各种催化剂及其催化作用
固体酸碱催化剂及其催化作用全解

固体酸碱催化剂及其催化作用全解固体酸碱催化剂是一类广泛应用于化学反应中的物质。
它们以固态形式存在,并具备酸性或碱性性质,能够与反应底物发生相互作用,从而促进化学反应的进行。
固体酸碱催化剂具有许多优点,如高活性、稳定性好、易于回收利用等,因此在催化化学领域中占有重要地位。
固体酸催化剂主要包括金属氧化物、沸石、层状材料以及离子交换树脂等几种类型。
金属氧化物催化剂中,氧化铋、二氧化硅、二氧化钛等都是常见的固体酸催化剂。
它们具有高酸性、高稳定性和可控性,常用于酯化、酸酐酯化、醇酸缩合等反应中。
沸石是一类由硅氧四面体和金属氧四面体交替组成的晶体结构,具有反应局部的高酸性和较大的孔径,常用于醇醚化、碳氢化合物裂解等反应中。
固体碱催化剂主要包括氧化铝和硅铝酸盐(分子筛)。
氧化铝是一种强碱,具有高度的活性和选择性,常用于醇转酯反应、酯加成反应、酸酐加成反应等。
而硅铝酸盐是一类具有指定孔道结构的化合物,其酸性主要来自于酸位和酟位,常用于烷基化反应、异构化反应等。
酸催化作用主要是通过提供质子(H+)来促进反应的进行。
在酸催化中,催化剂与底物之间发生相互作用,质子转移后生成活化的中间体,从而降低了反应的能垒,加速了反应速率。
例如,在酯化反应中,固体酸催化剂能够降低羰基碳上的催化中间体的电性,促进从碳上的羟基到羰基的质子转移,加速生成酯。
碱催化作用主要是通过接受质子来促进反应的进行。
在碱催化中,催化剂与底物发生相互作用,接受质子生成活化的中间体,从而降低了反应的能垒,加速了反应速率。
例如,在醇转酯反应中,固体碱催化剂能够提供氧化铝或硅铝酸盐表面上的OH-离子,将醇分子上的质子去除,加速生成酯。
总结起来,固体酸碱催化剂通过引入酸性或碱性位点,提供质子或接受质子来促进化学反应的进行。
这种催化作用可以加速反应速率、提高产率和选择性,因此在有机合成、石化加工和环境保护等方面具有广泛应用前景。
催化剂的特性及其作用

催化剂的特性及其作用一、催化剂的特性1、三乙基铝(TEAL):三乙基铝为催化剂助剂的一种,显弱酸性,具有非常强的活性,遇空气中的氧气能发生自然,遇水发生爆炸,它与主催化剂形成Ti-C活性中心并可以在聚合反应中杀死对主催化剂有害的物质.2、给电子体(DONOR):全名甲基环己基二甲氧基硅烷,也是催化剂助剂的一种,显弱碱性,遇水可分解出甲醇对人体皮肤和眼睛造成一定伤害,其主要调节聚丙烯分子量的分布及产品的等规度.3、主催化剂:四氯化钛为主催化剂,遇水可分解出HCL性水溶液对人体造成伤害.这三种催化剂除TEAL以纯品投用外其他两种均用白油稀释后注入反应区并且三中催化剂储存时都需要氮封,防止空气进入反应区影响反应活性.二、催化剂在反应中的作用本装置采用的催化剂为CS-2,CS-2是我国第四代催化剂,活性可高达≯30KGpp/g催化剂,产品等规度达98%,无脱灰、无脱无规物、无造粒等.其催化剂成分包括四氯化钛(内给电子体邻苯二甲酸酯),三乙基铝,外给电子体DONOR.由于TEAL显弱酸性能中和掉主CAT中显弱碱性的内给电子体所以加入DONOR作为补给.而DONOR过量则会减少反应中活化铝的量使得CO、SO等带有孤对电子对的杂质不能完全被消除导致反应活性下降,所以TEAL和DONOR要以一定的比例投用到反应中而却保催化剂的活性.催化剂的载体为活化后的球形MgCl2,主CAT负载在其表面与TEAL、DONOR一起进入到D201中进行链引发过程,进行烷基化后的主CAT和TEAL形成Ti-C活性中心,与DONOR 一起负载在载体上共同研磨就形成了高活性、立构性好的催化剂。
丙烯单体就在Ti-C活性中心上进行聚合过程,而DONOR主要确保聚丙烯的分子量分布以及等规度,而由于载体MgCl2为球形则聚合后的丙烯也为球状,即实现无造粒过程。
