1C. 2D.45.已知圆锥的母线长为5cm ,底面半径为3cm ,则此圆锥的侧面积为 ( )A. 12πcm 2B. 15πcm 2C. 20πcm 2D. 30πcm 2二、填空题(每小题4分,共20分)6.已知代数式2x 2-x+1的值等于2,则代数式 4x 2-2x+5的值为___________.7.若反比例函数y=- x8的图象经过点(m ,-2m ),则m 的值为___________.8、十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率是________.9.如图,CD⊥AB,BE⊥AC,请你再添加一个条件:________使ΔABE≌ΔACD。
10.如图,在 RtΔABC中,∠C=90°,AB=4cm,AC=23cm,以B为圆心,以BC为半径作弧交AB于D,则阴影部分的面积是 _____cm2。
三、解答题(每小题6分,共30分)11.有这样一道题:“计算x2-2x+1x2-1÷x-1x2+x-x 的值,其中x=2007”。
甲同学把“x=2007”错抄成“x=2070”,但他的计算结果也是正确的,你说这是怎么回事?12. ,并把解集在数轴上表示出来。
2013年数学中考模拟试题及答案

2013年中考数学模拟试题一、选择题:本大题共8小题,在每小题给出的四个选项中,只有一项是正确的,请把正确选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1.- 13的倒数是A .-3B .3C .- 13D .132.下列各式运算中,正确的是A .222()a b a b +=+ B3=C .3412a a a ⋅=D .)0(6)3(22≠=a a a3.下列几何体中,主视图、左视图、俯视图完全相同的是 A. 圆柱 B. 圆锥 C. 球 D. 棱锥 4.下列说法正确的是A .买一张福利彩票一定中奖,是必然事件.B .买一张福利彩票一定中奖,是不可能事件.C .抛掷一个正方体骰子,点数为奇数的概率是13. D .一组数据:1,7,3,5,3的众数是3. 5.函数y =中自变量的取值范围在数轴上表示为6.在□ABCD 中,点E 为AD 的中点,连接BE ,交AC 于点F ,则=CFAFA .1:2B .1:3C .2:3D .2:5第7题图7.如图,在△ABC 中,AB = AC ,AB = 8,BC = 12以AB 、AC 为直径作半圆,则图中阴影部分的面积是A.64π-B .1632π-C.16π-.16π-8.如图,点P 按A →B →C →M 的顺序在边长为1的正方形边上运动,M 是CD 边上的中点。
设点P 经过的路程x 为自变量,△APM 的面积为y ,则函数y 的大致图像是二、填空题:本大题共8小题,共32分,只要求填写最后结果,每小题填对得4分. 9.我国公安部交管局公布的数据显示,截至2012年初,全国机动私家车保有量达0.195亿辆,将0.195亿辆用科学记数法表示应是 辆(结果保留2个有效数字) 10.分解因式:=+-y xy y x 22 。
11.= . 12.如果圆锥的底面周长为20πcm ,侧面展开后所得的扇形的圆心角是120º,则该圆锥的侧面积是___________.(结果保留π) 13.如图,直线a ∥b ,l 与a 、b 交于E 、F 点,PF 平分∠EFD 交a 于P 点,若∠1 = 70︒,则∠2 = . 14.已知n 是正整数,n P (n x ,n y )是反比例函数xky =图象上的一列点,其中1x 1=,21F E DblPa2x 2=,…,n x n =,记211y x T =,322y x T =,…,1099y x T =;若1T 1=,则921T T T ⋅⋅⋅⋅⋅⋅的值是_________;15.如图,在等边△ABC 中,9=AC ,点O 在AC 上,且3=AO ,点P 是AB 上一动点,连接OP ,以O 为圆心,OP 长为半径画弧交BC 于点D , 连接PD ,如果PD PO =,那么AP 的长是 .16.如图,n +1个边长为2的等边三角形有一条边在同一直线上,设211B D C ∆的面积为1S ,322B D C ∆的面积为2S ,……,1n n n B D C +∆的面积为n S ,则n S = (用含n 的式子表示).三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤.17.化简求值 (本题满分6分) 。
2013年中考数学模拟试卷(三)+答题卡+答案A3版

2013年中考数学模拟试卷(三)(满分120分,考试时间100分钟)一、选择题(每小题3分,共24分) 1. |-3|的倒数是【 】A .-3B .13-C .3D .132. 已知:如图,BD 平分∠ABC ,点E 在BC 上,EF ∥AB .若∠CEF =100°,则∠ABD 的度数为【 】 A .60° B .50° C .40° D .30° C E FD A B 50321-1-2 -3-4 4-5 11231第2题图 第3题图 第5题图 3. 如图,数轴上表示的是某不等式组的解集,则这个不等式组可能是【 】A .1020x x +⎧⎨-⎩≥≥B .1020x x +⎧⎨-⎩≤≥C .1020x x +⎧⎨-⎩≤≥D .1020x x +⎧⎨-⎩≥≥4. 2如下表所示:甲 乙 丙 丁 x8.3 9.2 9.2 8.5 S 2111.11.7A .甲B .乙C .丙D .丁5. 如图是一个由多个正方体堆积而成的几何体的俯视图.图中所示数字为该位置上小正方体的个数,则这个几何体的左视图是【 】A .B .C .D . 6. 如图,A ,B ,C 是⊙O 上的点,∠CAB =20°,过点C 作⊙O 的切线交OB 的延长线于点D ,则∠D =【 】 A .40° B .50° C .60° D .70° 7. 