广东省东莞市2019—2020学年高一上学期期末数学试题
广东省东莞市翰林实验学校2019-2020学年高一4月月考数学试题(图片版,无答案)

A.关于 xOy 平面对称 B.关于 xOz 平面对称 C.关于 yOz 平面对称 D.关于 x 轴对称
3.若点 P(7, m) 在角 的终边上,且 cos 7 ,则 m ( 25
A.25
B. 25
C.24
)
D. 24
4.如图是某赛季甲、乙两名篮球运动员 9 场比赛所得分数的茎叶图,则下列说法错误的是( )
2
4
A.M=N
B.N⊆M
C.M⊆N
D.M∩N=∅
15.直线 3x 4 y 5 0 与圆 x2 y2 4 相交于 A、B 两点,则弦 AB 的长等于 ( )
A. 3 3
B. 2 3
C. 3
D.1
16.直线 l : y kx 1 与半圆 C : x2 y2 4x 3 0 y 0 有且只有一个交点,则 k 的取值范围为( )
A. k 0 或 k 4 B. 1 k 1
3
3
C. k 4 或 1 k 1 D. k 4 或 1 k 1
33
33
试卷第 2页,总 4页
二、解答题(17 题 10 分,其余每题 12 分,共计 70 分)
17.已知角 终边上有一点 P 1, 2 ,求下列各式的值.
(1) tan ;
C.第一、三象限或 x 轴上
D.第二、四象限或 x 轴上
12.给出下列命题:①第二象限角大于第一象限角;②不论是用角度制还是用弧度制度量一个角,它们与扇形的半
径的大小无关;③若 sin sin ,则 与 的终边相同;④若 cos 0 , 是第二或第三象限的角.其中正确的
命题个数是( )
A.1
1
A.
4
2
B.
3
1
广东省东莞市东华高级中学、东华松山湖高级中学2024-2025学年高一上学期学习效率检测(一)数学试

广东省东莞市东华高级中学、东华松山湖高级中学2024-2025学年高一上学期学习效率检测(一)数学试题一、单选题1.已知集合{}1,0,1,2,3U =-,{}13,N A x x x =-<<∈,则U A =ð( ) A .{}1,3- B .{}1,2 C .{}1,0,3-D .{}0,1,22.已知命题p :“x ∃∈R ,使得23250x x -+=”,则命题p 的否定是( )A .x ∃∈R ,使得23250x x -+≠ B .x ∃∉R ,使得23250x x -+≠C .x ∀∈R ,23250x x -+≠ D .x ∀∉R ,23250x x -+≠3.函数y =)A .[]22-,B .()2,2-C .[)(]2,00,2-⋃D .[)(]4,00,4-⋃4.已知1x >-,则141x x ++的最小值为( ) A .4-B .0C .4D .85.已知函数()y g x =的对应关系如表所示,函数()y f x =的图象是如图所示,则()1g f ⎡⎤⎣⎦的值为( )A .-1B .0C .3D .46.今年高二(1)班的同学参加语文和数学两个学科的结业水平考试,每科满分为100分.考试成绩非常优秀,每个同学都至少有一科成绩在90分以上,其中语文90分以上的有45人,数学90分以上的有48人,这两科均在90分以上的有40人,高二(1)班共有( )个同学. A .45B .48C .53D .437.已知()y f x =是定义在R 上的奇函数,当0x ≥时,2()2f x x x =-,则在R 上()f x 的表达式为A .(2)x x --B .(2)x x -C .(2)x x -D .(2)x x -8.设a 、b 是实数,定义:()22941a b a b ma a b m =+--+∈R e ,则满足不等式()()1(2(319201⋅⋅⋅≤e e e e 的实数m 的取值范围是( )A .4011m ≥B .4111m ≥ C .4211m ≥D .4311m ≥二、多选题9.下列命题正确的是( ) A .若a b >,则22ac bc > B .若a b >,c d >,则a c b d +>+ C .若ac bc >,则a b > D .若a b >,则a c b c ->-10.下列说法正确的是( )A .=y y =B .已知函数()f x 的定义域为[]3,1-,则函数()21f x -的定义域为[]1,1-C .函数y x =[)0,+∞D .已知函数()f x 满足()12f x f x x ⎛⎫+= ⎪⎝⎭,则()()2033x f x x x =-+≠11.当一个非空数集F 满足条件“若,a b F ∈,则a b +,a b -,ab F ∈,且当0b ≠时,aF b∈”时,称F 为一个数域,以下说法正确的是( )A .0是任何数域的元素B .若数域F 有非零元素,则2024F ∈C .集合{|3,Z}P x x k k ==∈为数域D .