第4章3过渡金属氧化物催化剂及其催化作用

第4章3过渡金属氧化物催化剂及其催化作用过渡金属氧(硫)化物催化剂是一类广泛应用于化学反应中的催化剂。
它们由过渡金属和氧(硫)等原子组成,具有独特的结构和催化性能。
在本文中,我们将重点介绍过渡金属氧(硫)化物催化剂的种类、结构和催化作用,以及其在化学合成和能源转化等领域的应用。
过渡金属氧(硫)化物催化剂主要有负载型和非负载型两种形式。
负载型催化剂是将过渡金属氧(硫)化物负载在二氧化硅、活性炭等载体上,以增加其表面积和催化活性。
非负载型催化剂则是纯粹由过渡金属氧(硫)化物构成的颗粒或薄膜,具有较高的比表面积和催化活性。
这两种形式的催化剂在不同的反应中具有不同的催化机理和催化性能。
过渡金属氧(硫)化物催化剂的结构是其催化性能的关键因素。
大多数过渡金属氧(硫)化物催化剂具有复杂的晶体结构,如层状结构、中空球状结构等。
这些结构可以提供丰富的活性位点,并且具有调节反应中间体吸附和反应通道的能力。
此外,过渡金属氧(硫)化物催化剂还可以通过改变晶体结构或添加协同剂来调节其催化性能,提高催化活性和选择性。
过渡金属氧(硫)化物催化剂在化学反应中具有广泛的应用。
例如,通过调节过渡金属氧(硫)化物催化剂的结构和成分,可以实现氧化反应、氢化反应、催化裂解等各种化学转化。
特别是在有机合成中,过渡金属氧(硫)化物催化剂可以催化氧化还原反应、催化偶联反应、催化环化反应等,为合成高附加值化合物提供了重要的技术手段。
另外,过渡金属氧(硫)化物催化剂还可以催化电化学反应、光化学反应等非常规化学反应,为能源转化和环境保护等领域提供了新的解决方案。
总之,过渡金属氧(硫)化物催化剂是一类重要的催化剂,在化学合成和能源转化等领域具有广泛的应用。
通过调节其结构和成分,可以实现多种化学反应的高效催化。
随着新材料合成和催化机理的深入研究,过渡金属氧(硫)化物催化剂的催化性能有望进一步提高,为社会经济的可持续发展作出更大的贡献。
酸碱催化剂及其催化作用

Hammett酸函数(H0)
——Hammett酸函数表达式
Hammett酸函数(H0)
变色点) H0越小,酸性越强
测定酸强度的指示剂
固体酸强度测定
Hammett指示剂法 采用pKa不同的Hammett指示剂,通过指示剂颜色变化情况进行酸强度的测定 例:能使二肉桂丙酮变红但不能使共叉乙酰苯变黄的催化剂的酸性强度是 ?
3.1.4.3 固体酸性测定-吸附热法
3.1.4.3 固体酸性测定-吸附热法
测定方法 在酸性催化剂上研究NH3的吸附热随覆盖度的变化,可以表征固体表面酸强度随覆盖度的变化。 用NH3吸附时表面覆盖度对吸附热的微分dθ /dQ表示产生该吸附热的分子数,将dθ/dQ对Q作图则可表示催化剂表面酸性中心数目随酸强度的变化,这种图谱称为酸度谱。
3.1.4.3 固体酸性测定
采用Hammett指示剂法测定固体表面酸性,要注意所用试剂的干燥程度和纯度,特别注意实验条件确保达到吸附平衡,否则很难得到可靠的结果。 在实际测定过程中,为了加速平衡状态的到达,可采用超声波振荡器加强搅拌。 用Hammett指示剂法测定微孔物质(例如分子筛)的表面酸性时,必须考虑孔径大小对指示剂分子和有机碱分子扩散的抑制作用。样品粒度不小于100目。
分光光度法
3.1.4.3 固体酸性测定
有机碱和指示剂分子在固体表面上的竞争吸附过程,即指示剂分子和有机碱分子吸附在同样的酸性位上,指示剂分子不能接近的酸性位,有机碱也与其无相互作用。这样,消耗有机碱的数量才能表示欲测强度酸性位的数量。在实际测定过程中,使用指示剂的数量要非常低,只能使一小部分酸性位与指示剂分子作用,绝大多数酸性位被碱性分子所中和。这样才能得到比较准确的结果。
TPD的优点 可在高温(几百摄氏度)下测定固体表面酸量,或在催化剂实际操作条件下测定其酸量,并可用于有色样品的测定。 缺点 难于区别物理吸附和化学吸附,也难于区分不同酸强度中心的酸量