已知二次函数y =12-x 2-7x +152,若自变量x 分别取x 1,x 2,x 3,且0<x 1<x 2<x 3,则对应的函数值y 1,y 2,y 3的大小关系正确的是【 】 A .y 1>y 2>y 3 B .y 1<y 2<y 3 C .y 2>y 3>y 1D .y 2<y 3<y 1 8. 如图,OA ⊥OB ,等腰直角三角形CDE 的腰CD 在OB 上,∠ECD =45°,将△CDE 绕点C 逆时针旋转75°,点E 的对应点N 恰好落在OA 上,则OC CD的值为【 】 A .12 B .13 C .22 D 3二、填空题(每小题3分,共21分)9. 分解因式:269mn mn m ++=____________________. 10. 用反证法证明命题“三角形中至少有一个内角大于或等于60°”,首先应假设__________.11. 如图,直线x =t (t >0)与反比例函数2y x =,1y x=-的图象分别交于B ,C 两点,A 为y轴上的任意一点,则△ABC 的面积为____________.30°D CBE A第11题图 第13题图 第14题图12. 实验中学安排四辆车组织九年级学生团员去敬老院参加学雷锋活动,这四辆车的编号分别是1,2,3,4.小王和小李都可以从这四辆车中任选一辆搭乘,那么小王和小李搭乘的车编号相邻的概率是_______. 13. 如图,在□ABCD 中,AD =2,AB =4,∠A =30°,以点A 为圆心,AD 的长为半径画弧交AB于点E ,连接CE ,则阴影部分的面积是____________(结果保留π).14. 如图,矩形纸片ABCD 中,AB =5cm ,BC =10cm ,CD 上有一点E ,EC =3cm ,AD 上有一点P ,P A =7cm ,过点P 作PF ⊥BC 交BC 于点F ,将纸片折叠,使点P 与点E 重合,折痕与PF 交于点Q ,则线段PQ 的长是___________cm . 15. 如图,梯形ABCD 中,AD ∥BC ,点E 在BC 上,AE =BE ,点F 是CD 的中点,且AF ⊥AB ,若AD =2.7,AF =4,AB =6,则CE 的长为_________.三、解答题(本大题共8小题,满分75分)16. (8分)(1)计算:123(2)|1|3--π+-;(2)先化简,再求值:221111x x x x x ÷--+-,其中o2tan 45x =.CD B OAx =tyxO C B17. (9分)如图1,有一张矩形纸片,将它沿对角线AC 剪开,得到△ACD 和△A ′BC ′. (1)如图2,将△ACD 沿A ′C ′边向上平移,使点A 与点C ′重合,连接A ′D ,BC ,四边形A ′BCD 是 形.(2)如图3,将△ACD 的顶点A 与A ′点重合,然后绕点A 沿逆时针方向旋转,使点D ,A ,B 在同一直线上,则旋转角为 度;连接CC ′,四边形CDBC ′是 形. (3)如图4,将AC 边与A ′C ′边重合,并使顶点B 和D 在AC 边的同一侧,设AB ,CD 相交于点E ,连接BD ,四边形ADBC 是什么特殊四边形?请说明你的理由.C C'B A'ADC D B A (C')A'C A (A')B C'C (C')B D E A (A')图1 图2 图3 图418. (9分)为增强环保意识,某社区计划开展一次“减碳环保,减少用车时间”的宣传活动,对部分家庭五月份的平均每天用车时间进行了一次抽样调查,并根据收集的数据绘制了下面两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)本次抽样调查了多少个家庭?(2)将图1中的条形图补充完整,直接写 出用车时间的中位数落在哪个时间段内; (3)求用车时间在1~1.5小时的部分对应的扇形圆心角的度数;(4)若该社区有车家庭有1 600个,请你估计该社区用车时间不超过1.5小时的约有多少个家庭.19. (9分)小强在教学楼的点P 处观察对面的办公大楼.为了测量点P 到对面办公大楼上部AD 的距离,小强测得办公大楼顶部点A 的仰角为45°,底部点B 的俯角为60°,已知办公大楼高 46米,CD =10米.求点P 到AD 的距离(用含根号的式子表示).20. (9分)如图,一次函数y =ax -1的图象与反比例函数k y x =的图象交于A ,B 两点,与x 轴交于点C ,与y 轴交于点D ,已知 OA 10tan ∠AOC 13=. (1)求a ,k 的值及点B 的坐标;(2)观察图象,请直接写出不等式1ax -≥kx 的解集;(3)在y 轴上存在一点P ,使得△PDC 与△ODC 相似 (不包括全等),请你求出点P 的坐标. 21. (10分)某电子厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销售量y (万件)与销售单价x (元)之间的关系可以近似地看作一次函数y =-2x +100.(利润=售价-制造成本)(1)写出每月的利润z (万元)与销售单价x (元)之间的函数关系式. (2)当销售单价为多少元时,厂商每月能获得350万元的利润?当销售单价为多少元时,厂商每月能获得最大利润?最大利润是多少?(3)根据相关部门规定,这种电子产品的销售单价不能高于32元,如果厂商要获得每月不低于350万元的利润,那么这种产品每月的最低制造成本需要多少万元? 22. (10分)如图1,在平面直角坐标系中,点A 的坐标为(1,0),以OA 为边在第一象限内作正方形OABC ,点D 是x 轴正半轴上一动点(OD >1),连接BD ,以BD 为边在第一象限内作正方形DBFE ,设M 为正方形DBFE 的中心,直线MA 交y 轴于点N .如果定义:只有一组对角是直角的四边形叫做损矩形. (1)试找出图1中的一个损矩形并说明这个损矩形的四个顶点在同一个圆上. (2)随着点D 位置的变化,点N 的位置是否会发生变化?