有理数集为数域三、填空题12.设a ,R b ∈,{}1,P a =,{}1,Q b =--,若P Q =,则a b -= .13.已知超市内某商品的日销量y (单位:件)与当日销售单价x (单位:元)满足关系式210010y ax x =-+-,其中1055x <<,a 为常数.当该商品的销售单价为15元时,日销量为110件.若该商品的进价为每件10元,则超市内该商品的日利润最大为元14.定义在()0,∞+上的函数()f x ,对任意不相等的1x 、()20,x ∈+∞满足()()2112120x f x x f x x x -<-,且()39f =,则使()3f x x >成立的x 的取值范围是.四、解答题15.设集合{}321A x x =-≥,{}225B x m x m =<≤+. (1)当1m =-时,求A B ⋂,A B U ; (2)若B A ⊆,求实数m 的取值范围.16.已知命题m :方程22240x ax a -+-=有两个正根为真命题,非空集合{}172B x t x t =+≤≤-.(1)求实数a 的取值集合A ;(2)设p :x A ∈;q :x B ∈,若p 是q 的必要不充分条件,求实数t 的范围.17.已知函数()2x af x x +=,且()110f =.(1)求a ;(2)判断函数()f x 在[)3,+∞上的单调性,并用定义法证明; (3)求函数()f x 在区间[]3,6上的最大值和最小值. 18.已知不等式2320mx x +->的解集为{}2x n x <<. (1)求m ,n 的值,并求不等式220nx mx ++>的解集;(2)当实数0a ≥时,解关于x 的不等式()20ax n a x m -+-<.19.已知函数()(),f x x x a g x x =--=,其中0a >.(1)当a =()f x =x 的值;(2)证明:()g x ≤(3)若函数()()()h x f x g x =+的最大值为a 的值.。
广东省东莞市四校2023-2024学年高一上学期12月期中联考数学试题(含答案解析)

广东省东莞市四校2023-2024学年高一上学期12月期中联考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题e....二、多选题三、填空题四、双空题五、解答题参考答案:1.D【分析】根据元素与集合,集合与集合之间的关系判断.【详解】由已知A 中含有元素0,1,2,因此{0}A ⊆,A 、B 均错,集合{0,1,1,2}-中比集合A 多一个元素1-,因此应有{0,1,1,2}A ⊆-,C 错,由空集是任何集合子集知D 正确.故选:D.【点睛】本题考查元素与集合,集合与集合之间的关系及表示方法,属于基础题.2.C【详解】试题分析:全称命题的否定是存在性命题,所以,命题“[)30,,0x x x ∀∈+∞+≥”的否定是[)30000,,0x x x ∃∈+∞+<,选C.考点:全称命题与存在性命题.3.B【分析】按充分条件和必要条件的定义即可求解.【详解】2211011x x x <⇔-<⇔-<<,故1x <是11x -<<的必要不充分条件,故选:B 4.C【解析】根据具体函数的定义域,先分别求每一个式子满足的定义域,再求交集即可【详解】由题可知,函数定义域应满足2010x x ->⎧⎨+>⎩,解得()1,2x ∈-故选:C【点睛】本题考查具体函数的定义域的求法,属于基础题5.B【解析】结合分段函数的分段条件,分别代入计算,即可求解.【详解】∵函数()()22,03,0x x x f x f x x ⎧-≤⎪=⎨->⎪⎩,∴()()()()209630021f f f f ====-=-.故选:B.【点睛】本题主要考查了分段函数的求值问题,其中解答中结合分段函数的分段条件,分别任取12,R x x ∈且12x x <,则210x x ->()()()()()2121210f x f x f x f x f x x -=+-=-<,所以()()21f x f x <,所以()f x 在R 上为减函数.当[]3,3x ∈-时,()f x 单调递减,所以当3x =-时,()f x 有最大值为()3f -,因为()()()()32131236f f f f =+==-⨯=-,所以()()336f f -=-=,故()f x 在区间[]3,3-上的最大值为6.(3)由(2)知()f x 在区间[]1,1-上单调递减,所以()()()112f x f f ≤-=-=,因为()222f x m am <-+对所有的[]1,1x ∈-,[]1,1a ∈-恒成立,即220m am ->对任意[]1,1a ∈-恒成立,令()22g a am m =-+,则()()1010g g ⎧->⎪⎨>⎪⎩,即222020m m m m ⎧+>⎨-+>⎩,解得:2m >或2m <-.故m 的取值范围为()(),22,-∞-⋃+∞.。