各类催化剂及催化作用

工业催化原理
8/54 化学与材料科学学院
二、发展史
1、 五十年代 —— 沸石 干燥剂:
产品含水可脱到 1—10 ppm 净化剂:
天然气、裂解气脱H2S、CO2比硅胶净化度提高10 ~20倍 烃类分离:
脱蜡: 异构烷中分离正构烷 从混合二甲苯中分离对二甲苯 (KBaY分子筛)
工业催化原理
9/54 化学与材料科学学院
工业催化原理
29/54 化学与材料科学学院
菱沸石—含钙沸石
窗口为八元环,有效直径为 4.9 Å 基本化学组成: (Na2,Ca)(Al2Si14O32)·6H2O
工业催化原理
30/54 化学与材料科学学院
磷酸铝系分子筛结构
80年代出现第三代新型分子筛
大孔: AlPO—5
0.7—0.8 nm
中孔: AlPO—11 小孔: AlPO—30
35/54 化学与材料科学学院
➢ 活性: 酸活性最高峰,不是与Cat表面-OH最高含量相适
应,是经过局部脱水达到。 ➢ 特点: B、L 可相互转换
B
L
工业催化原理
36/54 化学与材料科学学院
骨架外铝离子会强化酸位,形成L 酸 与OH基酸位相互经强化后
工业催化原理
三配位的铝离子从骨架上 脱出
37/54 化学与材料科学学院
1、酸中心的形成与本征催化性能 氢型和脱阳离子型沸石分子筛酸中心的形成。
交换
Na+
NH4+
H 型 -H2O 阳离子型
工业催化原理
33/54 化学与材料科学学院
➢ NaY 例
工业催化原理
34/54 化学与材料科学学院
H型
脱阳离子型
金属催化剂及其催化作用

金属催化剂及其催化作用引言催化是一种重要的化学过程,它可以通过降低能量势垒的方式加速化学反应的速率。
金属催化剂作为一类常用的催化剂,广泛应用于有机合成、能源转化等领域。
本文将介绍金属催化剂的定义、分类以及其在化学反应中的催化作用。
金属催化剂的定义与分类金属催化剂是指能够在化学反应中加速反应速率,且在反应结束时保持不变的金属物质。
金属催化剂能够通过提供活性位点、调控反应的能垒、吸附反应物等方式实现催化作用。
根据催化剂的组成,金属催化剂可以分为两类:一类是纯金属催化剂,即单一金属元素或金属合金;另一类是负载型金属催化剂,即将金属颗粒负载于支撑物上。
负载型金属催化剂具有较大的比表面积和较高的催化活性,常用的负载物包括二氧化硅、氧化铝等。
金属催化剂还可以根据金属的化学性质进行分类。
常见的金属催化剂包括贵金属催化剂(如铂、钯、铑等)、过渡金属催化剂(如铁、铜、镍等)以及稀土金属催化剂(如钕、镧等)。
不同类型的金属催化剂具有不同的催化特性,适用于不同类型的化学反应。
金属催化剂的催化作用金属催化剂在化学反应中主要通过以下几个方面发挥作用:1.提供活性位点:金属催化剂上的金属离子或金属表面可以提供活性位点,吸附并激活反应物。
活性位点能够有效降低化学反应的活化能,加速反应速率。
2.调控反应的能垒:金属催化剂可以通过调整反应物与催化剂间的作用力,改变反应的活化能。
例如,在氢气化反应中,贵金属催化剂能够吸附氢气并削弱键合,从而降低氢与反应物之间的能垒,促进反应进行。
3.提供电子转移:金属催化剂可以通过提供或接收电子的方式参与反应。
贵金属催化剂常常参与电子转移反应,如氧化还原反应,通过调控电子转移过程来加速反应速率。
4.分子催化:金属催化剂中的金属离子或金属表面可以与反应物发生直接的化学反应,形成中间体,进而促进反应进行。
这种分子催化机制在有机合成中具有重要的应用价值。
金属催化剂的应用金属催化剂在化学合成、能源转化等领域具有广泛的应用。
工业催化3.3-金属及合金催化剂及其催化作用ppt课件

一般 d%可用于解释多晶催化剂的活性大小,但 不能说明晶面上的活性差别。