若没有发生变化,求出点N 的坐标;若发生变化,请说明理由. (3)在图2中,过点M 作MG ⊥y 轴于点G ,连接DN ,若四边形DMGN 为损矩形,求点D 的坐标. 23. (11分)如图,在平面直角坐标系中,点A ,B ,C 在x 轴上,点D ,E 在y 轴上,OA =OD =2,OC =OE =4,DB ⊥DC ,直线AD 与经过B ,E ,C 三点的抛物线交于F ,G 两点,与其对称轴交于点M .点P 为线段FG 上一个动点(不与F ,G 重合),PQ ∥y 轴与抛物线交于点Q . (1)求经过B ,E ,C 三点的抛物线的解析式. (2)是否存在点P ,使得以P ,Q ,M 为顶点的三角形为等腰直角三角形?若存在,求出满足条件的点P 的坐标;若不存在,请说明理由.(3)若抛物线的顶点为N ,连接QN ,探究四边形PMNQ 的形状:①能否成为菱形;②能否成为等腰梯形.若能,请直接写出点P 的坐标;若不能,请说明理由.P B D C MA 0图1图2108°54°0.5~1小时2~2.5小时1.5~2小时1~1.5小时903010080604020 2.521.510.5 小时家庭数/个2013年中考数学模拟试卷(三)答题卡一、选择题(每小题3分,共24分)1.[A ] [B ] [C ] [D ] 2.[A ] [B ] [C ] [D ] 3.[A ] [B ] [C ] [D ] 4.[A ] [B ] [C ] [D ]5.[A ] [B ] [C ] [D ] 6.[A ] [B ] [C ] [D ] 7.[A ] [B ] [C ] [D ] 8.[A ] [B ] [C ] [D ]二、填空题(每小题3分,共21分)9._______________ 10.____________________________________11.______________ 12.________________ 13.________________ 14.______________ 15.________________三、解答题(本大题共8小题,满分75分) 16.(8分)注意事项1.答题前,考生务必先认真核对条形码上的姓名、准考证号、考场号、座位号,无误后将本人姓名、准考证号填在相应位置。
2013年中考数学模拟试卷(带答案)

2013年中考数学模拟试卷(带答案)2013年济南市中考数学模拟试题三一、选择题:本大题共12个小题.每小题4分;共48分.1.的绝对值是()A.B.C.D.2.如图,,点在的延长线上,若,则的度数为()A.B.C.D.3.点关于原点对称的点的坐标是()A.B.C.D.4.同时抛掷两枚均匀的硬币,则两枚硬币正面都向上的概率是()A.B.C.D.15.不等式组的解集用数轴表示为()6.若分式的值为,则的值为(A)A.B.C.D.或7.与如图所示的三视图对应的几何体是()8.如图,与的边分别相交于两点,且.若,则AC等于().A.1B.C.D.29.如图,矩形OABC的边OA在x轴上,O与原点重合,OA=1,OC =2,点D的坐标为(2,0),则直线BD的函数表达式为()A.B.C.D.10.如图,已知AD是△ABC的外接圆的直径,AD=13cm,,则AC的长等于()A.5cmB.6cmC.10cmD.12cm11.在如图所示的5×5方格中,每个小方格都是边长为1的正方形,△ABC是格点三角形(即顶点恰好是正方形的顶点),则与△ABC有一条公共边且全等的所有格点三角形的个数是()A.1B.2C.3D.412.已知二次函数的图象如图所示,有下列5个结论:①;②;③;④;⑤,(的实数)其中正确的结论有()A.2个B.3个C.4个D.5二、填空题:本大题共5个小题.每小题3分;共15分.13.分解因式:2x2-18=.14.已知反比例函数的图象在第二、四象限,则取值范围是__________. 15.用扇形统计图反映地球上陆地与海洋所占的比例时,“陆地”部分对应的圆心角是.宇宙中一块陨石落在地球上,落在陆地的概率是_________16.若,则下列函数①,②,③,④中,的值随的值增大而增大的函数是_______________(填上序号即可)17.如图,已知,点在边上,四边形是矩形.请你只用无刻度的直尺在图中画出的平分线(请保留画图痕迹).三、解答题:7个小题,57分.18.(本小题满分7分)(1)化简(2)解方程:.19.(7分)(1)如图,在一次龙卷风中,一棵大树在离地面若干米处折断倒下,B为折断处最高点,树顶A落在离树根C的12米处,测得∠BAC=300,求BC的长。
2013年中考模拟数学试卷数学答案

∴∠DBC=∠BAO,∵BD是直径,∴∠BCD=∠ABO=90°,
∴△BDC∽△AOB,(6分)∴ , (7分)
22.(1)设A组的频数是x,那么B组的频数为5x,那么x+5x=12,x=2,(2分)
12÷(1-40%-28%-8%)=50(4分)
(2) (7分)(3)(28%+8%)×500=180(户)(9分)
(2)S1=4m-4(m-4)=16,(5分)
S2=S梯形AECD-S△CEEF= =16,∴S1=S2(8分)
(求S2时也可以将两个三角形的面积一一求出,再求差)
.(3)∵△AEG与△FDG面积和为24,差为16,∴△AEG的面积=20(10分)
∴ ,∴AG=10,∵△FDG∽△FCE,∴ ,
m1=12,m2=6(舍去),∴tan∠BAE= (12分)
∴ ,即
∴ 或 .(14分)
19.解:原式= (4分)= (6分)
20. → (2分)→
→ (5分)→经检验,原方程的解是 (7分)
21.解:(1)证明:连结OC,
∵OB=OC,AB=AC,OA=OA,∴△ABO≌△ACO,(2分)
∴∠ABO=∠ACO,∵AC是切线,∴∠ACO=90°,
∴∠ABO=90°,∴AB是⊙O的切线.(4分)
26.(1)第一条抛物线的解析式是 (3分)
(2)第n个三角形的面积是 ,当n=1,2,5时为整数(6分)
(3)设第n条抛物线的解析式为 ,(7分)
又∵过点 ∴ ,设 ,∴
= ,∴
,n=2.(10分)
(4)作第m个三角形和第n个三角形底边上的高AmC和AnD,
∵顶角互补,∴底角互余.即△AmCBm-1∽△AnDBn-1.