2019-2020年广东省中考数学各地区模拟试题分类(东莞专版)——圆(含解析)

2019-2020年广东省中考数学各地区模拟试题分类(东莞专版)——圆一.选择题1.(2020•东莞市一模)如图,在⊙O中,半径为5,弦AB=6,点C在AB上移动,连接OC,则OC的最小值为()A.3 B.4 C.5 D.6 2.(2020•东莞市一模)如图,扇形纸扇完全打开后,外侧两竹条AB,AC夹角为150°,AB的长为36cm,BD的长为18cm,则的长为()cm.A.πB.15πC.18πD.36π3.(2020•东莞市校级二模)如图,四边形ABCD内接于圆O,AD∥BC,∠DAB=48°,则∠AOC的度数是()A.48°B.96°C.114°D.132°4.(2019•东莞市二模)如图,AB是⊙O直径,若∠AOC=130°,则∠D的度数是()A.20°B.25°C.40°D.50°5.(2020•东莞市校级一模)如图,⊙O的半径为1,点A、B、C都在⊙O上,∠B=45°,则的长为()A.πB.πC.πD.π6.(2019秋•东莞市期末)已知一个圆锥的母线长为30cm,侧面积为300πcm,则这个圆锥的底面半径为()A.5 cm B.10 cm C.15 cm D.20 cm 7.(2020•东莞市校级模拟)如图,在矩形ABCD中,AB=2,AD=4,将D边绕点A顺时针旋转,使点D正好落在BC边上的点D′处,则阴影部分的扇形面积为()A.πB.C.D.二.填空题8.(2020•东莞市校级模拟)如图,在△ABC中,CA=CB,∠ACB=90°,AB=4,点D为AB 的中点,以点D为圆心作圆心角为90°的扇形DEF,点C恰在弧FF上,则图中阴影部分面积为.9.(2020•东莞市一模)已知在半径为3的⊙O中,弦AB的长为4,那么圆心O到AB的距离为.10.(2020•东莞市校级一模)如图,D为⊙O上一点,=,∠AOB=50°,则∠ADC的度数是.11.(2020•东莞市一模)如图,AB是⊙O的直径,点C、D在圆上,∠D=67°,则∠ABC 等于度.12.(2020•东莞市校级二模)如图,要拧开一个边长为a=8mm的正六边形螺料,扳手张开的开口b至少为mm.13.(2020•龙湖区一模)如图,AC⊥BC,AC=BC=2,以BC为直径作半圆,圆心为O,以点C为圆心,BC为半径作弧AB,过点O作AC的平行线交两弧于点D、E,则阴影部分的面积是.14.(2019•潮南区一模)如图,⊙O的弦AC与半径OB交于点D,BC∥OA,AO=AD,则∠C 的度数为°.三.解答题15.(2020•东莞市校级一模)如图,AB是⊙O的直径,点P在BA的延长线上,过点P作⊙O 的切线,切点为D,BC垂直于PD,垂足为C,BC与⊙O相交于点E,连接OE,交BD于点F.(1)求证:BD平分∠ABC;(2)若BC=6,tan P=.①求⊙O的半径;②求线段BF的长.16.(2020•东莞市校级一模)如图:AB是⊙O的直径,AC交⊙O于G,E是AG上一点,D 为△BCE内心,BE交AD于F,且∠DBE=∠BAD.(1)求证:BC是⊙O的切线;(2)求证:DF=DG;(3)若∠ADG=45°,DF=1,求证:AD﹣BD=.17.(2020•东莞市一模)如图,AB为⊙O的直径,CD⊥AB于点E,F是CD上一点,且BF =DF,延长FB至点P,连接CP,使PC=PF,延长BF与⊙O交于点G,连结BD,GD.(1)连结BC,求证:CD=GB;(2)求证:PC是⊙O的切线;(3)若tan G=,且AE﹣BE=,求FD的值.18.(2020•东莞市校级二模)如图1,BC是⊙O的直径,点A在⊙O上,点D在CA的延长线上,DE⊥BC,垂足为点E,DE与⊙O相交于点H,与AB相交于点I.过点A作∠DAF=∠ABO,与DE相交于点F.(1)求证:AF为⊙O的切线;(2)当AB=AD,且tan∠DAF=时,求:的值;(3)如图2,在(2)的条件下,延长FA,BC相交于点G,若CG=10,求线段EH的长.19.(2020•东莞市一模)如图,在△ABC中,AB=AC,AE是∠BAC的平分线,∠ABC的平分线BM交AE于点M,点O在AB上,以点O为圆心,OB的长为半径的圆经过点M,交BC 于点G,交AB于点F.(1)求证:AE为⊙O的切线;(2)当BC=4,AC=6时,求⊙O的半径;(3)在(2)的条件下,求线段BG的长.20.(2020•东莞市一模)如图,A是以BC为直径的圆O上一点,AD⊥BC于点D,过点B作圆O的切线,与CA的延长线相交于点E,G是AD的中点,连接并延长CG与BE相交于点F,连接并延长AF与CB的延长线相交于点P.