烧伤病人的治疗通常是取烧伤病人的 健康皮 肤进行 自体移 植,但 对于大 面积烧 伤病人 来讲, 健康皮 肤很有 限,请 同学们 想一想 如何来 治疗该 病人
金属晶格间距与乙烯加氢活性的关系
烧伤病人的治疗通常是取烧伤病人的 健康皮 肤进行 自体移 植,但 对于大 面积烧 伤病人 来讲, 健康皮 肤很有 限,请 同学们 想一想 如何来 治疗该 病人
4.表面原子水平的不均匀性和催化活性
金属催化剂的表面是不均匀的,存在着各种不同 类型的表面位。可用原子表面的TSK模型:即台阶 (Terrace)、梯阶(Step)、和拐折(Kink)模型。 在表面上存在的拐折、梯阶、空位、附加原子等表面 位,对催化反应而言,都是活性较高的部位。
Fcc 面心立方
Bcc 体心立方
Hcp密排六方
烧伤病人的治疗通常是取烧伤病人的 健康皮 肤进行 自体移 植,但 对于大 面积烧 伤病人 来讲, 健康皮 肤很有 限,请 同学们 想一想 如何来 治疗该 病人
烧伤病人的治疗通常是取烧伤病人的 健康皮 肤进行 自体移 植,但 对于大 面积烧 伤病人 来讲, 健康皮 肤很有 限,请 同学们 想一想 如何来 治疗该 病人
烧伤病人的治疗通常是取烧伤病人的 健康皮 肤进行 自体移 植,但 对于大 面积烧 伤病人 来讲, 健康皮 肤很有 限,请 同学们 想一想 如何来 治疗该 病人
头二类为主要的金属催化剂。几乎所有的金属催化剂都是过 渡金属。而过渡金属催化剂的活性组分是第Ⅷ族和第ⅠB族金属。
固体酸碱催化剂及其催化作用全解

酸碱催化剂
金属催化剂
分子筛催化剂
金属氧化物催化剂
络合催化剂
金属硫化物催化剂
第四章 固体酸碱催化剂及其催化作用
一、酸碱催化剂的应用
工 业 上 重 要 的 酸 催 化 剂 及 催 化 反 应
反应类型 催化裂化 烷烃异构化 芳烃异构化 甲苯岐化 烷基转移 烷基化 芳烃烷基化 择形催化烷基化 柴油临氢降凝 烃类芳构化 乙烯水合 酯化反应 醚化反应 主要反应 重油馏分 汽油+柴油+液化气+干气 C5/C6正构烷烃 C5/C6异构烷烃 间、邻二甲苯 对二甲苯 甲苯 二甲苯+苯 二异丙苯+苯异丙苯 异丁烷+1-丁烯 异辛烷 苯+乙烯 乙苯 典型催化剂 稀土超稳Y分子筛(REUSY) 卤化铂/氧化铝 HZSM-5/Al2O3 HM沸石或HZSM-5 H沸石 HF,浓H2SO4 AlCl3或HZSM-5
L酸位:NH3以孤对电子配位键合于L 酸位的吸收谱带 3300 ㎝-1或1640 ㎝-1
吡啶
B酸位 :吡啶与表面H+作用生成 吡啶正离子,其吸收谱带 1540 ㎝-1
L酸位:吡啶配位键合于L 酸位的吸收谱带
1450 ㎝-1或1490 1610 ㎝-1
3300
1640
1450
40 3120
C 20
单位质量或单位表面积上酸位的数目(mmol/g 或 mmol/m2) 总酸量:固体表面所有酸位之总和(即各个酸强度下酸量的总和)
2、固体酸性质的测定
酸位类型的鉴定 —— 吸附探针分子(NH3或吡啶)的红外光谱法
NH3
B酸位 : NH3与表面H+作用生成 NH4+,其吸收谱带
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
酸中心的强度
5、固体酸、碱的催化作用
酸位的性质与催化作用关系
大多数的酸催化反应是在B酸位上进行的,并且催 化活性与B酸位的浓度有良好的关联
烃的骨架异构化、二甲苯的异构化,甲苯和乙苯的歧化, 异丙苯的烷基化以及正己烷的裂化等,单独的L酸位没有 催化活性 常用AlCl3,FeCl3等 r-Al2O3
软酸 交界酸, 介于两者之间
软酸硬酸理论
硬碱
给电子原子极化率低,电负性高,难氧化, 不易变形,即对外层电子吸引力强; 难于失去电子对的碱
软碱 交界碱, 介于两者之间
软酸硬酸理论