2013年数学中考模拟试题及参考答案

2013年数学中考模拟试题一、选择题:(本大题共12个小题,满分36分).1.方程x(x-2)+ x-2 = 0的解是()A.x=2 B.x=-2或1 C.x=-1 D.x=2或-12.如图,OA⊥OB,等腰直角三角形CDE的腰CD在OB上,∠ECD=45°,将三角形CDE绕点C逆时针旋转75°,点E的对应点N恰好落在OA上,则CDOC的值为()A.21B.31C.22D.333.如图,⊙O的半径为2,弦AB=23,点C在弦AB上,AC=41AB,则OC的长为()A.2B.3C.332D.274.如果一个扇形的半径是1,弧长是3π,那么此扇形的圆心角的大小为()A.30° B.45° C.60° D.90°5.圆心距为2的两圆相切,其中一个圆的半径为1,则另一个圆的半径为()A.1 B.3 C.1或2 D.1或36.下列事件为必然事件的是()A.小王参加本次数学考试,成绩是150分B.某射击运动员射靶一次,正中靶心C.打开电视机,CCTV第一套节目正在播放新闻D.口袋中装有2个红球和1个白球,从中摸出2个球,其中必有红球7.如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c<0的解集是()A.-1<x<5 B.x<-1或x>5C.x<-1且x>5 D. x>58.二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+b2-4ac与反比例函数y=xcba++在同一坐标系内的图象大致为()A.B.C.D.9.一个钢筋三角架三边长分别为20cm,50cm,60cm,现在要做一个和它相似的钢筋三角架,而只有长为30cm和50cm的两根钢筋,要求以其中的一根为一边,从另一根上截两段(允许有余料)作为另两边,则不同的截法有()A.一种B.两种C.三种D.四种或四种以上10.如图,在△ABC中,EF∥BC,EBAE=21,S四边形BCFE=8,则S△ABC=()A.9 B.10 C.12 D.1311.如图,正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:2,点A的坐标为(1,0),则E点的坐标为()A.(2,0) B.(23,23)C.(2,2)D.(2,2)12.如图,已知A、B两点的坐标分别为(-2,0)、(0,1),⊙C的圆心坐标为(0,-1),半径为1.若D是⊙C上的一个动点,射线AD与y轴交于点E,则△ABE面积的最大值是()A.3 B.311C.310D.4二、填空题:(本大题共5小题,满分20分).13.关于x的两个方程x2-x-2=0与11+x=ax+2有一个解相同,则a= ________________14.为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域,设正八边形与其内部小正方形的边长都为a,则阴影部分的面积为____________15.如图,将等边△ABC沿BC方向平移得到△A1B1C1.若BC=3,S△PB1C= 3,则BB1=______________16.圆内接正n边形的每个内角都等于135°,则n=________17.如图,点A1、A2、A3、…、An在抛物线y=x2图象上,点B1、B2、B3、…、B n在y轴上,若△A1B0B1、△A2B1B2、…、△A n B n-1B n都为等腰直角三角形(点B0是坐标原点),则△A2013B2012B2013的腰长= _________________三、解答题:(本大题共7小题,共64分).18.(本题满分6分)计算:(-1)2013+(π-3)0+(21)1--2)21(-2题图3题图7题图8题图10题图11题图12题图数学试题第1 页共4 页数学试题 第 2 页 共 4 页19. (本题满分10分)如图,已知AB 是⊙O 的直径,点C 、D 在⊙O 上,点E 在⊙O 外,∠EAC=∠D=60°. (1)求证:AE 是⊙O 的切线; (2)当BC=4时,求劣弧AC 的长20、(本题满分8分)某学校课程安排中,各班每天下午只安排三节课,初一(1)班星期二下午安排了数学、英语、生物课各一节,通过画树状图求出把数学课安排在最后一节的概率; .21.(本题满分10分)如图,二次函数y=ax 2-4x+c 的图象经过坐标原点,与x 轴交于点A (-4,0). (1)求二次函数的解析式;(2)在抛物线上存在点P ,满足S △AOP =8,请直接写出点P 的坐标.22.(本题满分10分)⌒ ⌒如图所示,在⊙O 中,AD= AC ,弦AB 与弦AC 交于点A ,弦CD 与AB 交于点F ,连接BC .(1)求证:AC 2=A B•AF ;(2)若⊙O 的半径长为2cm ,∠B=60°,求图中阴影部分面积.23.(本题满分8分)24. (本题满分12分)如图,一次函数122y x =-+分别交y 轴、x 轴于 A 、B 两点,抛物线2y x bx c =-++过A 、B 两点。
2013 年中考数学模拟试卷参考答案

1 1 1 1 6( x 2) 2 x x(6 x) x 2 x 6 2 2 2 2 当 4 x 6 时,△EPQ 的面积等于梯形 ABPQ 的面积减去△AEQ 和△BEP 的面积 1 1 1 y 4( x 10 x) 2(10 x) 2 x 10 2 2 2 y
1 2
3 2
15. 4 3 3或4 3 3 三、解答题(本大题共 11 小题,共 88 分) 17(本题 6 分) 解:△= 62 4 7 8
16. 2 2 2或2 - 2 2
x1
6 8 6 8 3 2, x2 3 2 2 2
18(本题 9 分)
2013 年中考数学模拟试卷参考答案
一、选择题(每小题 2 分,共 12 分) 题号 答案 1 B 2 D 3 D 4 B 5 D 6 B
二、填空题(每小题 2 分,共 20 分) 7. 4 11.9.0 8.圆柱体(此题答案不唯一) 12.( 1,3 ) 9. 1或 1 13. 10. 6 14. m 1且m
4x 1 x 解不等式 3 4 x 6 x 6
得 3 x 1 满足条件的整数 a 的值为-2、-1、0、1 但由
a2 1 a 2 2a 1 1 知 a 1 a2 a a
a -1、0、1
所以满足条件的整数 a 的值只有-2
a2 1 a 2 2a 1 1 a 1 a2 a a (a 1) 2 1 (a 1)(a 1) a 1 a (a 1) a (a 1) 1 a 1 a (a 1) a 1 1 a 1 a a a 1 = 当a 2时,原式= 1