(1)求证:BF=EF;(2)求证:PA是圆O的切线;(3)若FG=EF=3,求圆O的半径和BD的长度.参考答案一.选择题1.解:连接OA,过点O作OH⊥AB于H.∵OH⊥AB,∴AH=HB=3,∠AHO=90°,∵OA=5,∴OH===4,根据垂线段最短可知OC的最小值=4,故选:B.2.解:∵AB=36cm,BD=18cm,AB,AC夹角为150°,∴AD=AB﹣BD=18cm,∴的长为:=15π(cm),故选:B.3.解:∵AD∥BC,∴∠B=180°﹣∠DAB=132°,∵四边形ABCD内接于圆O,∴∠D=180°﹣∠B=48°,由圆周角定理得,∠AOC=2∠D=96°,故选:B.4.解:连接AD,∵AB是⊙O直径,∠AOC=130°,∴∠BDA=90°,∠CDA=65°,∴∠BDC=25°,故选:B.5.解:∵∠B=45°,∴∠AOC=90°,∵⊙O的半径为1,∴的长===π,故选:C.6.解:设这个圆锥的底面半径为rcm,300π=,解得,r=10,故选:B.7.解:∵线段AD′由线段AD旋转而成,AD=4,∴AD′=AD=4.∵AB=2,∠ABD=90°,∴sin∠AD′B==,∴∠AD′B=30°.∵AD∥BC,∴∠DAD′=∠AD′B=30°,∴S==π.阴影故选:D.二.填空题(共7小题)8.解:连接CD,作DM⊥BC,DN⊥AC.∵CA=CB,∠ACB=90°,点D为AB的中点,∴DC=AB=2,四边形DMCN是正方形,DM=.则扇形FDE的面积是:=π.∵CA=CB,∠ACB=90°,点D为AB的中点,∴CD 平分∠BCA ,又∵DM ⊥BC ,DN ⊥AC ,∴DM =DN ,∵∠GDH =∠MDN =90°, ∴∠GDM =∠HDN ,则在△DMG 和△DNH 中,∴△DMG ≌△DNH (ASA ),∴S 四边形DGCH =S 四边形DMCN =2.则阴影部分的面积是:π﹣2.故答案为π﹣2.9.解:作OC ⊥AB 于C ,连接OA ,如图,∵OC ⊥AB ,∴AC =BC =AB =×4=2, 在Rt △AOC 中,OA =5,∴OC ===, 即圆心O 到AB 的距离为. 故答案为:.10.解:如图,连接OC ,∵在⊙O 中,=,∴∠AOC=∠AOB.∵∠AOB=50°,∴∠AOC=50°,∴∠ADC=∠AOC=25°,故答案是:25°.11.解:由圆周角定理得,∠A=∠D=67°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ABC=90°﹣67°=23°,故答案为:23.12.解:设正六边形的中心是O,其一边是AB,连接OA、OB、OC、AC,OB交AC于M,如图所示:∴∠AOB=∠BOC=60°,∴OA=OB=AB=OC=BC,∴四边形ABCO是菱形,∴AC⊥OB,AM=CM,∵AB=8mm,∠AOB=60°,∴sin∠AOB==,∴AM=8×=4(mm),∴AC=2AM=8mm,故答案为:8.13.解:连接CE,如图,∵AC⊥BC,∴∠ACB=90°,∵AC∥OE,∴∠COE=∠EOB=90°,∵OC=1,CE=2,∴OE==,cos∠OCE=,∴∠OCE=60°,∴S阴影部分=S扇形BCE﹣S△OCE﹣S扇形BOD=﹣•1•﹣=π﹣.故答案为π﹣.14.解:∵BC∥OA,AO=AD,∴∠AOD=∠ODA,∠AOD=∠B,∵∠BDC=∠ODA,∴∠B=∠BDC,∵∠AOD=2∠C,∴∠B=∠BDC=2∠C,∵△BDC的内角和是180°,∴2∠C+2∠C+∠C=180°,解得:∠C=36°,故答案为:36°.三.解答题(共6小题)15.解:(1)证明:连接OD,如图,∵PD是⊙O的切线,∴OD⊥PC,∵BC⊥PC,∴OD∥BC,∴∠ODB=∠CBD,∵OD=OB,∴∠ODB=∠OBD,∴∠OBD=∠CBD,∴BD平分∠ABC;(2)①∵∠PCB=90°,BC=6,tan P=,∴=,∴PC=8,∴PB==10,设⊙O的半径为x,则OA=OB=OD=x,PO=10﹣x,∵OD∥BC,∴△OPD∽△CPB,∴=,即=,解得x=,∴PD==5,∴CD=PC﹣PD=8﹣5=3,∴BD==3;②过点O作OM⊥BE于点M,如图,则四边形ODCM是矩形,∴CM=OD=,∴BM=BC﹣CM=,∵OB=OE,∴BE=2BM=,∵OD∥BC,∴△ODF∽△EBF,∴=,即=,解得BF=.16.(1)证明:如图1,连接DE,BG.