苯的烷基化可用三氯化铝催化,因为三氯化铝 是硬酸,可与氯代烷中的硬碱cl-配合使其中软 酸烷基成为正离子r+,从而对软碱苯核的反应 性增大。
1、催化剂的分类
固体碱
担载碱:NaOH、KOH载于氧化硅或氧化铝上;碱金属或者碱土金属分散于氧 化硅或氧化铝上;K2CO3、Li2CO3在于氧化硅上等 阴离子交换树脂 焦碳于1173K下热处理,或用NH3、ZnCl2-NH4Cl-CO2活化 金属氧化物:Na2O、K2O、Cs2O、BeO、MgO、CaO、SrO、BaO、ZnO、 La2O3、CeO4等 氧化物混合物 金属盐:Na2CO3、K2CO3、CaCO3、SrCO3、BaCO3、(NH4)2CO3、KCN 等 经碱金属或者碱土金属改性的各种沸石分子筛 H2SO4、H3PO4、HCl水溶液、醋酸等 NaOH水溶液、KOH水溶液
P-水的物质的量
6、沸石分子筛催化剂
结构单元
一级结构
Si、Al原子通过sp3杂化轨道与氧原子相连的正四 面体
6、沸石分子筛催化剂
二级结构
硅氧四面体或铝氧四面体通过氧桥形成的环结构
6、沸石分子筛催化剂
笼结构
二级结构单元通过氧桥连接而成,是沸石主要结 构单元
α
6、沸石分子筛催化剂
分子筛的晶体结构
A型分子筛
晶胞化学式:Na96[Al96 • Si96•O384]• 216H2O 3A分子筛——Na+70%被K+取代,有效孔径为 0.3nm 4A分子筛——金属离子为Na+,有效孔径约 0.4nm 5A分子筛——70% 的Na+被Ca2+取代,有效孔 径约0.55nm
正碳离子的形成
烯烃、芳烃等不饱和烃与催化剂的B酸中 心作用生成正碳离子
加成形成正碳离子
正碳离子的形成
烷烃、环烷烃、烯烃、烷基芳烃与R+ 的 氢转移,形成正碳离子
通过氢转移形成新的正碳离子
6、固体酸性质
酸中心的类型
即酸位,与多相催化作用有关的为L酸和B酸
酸中心的浓度
又称酸量,指催化剂单位表面或者单位重量所含的 酸中心数目的多少 又称酸强度 对B酸,指给出质子能力的强弱 对L酸,指接受电子对能力的强弱
软金属催化剂铂、镍等可吸附软碱,对不饱和 烃加氢起催化作用。若气体中有磷、砷、硫等 软碱杂质时,这些杂质能吸附在金属表面,形 成极稳定的软-软加合物,而使催化剂中毒。
苯的烷基化
无水氯化铝AlCl3作催化剂。AlCl3是硬酸,与RCl中 的硬碱Cl-结合而活化:
R : Cl : AlCl3 R : Cl - : AlCl3 R AlCl-4
涉及C-C键断裂的反应,要求强酸中心
涉及C-H键断裂的反应,要求弱酸中心
骨架异构化需要的酸中心强度最强,其次是 烷基芳烃脱烷基,再其次是异构烷烃裂化和 烯烃的双键异构化,脱水反应所需要的酸中 心强度最弱 一般来说,酸强度增加,反应活性提高。
5、固体酸、碱的催化作用
酸量与催化活性 的关系
R+与苯核作用:
硬酸H+与AlCl4-中的硬碱Cl-结合:
H AlCl AlCl3 HCl
4
3、酸中心的形成
浸渍在载体上的无机酸酸中心的形成
均可直接提供H+(B酸)
卤化物酸中心的形成
提供L酸:如BF3 通常加入适量HCl,HF,H2O,使L酸中心转化为B酸中 心:BF3+H2O==H+[HOBF3]-
其酸性与Al/P比和OH含量有关
3、酸中心的形成
阳离子交换树脂酸中心的形成
在树脂中引入不同官能团,形成酸性或碱性 树脂 引入SO42-、引入磺酸基团,成强酸;引入羧 酸基团,成弱酸 引入季铵基团成强碱性 商用的树脂必须用酸或者碱处理才能成为固 体酸、碱
3、酸中心的形成
氧化物酸碱中心的形成
A型的骨架结构是β 笼构成的立方晶系 结构, β 笼的6个四元环通过氧桥相 互连接,构成主笼——α 笼
6、沸石分子筛催化剂
八面沸石
最大孔口为12元环,孔道尺寸为0.9nm 单胞Si,Al总数为192 X型分子筛、Y型分子筛