y1 950 250 x, y2 300( x 0.5)
2013年中考数学模拟试题和答案

数 学 试 卷(一)*考试时间120分钟 试卷满分150分一、选择题(下列各题的备选答案中,只有一个答案是正确的,将正确答案的序号填在题后的括号内,每小题3分,共24分) 1.|65-|=( ) A .65+B .65-C .-65-D .56-2.如果一个四边形ABCD 是中心对称图形,那么这个四边形一定是( ) A .等腰梯形 B .矩形 C .菱形 D .平行四边形 3. 下面四个数中,最大的是( )A .35-B .sin88°C .tan46°D .215- 4.如图,一个小圆沿着一个五边形的边滚动,如果五边形的各边长都和小圆的周长相等,那么当小圆滚动到原来位置时,小圆自身滚动的圈数是( ) A .4 B .5 C .6 D .10 5.二次函数y=(2x-1)2+2的顶点的坐标是( ) A .(1,2) B .(1,-2) C .(21,2) D .(-21,-2)6.足球比赛中,胜一场可以积3分,平一场可以积1分,负一场得0分,某足球队最后的积分是17分,他获胜的场次最多是( ) A .3场 B .4场 C .5场 D .6场 7. 如图,四边形ABCD 的对角线AC 和BD 相交于点E ,如果△CDE 的面积为3,△BCE 的面积为4,△AED 的面积为6,那么△ABE 的面积为( ) A .7 B .8 C .9 D .108. 如图,△ABC 内接于⊙O,AD 为⊙O 的直径,交BC 于点E ,若DE =2,OE =3,则tanC·tanB = ( )A .2B .3C .4D .5 二、填空题(每小题3分,共24分)9.写出一条经过第一、二、四象限,且过点(1-,3)的直线解析式 . 10.一元二次方程x2=5x的解为 .11. 凯恩数据是按照某一规律排列的一组数据,它的前五个数是:269,177,21,53,31,按照这样的规律,这个数列的第8项应该是 . 12.一个四边形中,它的最大的内角不能小于 . 13.二次函数x x y 2212+-=,当x 时,0<y ;且y 随x 的增大而减小.14. 如图,△ABC 中,BD 和CE 是两条高,如果∠A =45°,则BC DE= . 15.如图,已知A 、B 、C 、D 、E 均在⊙O 上,且AC 为⊙O 的直径,则∠A +∠B +∠C =__________度. 16.如图,矩形ABCD 的长AB =6cm ,宽AD =3cm. O 是AB 的中点,OP ⊥AB ,两半圆的直径分别为AO 与OB .抛物线y=ax2经过C 、D 两点,则图中阴影部分 的面积是 cm 2.三、(第17小题6分,第18、19小题各8分,第20小题10分,共32分) 17.计算:01)32009(221245cos 4)21(8--⨯÷-︒-+-18.计算:22111211x x x x ⎛⎫-+÷ ⎪-+-⎝⎭19.已知:如图,梯形ABCD 中,A B ∥CD ,E 是BC 的中点,直线AE 交DC 的延长线于点F .(1)求证:△ABE ≌△FCE ; (2)若BC ⊥AB ,且BC =16,AB =17,求AF 的长.CA20.观察下面方程的解法x4-13x2+36=0解:原方程可化为(x2-4)(x2-9)=0∴(x+2)(x-2)(x+3)(x-3)=0∴x+2=0或x-2=0或x+3=0或x-3=0∴x1=2,x2=-2,x3=3,x4=-3你能否求出方程x2-3|x|+2=0的解?四、(每小题10分,共20分)21.(1)顺次连接菱形的四条边的中点,得到的四边形是.(2)顺次连接矩形的四条边的中点,得到的四边形是.(3)顺次连接正方形的四条边的中点,得到的四边形是.(4)小青说:顺次连接一个四边形的各边的中点,得到的一个四边形如果是正方形,那么原来的四边形一定是正方形,这句话对吗?请说明理由.22.下面的表格是李刚同学一学期数学成绩的记录,根据表格提供的信息回答下面的问题(1)李刚同学6次成绩的极差是.(2)李刚同学6次成绩的中位数是.(3)李刚同学平时成绩的平均数是.(4)如果用右图的权重给李刚打分,他应该得多少分?(满分100分,写出解题过程)23.(本题12分)某射击运动员在一次比赛中,前6次射击已经得到52环,该项目的记录是89环(10次射击,每次射击环数只取1~10中的正整数).(1)如果他要打破记录,第7次射击不能少于多少环?(2)如果他第7次射击成绩为8环,那么最后3次射击中要有几次命中10环才能打破记录?(3)如果他第7次射击成绩为10环,那么最后3次射击中是否必须至少有一次命中10环才有可能打破记录?24.(本题12分)甲、乙两条轮船同时从港口A出发,甲轮船以每小时30海里的速度沿着北偏东60°的方向航行,乙轮船以每小时15海里的速度沿着正东方向行进,1小时后,甲船接到命令要与乙船会和,于是甲船改变了行进的速度,沿着东南方向航行,结果在小岛C 处与乙船相遇.假设乙船的速度和航向保持不变,求:(1)港口A与小岛C之间的距离(2)甲轮船后来的速度.25.(本题12分)如图,在平面直角坐标系内,已知点A (0,6)、点B (8,0),动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点P 、Q 移动的时间为t 秒. (1) 求直线AB 的解析式;(2) 当t 为何值时,△APQ 与△AOB 相似?(3) 当t 为何值时,△APQ 的面积为524个平方单位?26.(本题14分)如图,直线y= -x+3与x轴,y轴分别相交于点B、C,经过B、C两点的抛物线与x轴的另一交点为A,顶点为P,且对称轴为直线x=2.(1)求A点的坐标;(2)求该抛物线的函数表达式;(3)连结AC.请问在x轴上是否存在点Q,使得以点P、B、Q为顶点的三角形与△ABC 相似,若存在,请求出点Q的坐标;若不存在,请说明理由.2009年中考模拟题 数学试题参考答案及评分标准一、选择题(每小题3分,共24分)1.D; 2.D ; 3.C ;4.C;5.C; 6.C ;7.B;8.C . 二、填空题(每小题3分,共24分)9.y=-x+2等; 10.x1=0,x2=5; 11.133; 12.90°; 13.227; 14.2115.90;16.π49三、(第17小题6分,第18、19小题各8分,第20小题10分,共32分) 17.解:原式=222224222⨯⨯-⨯-+ -1 ...............4分 =822222--+ -1=-7 .............................6分18.