∵D为△BCE内心,∴∠DBC=∠DBE,∵∠DBE=∠BAD,∴∠DBC=∠BAD,∵AB是⊙O的直径,∴∠AGB=90°,∴∠BCG+∠CBD+∠GBD=90°,∵∠DAC=∠DBG,∠ADB=∠DAC+∠ACB+∠CBD,∴∠ADB=∠DBG+∠ACB+∠CBD=90°,∴∠BAD+∠ABD=90°,∴∠DBC+∠ABD=90°,即∠ABC=90°,∴AB⊥BC,∴BC是⊙O的切线;(2)证明:如图1,连接DE,∵∠DBC=∠BAD,∠DBC=∠DBE,∴∠DBE=∠BAD,∴∠ABF+∠BAD=∠ABF+∠DBE,∴∠BFD=∠ABD,∵∠DGC=∠ABD,∴∠BFD=∠DGC,∴∠DFE=∠DGE,∵D为△BCE内心,∴∠DEG=∠DEB,在△DEF和△DEG中,∴△DEF≌△DEG(AAS),∴DF=DG;(3)证明:如图2,在AD上截取DH=BD,连接BH、BG,∵AB是⊙O的直径,∵∠ADG=45°,∴∠ABG=∠ADG=45°,∴AB=BG,∵∠BDH=90°,BD=DH,∴∠BHD=45°,∴∠AHB=180°﹣45°=135°,∵∠BDG=∠ADB+∠ADG=90°+45°=135°,∴∠AHB=∠BDG,∵∠BAD=∠BGD,∴△ABH∽△GBD,∴,∵DG=DF=1,∴AH=,∵AD﹣BD=AD﹣DH=AH,∴AD﹣BD=.17.解:(1)∵BF=DF,∴∠BDF=∠DBF,在△BCD与△DGB中,,∴△BCD≌△DGB(AAS),∴CD=GB;(2)如图1,连接OC,∵∠COB=2∠CDB,∠CFB=∠CDB+∠DBF=2∠CDB,∴∠COB=∠CFB,∵PC=PF,∴∠COB=∠CFB=∠PCF,∵AB⊥CD,∴∠COB+∠OCE=90°,∴∠PCF+∠OCE=∠PCO=90°,∴OC⊥CP,∵OC是半径,∴PC是⊙O的切线;(3)如图2,连接AD,∵AB是⊙O的直径,∴∠ADB=90°,∵AB⊥CD,∴=,∴∠BDE=∠A=∠G,∵tan G=,∴tan A=,即AE=3DE,同理可得:DE=3BE,∴AE﹣BE=3DE﹣DE=,解得:DE=,∴CD=2DE=2,∴BE==,∴BD==,∵∠BCD=∠FDB,∠BDC=∠FBD,∴△BCD∽△FDB,∴,∵BC=BD,∴FD===.18.(1)证明:如图1中,连接OA.∵BC是直径,∴∠BAC=∠BAD=90°,∴∠DAF+∠FAI=90°,∵OA=OB,∴∠OBA=∠OAB,∵∠DAF=∠ABO,∴∠OAB=∠DAF,∴∠OAB+∠FAI=90°,∴∠FAO=90°,即OA⊥AF,∴AF是⊙O的切线.(2)解:如图2中,∵∠IEB=∠IAD=90°,∠BIE=∠AID,∴∠D=∠B,∵∠DAF=∠B,∴∠D=∠B=∠DAF,∴tan∠B=tan∠D=,∴AD=2AI,∵AD=AB,∴BI=IA,∴BE=2IE,设IE=a,则BE=2a,BI=AI=a,∴AC=AB=a,在Rt△ABC中,BC==5a,∴EC=BC﹣BE=5a﹣2a=3a,∴=3.(3)解:如图2﹣1中,连接CH、BH.∵∠GAC=∠DAF=∠ABG,∠G=∠G,∴△GAC∽△GBA,∴===,∵CG=10,∴GA=20,BG=40,BC=30,∴BC=5a=30,∴a=6,∴BE=12,EC=18,∵HE⊥BC,∴∠HEB=∠EHC=∠BHC=90°,∴∠HBE+∠BHE=90°,∠BHE+∠CHE=90°,∴∠CEH=∠EBH,∴△CEH∽△HEB,可得HE2=BE•EC=12×18,∴HE=6.19.(1)证明:连接OM,如图1,∵BM是∠ABC的平分线,∴∠OBM=∠CBM,∵OB=OM,∴∠OBM=∠OMB,∴∠CBM=∠OMB,∴OM∥BC,∵AB=AC,AE是∠BAC的平分线,∴AE⊥BC,∴OM⊥AE,∴AE为⊙O的切线;(2)解:设⊙O的半径为r,∵AB=AC=6,AE是∠BAC的平分线,∴BE=CE=BC=2,∵OM∥BE,∴△AOM∽△ABE,∴=,即=,解得r=,即设⊙O的半径为;(3)解:作OH⊥BE于H,如图,∵OM⊥EM,ME⊥BE,∴四边形OHEM为矩形,∴HE=OM=,∴BH=BE﹣HE=2﹣=,∵OH⊥BG,∴BH=HG=,∴BG=2BH=1.20.解:(1)∵EB是切线,AD⊥BC,∴∠EBC=∠ADC=90°,∴AD∥EB,∴,∵G是AD的中点,∴AG=GD,∴EF=FB;(2)证明:连接AO,AB,∵BC是⊙O的直径,∴∠BAC=90°.在Rt△BAE中,由(1)知,F是斜边BE的中点,∴AF=FB=EF.∴∠FBA=∠FAB.又∵OA=OB,∴∠ABO=∠BAO.∵BE是⊙O的切线,∴∠EBO=90°.∵∠EBO=∠FBA+∠ABO=∠FAB+∠BAO=∠FAO=90°,∴PA是⊙O的切线.(3)如图2,连接AB,AO,∵BC是直径,∴∠BAC=∠BAE=90°,∵EF=FB,∴FA=FB=FE=FG=3,过点F作FH⊥AG交AG于点H,∵FA=FG,FH⊥AG,∴AH=HG,∵∠FBD=∠BDH=∠FHD=90°,∴四边形FBDH是矩形,∴FB=DH=3,∵AG=GD,∴AH=HG=1,GD=2,FH===2,∴BD=2,设半径为r,在Rt△ADO中,∵AO2=AD2+OD2,∴r2=42+(r﹣2)2,∴r=3.。