X型: Na86[Al86 • Si106• O384] • 264H2O Y型: Na56[Al56 • Si106• O384] • 264H2O 13X分子筛,Na+型;10X分子筛,为Ca2+和Na+ 混合物
各种有机物的乙酰化反应,要用L酸位催催化
重油的加氢裂化要求B酸和L酸共同存在
5、固体酸、碱的催化作用
酸强度与催化活性和选择性关系
不同的酸强度可能有不同的催化活性
r-Al2O3表面的强酸部位催化异构化反应的活性 部位;而弱酸部位是催化脱水反应的活性部位 裂化、骨架异构化、烷基转移、歧化等 氢转移、水合、环化、烷基化等
以磷钼酸为例
杂多酸和杂多酸盐的酸性强弱顺序
H>Zr>Al>Zn>Mg>Ca>Na
3、酸中心的形成
杂多酸盐产生酸性的机理
酸性杂多酸盐中的质子可给出B酸中心 制备时发生部分水解给出质子
与金属离子配位水的酸式解离给出质子
金属离子提供L酸中心 金属离子还原产生质子
1 Ag H 2 Ag0 H 2
常用催化剂SiO2-Al2O3—硅酸铝
硅酸铝呈无定型时,称硅铝胶 酸铝呈晶体时,即为各种分子筛 酸中心数目和强度与铝含量有关 原因:Si4+和Al3+均为4配位,形成SiO4和 AlO4两种四面体
L碱中心
同晶取代
3、酸中心的形成
杂多酸化合物酸中心的形成
杂多酸及其盐类 酸有磷钼酸,磷钨酸和硅钨酸,主要产生B酸中心
ZSM-5 8个五元环组成基本结构单元
ZSM-5,基本结构单元通过共用棱 边连接成链,即二级结构单元
介孔分子筛 MCM-41
全硅分子筛,MCM-41 (Mobile Crystalline Material) is a silicate obtained by a templating mechanism1,2,3. It is ordered to some degree, so that there are arrays of non intersecting hexagonal channels, identifiable by TEM, XRD, and vapor adsorption. By changing the length of the template molecule, the width of the channels can be controlled to be within 2 to 10 nm. The walls of the channels are amorphous SiO2. This feature, together with its exceptional porosity (up to 80%), makes MCM-41 is the least mechanically stable compared to, e.g., other porous silicas, silica gels or zeolites4.
3、酸中心的形成
金属盐酸中心的形成
硫酸盐酸中心的形成
中性盐在加热、压缩或者辐射情况下呈现酸性 以NiSO4•7H2O为例 FeSO4,CoSO4,CuSO4,MgSO4,ZrSO4等相似
3、酸中心的形成
磷酸盐酸中心的形成
无定型和结晶型的金属磷酸盐都可以用做酸性催 化剂或碱性催化剂 以AlPO4为例
4.均相酸碱催化
特殊酸催化
在水溶液中只有H+(H3O+或OH-)起催化作 用,其他离子或分子无显著催化作用 B酸催化,B碱催化 B酸催化通常形成正碳离子,其稳定性,即 生成速率
叔碳离子〉仲碳离子〉伯碳离子
B碱催化通常形成负碳离子
B酸催化,醇脱水成烯烃
B碱催化,双丙酮醇水解成丙酮
4.均相酸碱催化
单氧化物酸碱中心的形成
IA,IIA族元素的氧化物常表现出碱性质;IIIA和 过渡金属氧化物却常呈现酸性质 以经过670K处理的Al2O3,为γ -Al2O3和η -Al2O3 表面既有L酸中心(为主),也有B酸中心,还有碱