计算:22111211x x x x ⎛⎫-+÷ ⎪-+-⎝⎭解:原式=)1(])1()1)(1(1[2-⨯--++x x x x ).............................4分 xx x x x x 211)1(]111[=++-=-⨯-++................................8分19.(1)证明: ∵E 为BC 的中点 ∴BE =CE ∵AB ∥CD∴∠BAE =∠F ∠B =∠FCE∴△ABE ≌△FCE .............................4分解:由(1)可得:△ABE≌△FCE∴CE=AB=15,CE=BE=8,AE=EF∵∠B=∠BCF=90°根据勾股定理得AE=17∴AF=34.............................8分20.解:原方程可化为|x|2-3|x|+2=0.............................3分∴(|x|-1)(|x|-2)=0∴|x|=1或|x|=2∴x=1,x=-1,x=2,x=-2 .............................10分四.(每小题10分,共20分)21.解:(1)矩形;(2)菱形,(3)正方形.............................6分(4)小青说的不正确如图,四边形ABCD中AC⊥BD,AC=BD,BO≠DO,E、F、G、H分别为AD、AB、BC、CD的中点显然四边形ABCD不是正方形但我们可以证明四边形ABCD是正方形(证明略)所以,小青的说法是错误的..............................10分22.解:(1)10分.............................2分(2)90分.............................4分(3)89分.............................6分(4)89×10%+90×30%+96×60%=93.5李刚的总评分应该是93.5分..............................10分23.小强和小亮的说法是错误的,小明的说法是正确的....................2分不妨设小明首先抽签,由树状图可知,共出现6种等可能的结果,其中小明、小亮、小强抽到A 签的情况都有两种,概率为31,同样,无论谁先抽签,他们三人抽到A 签的概率都是31.所以,小明的说法是正确的..............................12分24.解:(1)作BD ⊥AC 于点D由题意可知:AB =30×1=30,∠BAC =30°,∠BCA =45° 在Rt △ABD 中∵AB =30,∠BAC =30°∴BD =15,AD =ABcos30°=153 在Rt △BCD 中, ∵BD =15,∠BCD =45° ∴CD =15,BC =152 ∴AC =AD +CD =153+15即A 、C 间的距离为(153+15)海里.............................6分 (2)∵AC =153+15轮船乙从A 到C 的时间为1515315 =3+1由B 到C 的时间为3+1-1=3 ∵BC =152∴轮船甲从B 到C 的速度为3215=56(海里/小时)答:轮船甲从B到C的速度为56海里/小时..............................12分七、25.解:(1)老师说,三个同学中,只有一个同学的三句话都是错的,所以丙的第一句话和老师的话相矛盾,因此丙的第一句话是错的,同时也说明甲、乙两人中有一个人是全对的;............................2分(2)如果丙的第二句话是正确的,那么根据抛物线的对称性可知,此抛物线的对称轴是直线x=2,这样甲的第一句和乙的第一句就都错了,这样又和(1)中的判断相矛盾,所以乙的第二句话也是错的;根据老师的意见,丙的第三句也就是错的.也就是说,这条抛物线一定过点(-1,0);.............................6分(3)由甲乙的第一句话可以断定,抛物线的对称轴是直线x=1,抛物线经过(-1,0),那么抛物线与x轴的两个交点间的距离为4,所以乙的第三句话是错的;由上面的判断可知,此抛物线的顶点为(1,-8),且经过点(-1,0)设抛物线的解析式为:y=a(x-1)2-8∵抛物线过点(-1,0)∴0=a(-1-1)2-8解得:a=2∴抛物线的解析式为y=2(x-1)2-8即:y=2x2-4x-6.............................12分八、(本题14分)26.【探究】证明:过点F作GH∥AD,交AB于H,交DC的延长线于点G∵AH∥EF∥DG,AD∥GH∴四边形AHFE和四边形DEFG都是平行四边形∴FH=AE,FG=DE∵AE=DE∴FG=FH∵AB∥DG∴∠G=∠FHB,∠GCF=∠B∴△CFG≌△BFH2013年中考数学模拟试题和答案- 11 - / 11 ∴FC =FB .............................4分【知识应用】过点C 作CM ⊥x轴于点M ,过点A 作AN ⊥x轴于点N ,过点B 作BP ⊥x轴于点P则点P 的坐标为(x2,0),点N 的坐标为(x1,0)由探究的结论可知,MN =MP∴点M 的坐标为(221x x +,0) ∴点C 的横坐标为221x x + 同理可求点C 的纵坐标为221y y + ∴点C 的坐标为(221x x +,221y y +).............................8分 【知识拓展】 当AB 是平行四边形一条边,且点C 在x轴的正半轴时,AD 与BC 互相平分,设点C 的坐标为(a,0),点D 的坐标为(0,y)由上面的结论可知:-6+a=4+0,-1+0=5+b∴a=10,b=-6∴此时点C 的坐标为(10,0),点D 的坐标为(0,-6)同理,当AB 是平行四边形一条边,且点C 在x轴的负半轴时求得点C 的坐标为(-10,0),点D 的坐标为(0,6)当AB 是对角线时点C 的坐标为(-2,0),点D 的坐标为(0,4).............................14分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年中考模拟题数 学 试 卷(四)*考试时间120分钟 试卷满分150分一、选择题 每小题3分,共24分) 1.sin30°的值为( ) A .21 B .23 C .33 D .222. △ABC 中,∠A =50°,∠B =60°,则∠C =( )A .50°B .60°C .70°D .80°3.