2023-2024东莞市东华高级中学高一上学期10月考数学试题及答案

东华高级中学 东华松山湖高级中学 2023—2024学年第一学期高一年级10月联考数学试题考生注意:本卷共四大题,22小题,满分150分,时间120分钟.不准使用计算器.一、单选题(本大题共8小题,每小题5分,共40分. 每小题各有四个选择支,仅有一个选择支 正确.请用2B 铅笔把答题卡中所选答案的标号涂黑) 1. 命题“2000,23k N k k ∃∈>+”的否定为( ) A.2,23k N k k ∀∈>+ B.2000,23k N k k ∃∈≤+C.2,23k N k k ∀∈≤+ D.2000,23k N k k ∃∈<+2.若,,a b c R ∈,且a b >,下列不等式中一定成立的是( ) A.22ac bc > B.22a b > C.11a b< D.22a b -<-3.已知全集U R =,集合{}{}1,2,3,4,5,|2,A B x R x ==∈≥如图中阴影部分所表示的集合为( )A.{}1 B.{}0,1 C.{}1,2 D.{}0,1,24.下列函数中与函数y x =是同一个函数的是()A.2y =B.u =C.y =D.2n m n=5.不等式2112x x +≤-的解集为( ) A.[]32-,B.(]3-∞-,C.[)32-,D.(]()32-∞-+∞,,6.如图所示的4个图像中,与事件一、二、三最吻合的顺序为( )事件一:我离开家后,心情愉快,缓慢行进,但最后发现快迟到时,加速前进; 事件二:我骑着自行车上学,但中途车坏了,我修理好又以原来的速度前进; 事件三:我快速的骑着自行车,最后发现时间充足,又减缓了速度.A.③①②B.③④②C.②①③D.②④③7.已知实数,x y 满足111x y+=,且0xy >,若不等式x y t +≥恒成立,则实数t 的最大值为( ) A.4B.4-C.14D.14-8.定义在[)0,+∞上的函数()f x 满足:对[)21121221()(),0,,2f x f x x x x x x x -∀∈+∞≠>-且时,恒成立,且(1)2022f =,则满足不等式(2022)2(1012)f x x ->-的x 的解集是( )A.()2022,+∞B.()2023,+∞C.[)2022,2023D.[)2021,2023二、多选题(本大题共4小题,每小题5分,共20分. 每小题各有四个选择支,有多个选择支正确, 请用2B 铅笔把答题卡中所选答案的标号涂黑) 9.已知1x ≥,则下列函数的最小值为2的有( )A.22x y x =+ B.14y x x =+ C.1y x x=+ D.411y x x =-++10.已知集合{}2,5M =-,{}|1N x mx ==,M N M =,则实数m 的值可以是( )A.15-B.2C.12D.011.下列四个选项中,p 是q 的充要条件的有()A.:p 三角形是等腰三角形,:q 三角形存在两角相等B.:p 两个三角形相似,:q 两个三角形三边成比例C.:0p xy >,:0,0q x y >>D.:p 四边形是正方形,:q 四边形的对角线互相垂直且平分12.德国数学家狄利克雷在数学领域成就显著,以其名命名的函数1,()0,x f x x ⎧=⎨⎩为有理数为无理数称为狄利克雷函数,则关于函数()f x 有( )A.()()1f f x =B.(1)f f >C.x R ∀∈,都有(1)(1)f x f x -=+ D.函数()y f x =的图象是两条直线三、填空题(本大题共4小题,每小题5分,共20分.请把答案填在答题卡中相应的位置上)13.函数()f x 的定义域为______.14 已知函数[](),5,5f x x ∈-的图像如右图所示,则函数()f x 的 单调递增增区间是__________.15. 已知{}{}21,,2,1,,A x x B y y ==,若A B =,则实数x y +=__________.16.已知圆和矩形的周长相等,面积分别为1S 、2S ,则12S S 的最小值为__________. 四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知集合{}|42A x x =-≤≤-,集合{}|30B x x =+≥.求:(1)A B ; (2)()R C A B ;18.(本小题满分12分)已知函数1,0()1,0ax x f x x x-⎧⎪=⎨<⎪⎩,且(2)0.f =(1)求((1))f f ;(2)若()f m m =,求实数m 的值.19.(本小题满分12分)讨论函数()(0)kf x x k x=+>在区间(0,)+∞上的单调性,并根据函数单调性的定义证明.20.(本小题满分12分) 已如函数21()1f x x m x m ⎛⎫=-++ ⎪⎝⎭. (1)若不等式()0f x <的解集为1|33x x ⎧⎫<<⎨⎬⎩⎭,求实数m 的值;(2)当0m >时,解关于x 的不等式()0f x ≥.21.(本小题满分12分)杭州第19届亚运会(The 19th Asian Games )又称“2022年杭州亚运会”,是继1990年北京亚运会、2010年广州亚运会之后,中国第三次举办亚洲最高规格的国际综合性体育赛事。