如图,直线l 1、l 2、l 3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( ) A .一处. B .两处 C .三处. D .四处. 4.点P (-2,1)关于x 轴对称的点的坐标是( )A .(-2,-1)B .(2,-1)C .(1,-2)D .(2,1)5. 若x =3是方程x 2-3mx +6m =0的一个根,则m 的值为 ( )A .1B . 2C .3D .4 6.现有A 、B 两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A 立方体朝上的数字为x 、小明 掷B 立方体朝上的数字为y 来确定点P (x y ,),那么它们各掷一次所确定的点P 落在已知抛物线24y x x =-+上的概率为( )A.118 B.112 C.19 D.167.右图是由几个小立方块搭成的几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,那么这个几何体的主视图是( )A .B .C .D . 8.某超级市场失窃,大量的商品在夜间被罪犯用汽车运走。
三个嫌疑犯被警察局传讯,警察2 13局已经掌握了以下事实:(1)罪犯不在A 、B 、C 三人之外;(2)C 作案时总得有A 作从犯;(3)B 不会开车。
在此案中能肯定的作案对象是( )A .嫌疑犯AB .嫌疑犯BC .嫌疑犯CD .嫌疑犯A 和C二、填空题(每小题3分,共24分)9.据中新社报道:2010年我国粮食产量将达到540000000000千克,用科学记数法表示这个粮食产量为______千克.10.用一个半径为6㎝的半圆围成一个圆锥的侧面,则这个圆锥的侧面积为 ㎝2.(结果保留π)11.△ABC 中,AB =6,AC =4,∠A =45°,则△ABC 的面积为 .12.若一次函数的图象经过反比例函数4y x=-图象上的两点(1,m )和(n ,2),则这个一次函数的解析式是 .13. 某品牌的牛奶由于质量问题,在市场上受到严重冲击,该乳业公司为了挽回市场,加大了产品质量的管理力度,并采取了“买二赠一”的促销手段,一袋鲜奶售价1.4元,一箱牛奶18袋,如果要买一箱牛奶,应该付款 元.14.通过平移把点A(2,-3)移到点A ’(4,-2),按同样的平移方式,点B(3,1)移到点B′, 则点B′的坐标是 ________15.如图,在甲、乙两地之间修一条笔直的公路, 从甲地测得公路的走向是北偏东48°。
甲、乙两地间 同时开工,若干天后,公路准确接通,则乙地所修公 路的走向是南偏西 度。
16.如图,M 为双曲线y =x1上的一点,过点M作x轴、y轴的垂线,分别交直线y=-x+m 于D 、C 两点,若直线y=-x+m 与y轴交于点A,与x轴相交于点B .则AD ·BC 的值为 . 三、(第17小题6分,第18、19小题各8分,第20小题10分,共32分)17.求值:计算:()113(2cos301)1-︒-+-18.先化简,再请你用喜爱的数代入求值xx x x x x x x x 42)44122(322-+÷+----+19.已知⊙O 的直径AB 、CD 互相垂直,弦AE 交CD 于F ,若⊙O 的半径为R求证:AE ·AF =2 R 220.据统计某外贸公司2007年、2008年的进出口贸易总额分别为3300万元和3760万元, 其中2008年的进口和出口贸易额分别比2007年增长20%和10%.(1)试确定2007年该公司的进口和出口贸易额分别是多少万元;(2)2009年该公司的目标是:进出口贸易总额不低于4200万元, 其中出口贸易额所占比重不低于60%, 预计2009年的进口贸易额比2008年增长10%, 则为完成上述目标,2009年的出口贸易额比2008年至少应增加多少万元?四、(每小题10分,共20分)21.如图,河中水中停泊着一艘小艇,王平在河岸边的A处测得∠DAC=α,李月在河岸边的的B处测得∠DCA=β,如果A、C之间的距离为m,求小艇D到河岸AC的距离.22.某书报亭开设两种租书方式:一种是零星租书,每册收费1元;另一种是会员卡租书,办卡费每月12元,租书费每册0.4元.小军经常来该店租书,若每月租书数量为x册.(1)写出零星租书方式应付金额y1(元)与租书数量x(册)之间的函数关系式;(2)写出会员卡租书方式应付金额y2(元)与租书数量x(册)之间的函数关系式;(3)小军选取哪种租书方式更合算?五、(本题12分)23.如图所示,矩形ABCD中,点E在CB的延长线上,使CE=AC,连结AE,点F是AE的中点,连结BF、DF,求证:BF⊥DF六、(本题12分)24.某校为了了解九年级学生的体能情况,抽调了一部分学生进行一分钟跳绳测试,将测试成绩整理后作出如下统计图.甲同学计算出前两组的频率和是0.12,乙同学计算出跳绳次数不少于100次的同学占96%,丙同学计算出从左至右第二、三、四组的频数比为4:17:15.结合统计图回答下列问题:(1)这次共抽调了多少人?(2)若跳绳次数不少于130次为优秀,则这次测试成绩的优秀率是多少?(3)如果这次测试成绩的中位数是120次,那么这次测试中,成绩为120次的学生至少有多少人?七、(本题12分)25.在△ABC中,AC=BC,∠ACB=90°,D、E是直线AB上两点.∠DCE=45°(1)当CE⊥AB时,点D与点A重合,显然DE2=AD2+BE2(不必证明)(2)如图,当点D不与点A重合时,求证:DE2=AD2+BE2(3)当点D在BA的延长线上时,(2)中的结论是否成立?画出图形,说明理由.八(本题14分)26.如图,已知抛物线y=x2-ax+a2-4a-4与x轴相交于点A和点B,与y轴相交于点D(0,8),直线DC平行于x轴,交抛物线于另一点C,动点P以每秒2个单位长度的速度从C点出发,沿C→D运动,同时,点Q以每秒1个单位长度的速度从点A出发,沿A→B运动,连接PQ、CB,设点P运动的时间为t秒.(1)求a的值;(2)当四边形ODPQ为矩形时,求这个矩形的面积;(3)当四边形PQBC的面积等于14时,求t的值.(4)当t为何值时,△PBQ是等腰三角形?(直接写出答案)2010年中考模拟题(四)数学答案一、选择题(每小题3分,共24分)1.A;2.C ; 3.D ;4.A ;5.C ; 6.; 7.A ; 8.A 二、填空题(每小题3分,共24分)9.5.4×1011;10.18π; 11.62; 12.y=-2x-2; 13.16.8; 14.(5,2) ;15.48°; 16.2三、(第17小题6分,第18、19小题各8分,第20小题10分,共32分)17.解:原式224445x x x x =+++-- ················································································· 3分 221x =-. ······························································································································· 4分当x原式221=⨯-3= ··········································································································································· 6分18. 解:原式=2)2)(2(])2(1)2(2[2+-+⨯----+x x x x x x x x x ………………3分 =x+2-22--x xx ………………5分=24--x x ………………6分当x=6时,原式=21………………8分19.证明:连接BE …………………1分∵AB 为⊙O 的直径∴∠AEB =90°…………………2分 ∵AB ⊥CD ∴∠AOF =90° ∴∠AOF =∠AEB =90° 又∠A =∠A∴△AOF ∽△AEB …………………5分AEAOAB AF = ∴AE ·AF =AO ·AB ∵AO =R AB =2RAE ·AF =2R 2………………8分20.解:设2007年进口贸易额为x 万元、出口贸易额为y 万元 则:⎩⎨⎧=+++=+3760%)101(%)201(33000y x y x ⎩⎨⎧==20001300y x∴ 2007年进口贸易额为1300万元、出口贸易额为2000万元(2)设2009年的出口贸易额比2008年至少增加z 万元 由2008年的进口贸易额是:1300(1+20%)=1560万元 2008年的出口贸易额是:2000(1+10%)=2200万元则:⎪⎩⎪⎨⎧≥++++≥+++%60)2200(%)101(156022004200)2200(%)101(1560z zz 解得⎩⎨⎧≥≥374284z z所以z ≥374 ,即2009年的出口贸易额比2008年至少增加374万元.……………10分 四.(每小题10分,共20分)21.解:过点D 作DB ⊥AC 于点B,设DB =x………1分在Rt △ADB 中,tan ∠DAB =ABBD∴AB ==∠DAB BD tan αtan x………4分在Rt △CDB 中,tan ∠DCB =BCBD∴BC =βtan tan xDCB BD =∠ ∵AB +BC =AC =m ∴αtan x +βtan x=m………8分 解得:x=βαβαtan tan tan tan +m答:小艇D 到河岸AB 的距离为βαβαtan tan tan tan +m ………10分22.解:(1)y1=x..........2分 (2)y2=12+0.4x..........4分(3)当y1=y2时,x=12+0.4x,解得:x=20 当y1>y2时,x>12+0.4x,解得x>20 当y1<y2时,x<12+0.4x,解得x<20综上所述,当小军每月借书少于20册时,采用零星方式租书合算;当每月租书20册时,两种方式费用一样;当每月租书多于20册时,采用会员的方式更合算...........10分23.证明:延长BF ,交DA 的延长线于点M ,连接BD ……………2分 ∵四边形ABCD 是矩形 ∴MD ∥BC∴∠AMF =∠EBF ∠E =∠MAF 又FA =FE∴△AFM ≌△EFB ……………5分 AM =BE FB =FM矩形ABCD 中,AC =BD ,AD =BC ∴BC +BE =AD +AM 即CE =MD∵CE =AC∴DB =DM∵FB =FM∴BF ⊥DF ……………12分24.(1)第一组的频率为1-0.96=0.04…………………………………………2分 第二组的频率为0.12-0.04=O.08…………………………………………3分120.08=150(人),这次共抽调了150人……………………………………6分 (2)第一组人数为150×0.04=6(人),第三、四组人数分别为51人,45人………8分这次测试的优秀率为150-6-12-51-45150×100%=24%………………………………10分 (3)成绩为120次的学生至少有7人…………………………………………12分 七、25.解:(2)证明:过点A 作AF ⊥AB ,使AF =AB ,连接DF∵△ABC 是等腰直角三角形∴AC =AB ∠CAB =∠B =45°,∴∠FAC =45°∴△CAF ≌△CBE …………………………………………3分∴CF =CE ∠ACF =∠BCE∵∠ACB =90°,∠DCE =45°∴∠ACD +∠BCE =45°∴∠ACD +∠ACF =45°即∠DCF =45°∴∠DCF =∠DCE又CD =CD∴△CDF ≌△CDE∴DF =DE∵AD 2+AF 2=DF 2∴AD 2+BE 2=DE 2…………………………………………7分(3)结论仍然成立如图证法同(2)…………………………………………12分八、(本题14分)26.(1)∵抛物线y=x2-ax+a2-4a-4经过点(0,8)∴a2-4a-4=8解得:a1=6,a2=-2(不合题意,舍去)∴a的值为6…………………………………………4分(2)由(1)可得抛物线的解析式为y=x2-6x+8当y=0时,x2-6x+8=0解得:x1=2,x2=4∴A 点坐标为(2,0),B 点坐标为(4,0)当y=8时,x=0或x=6∴D 点的坐标为(0,8),C 点坐标为(6,8)DP =6-2t ,OQ =2+t当四边形OQPD 为矩形时,DP =OQ2+t =6-2t ,t =34,OQ =2+34=310 S =8×310=380 即矩形OQPD 的面积为380…………………………………………8分 (3)四边形PQBC 的面积为8)(21⨯+PC BQ ,当此四边形的面积为14时, 21(2-t +2t )×8=14 解得t =23(秒)当t =23时,四边形PQBC 的面积为14…………………………………………12分 (4)t =56时,PBQ 是等腰三角形.…………………………………………14分。