2019-2020学年人教A版广东省东莞市高三第一学期期末文科数学试卷(解析版)

2019-2020学年高三第一学期期末(文科)数学试卷一、选择题1.若z(1﹣i)=2i,则z=()A.﹣1﹣i B.﹣1+i C.1﹣i D.1+i2.已知集合A={x|x2﹣3x<0},B={0,1,2,3},则A∩B等于()A.{0,1,2,3} B.{1,2,3} C.{1,2} D.{0,3}3.已知向量满足,且与的夹角为60°,则=()A.B.C.D.4.已知数列{a n}为等差数列,S n为其前n项和,a6+a3﹣a5=3,则S7=()A.42 B.21 C.7 D.35.某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图和90后从事互联网行业者岗位分布图(90后指1990年及以后出生,80后指1980﹣1989年之间出生,80前指1979年及以前出生),则下列结论中不一定正确的是()A.互联网行业从业人员中90后占一半以上B.互联网行业中从事技术岗位的人数90后比80后多C.互联网行业中从事设计岗位的人数90后比80前多D.互联网行业中从事市场岗位的90后人数不足总人数的10%6.已知P(1,)在双曲线﹣=1(a>0,b>0)的渐近线上,则该双曲线的离心率为()A.B.2 C.D.7.函数f(x)=(其中e为自然对数的底数)的图象大致为()A.B.C.D.8.为了纪念中华人民共和国成立70周年,某单位计划印制纪念图案.为了测算纪念图案的面积,如图,作一个面积约为12cm2的正六边形将其包含在内,并向正六边形内随机投掷300个点,已知有124个点落在纪念图案部分,据此可以估计纪念图案的面积约为()A.3cm2B.4cm2C.5cm2D.6cm29.已知函数,把函数f(x)的图象上每个点向右平移个单位得到函数g(x)的图象,则函数g(x)的一条对称轴方程为()A.B.x=πC.x=2πD.10.设α是给定的平面,A,B是不在α内的任意两点.有下列四个命题:①在α内存在直线与直线AB异面;②在α内存在直线与直线AB相交;③存在过直线AB的平面与α垂直;④存在过直线AB的平面与α平行.其中,一定正确的是()A.①②③B.①③C.①④D.③④11.已知椭圆C:=1(a>b>0)的左焦点为F,直线y=与C相交于A,B两点,且AF⊥BF,则C的离心率为()A.B.﹣1 C.D.﹣112.已知函数f(x)(x∈R)满足f(x)=﹣f(2﹣x),函数g(x)=a(e x﹣1﹣e1﹣x),若方程f(x)=g(x)有2019个解,记为x i(i=1,2,…,2019),则=()A.2019 B.4038 C.2020 D.4040二、填空题13.已知函数f(x)=,满足f(﹣1)+f(a)=0,则a的值为.14.已知,则=.15.已知△ABC的内角A,B,C的对边分别为a,b,c,满足b cos A+a cos B=2c cos B,,则△ABC外接圆的面积为.16.如图,六氟化硫(SF6)的分子是一个正八面体结构,其中6个氟原子(F)恰好在正八面体的顶点上,而硫原子(S)恰好是正八面体的中心.若把该分子放入一个球内,则这个球的体积与六氟化硫分子体积之比的最小值为.三、解答题(一)必考题:本大题共5小题,每小题12分,共60分.17.已知各项均为正数的等比数列{a n}满足a1=1,a2+a3=12,n∈N*.(1)求数列{a n}的通项公式;(2)设{b n﹣a n}是首项为1,公差为2的等差数列,求数列{b n}的前n项和T n.18.某农科所对冬季昼夜温差(最高温度与最低温度的差)大小与某反季节大豆新品种一天内发芽数之间的关系进行了分析研究,他们分别记录了12月1日至12月6日每天昼夜最高、最低的温度(如图1),以及实验室每天每100颗种子中的发芽数情况(如图2),得到如下资料:(1)请画出发芽数y与温差x的散点图;(2)若建立发芽数y与温差x之间的线性回归模型,请用相关系数说明建立模型的合理性;(3)①求出发芽数y与温差x之间的回归方程(系数精确到0.01);②若12月7日的昼夜温差为8℃,通过建立的y关于x的回归方程,估计该实验室12月7日当天100颗种子的发芽数.参考数据:=2051,≈4.2,≈6.5.参考公式:相关系数:r=(当|r|>0.75时,具有较强的相关关系).回归方程中斜率和截距计算公式:=,=.19.如图1,AD,BC是等腰梯形CDEF的两条高,AD=AE=CD=2,点M是线段AE的中点,将该等腰梯形沿着两条高AD,BC折叠成如图2所示的四棱锥P﹣ABCD(E,F重合,记为点P).(1)求证:BM⊥DP;(2)求点M到平面BDP距离h.20.已知函数f(x)=e x﹣2ax(a∈R).(1)若f(x)的极值为0,求实数a的值;(2)若f(x)≥2xlnx﹣2x对于x∈(2,4)恒成立,求实数a的取值范围.21.已知抛物线C:y2=4x,在x轴正半轴上任意选定一点M(m,0)(m>0),过点M作与x轴垂直的直线交C于P,Q两点.(1)设m=1,证明:抛物线C:y2=4x在点P,Q处的切线方程的交点N与点M关于原点O对称;(2)通过解答(1),猜想求过抛物线C:y2=2px(p>0)上一点G(x0,y0)(不为原点)的切线方程的一种做法,并加以证明.(二)选考题:共10分,请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,圆C的普通方程为x2+y2﹣4x﹣6y+5=0.在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为.(1)写出圆C的参数方程和直线l的直角坐标方程;(2)设点P在C上,点Q在l上,求|PQ|的最小值及此时点P的直角坐标.[选修4-5:不等式选讲]23.已知函数f(x)=|x+1|﹣|x﹣2|.(1)解不等式f(x)≤1;(2)记函数f(x)的最大值为s,若=s(a,b,c>0),证明:≥3.参考答案一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.请把正确选项在答题卡中的相应位置涂黑.1.若z(1﹣i)=2i,则z=()A.﹣1﹣i B.﹣1+i C.1﹣i D.1+i【分析】把已知等式变形,再由复数代数形式的乘除运算化简得答案.解:由z(1﹣i)=2i,得z=.故选:B.2.已知集合A={x|x2﹣3x<0},B={0,1,2,3},则A∩B等于()A.{0,1,2,3} B.{1,2,3} C.{1,2} D.{0,3}【分析】可以求出集合A,然后进行交集的运算即可.解:∵A={x|0<x<3},B={0,1,2,3},∴A∩B={1,2}.故选:C.3.已知向量满足,且与的夹角为60°,则=()A.B.C.D.【分析】根据条件进行数量积的运算即可求出的值,进而得出的值.解:∵,∴,∴.故选:A.4.已知数列{a n}为等差数列,S n为其前n项和,a6+a3﹣a5=3,则S7=()A.42 B.21 C.7 D.3【分析】利用等差数列通项公式求出a1+3d=3,再由S7==7(a1+3d),能求出结果.解:∵数列{a n}为等差数列,S n为其前n项和,a6+a3﹣a5=3,∴a1+5d+a1+2d﹣a1﹣4d=a1+3d=3,∴S7==7(a1+3d)=21.故选:B.5.某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图和90后从事互联网行业者岗位分布图(90后指1990年及以后出生,80后指1980﹣1989年之间出生,80前指1979年及以前出生),则下列结论中不一定正确的是()A.互联网行业从业人员中90后占一半以上B.互联网行业中从事技术岗位的人数90后比80后多C.互联网行业中从事设计岗位的人数90后比80前多D.互联网行业中从事市场岗位的90后人数不足总人数的10%【分析】利用整个互联网行业从业者年龄分布饼状图和90后从事互联网行业者岗位分布图直接求解.解:由整个互联网行业从业者年龄分布饼状图和90后从事互联网行业者岗位分布图,知:在A中,互联网行业从业人员中90后占56%,故A正确;在B中,互联网行业中从事技术岗位的人数90后不一定比80后多,故B错误;在C中,互联网行业中从事设计岗位的人数90后比80前多,故C正确;在D中,互联网行业中从事市场岗位的90后人数不足总人数的10%,故D正确.故选:B.6.已知P(1,)在双曲线﹣=1(a>0,b>0)的渐近线上,则该双曲线的离心率为()A.B.2 C.D.【分析】求出双曲线的渐近线方程,由题意可得=,由双曲线的离心率公式,计算可得所求值.解:P(1,)在双曲线﹣=1(a>0,b>0)的渐近线y=x上,可得=,则双曲线的离心率为e====,故选:D.7.函数f(x)=(其中e为自然对数的底数)的图象大致为()A.B.C.D.【分析】由函数为偶函数,排除AC;由x→+∞时,f(x)→0,排除B,由此得到答案.解:,故函数f(x)为偶函数,其图象关于y轴对称,故排除A,C;当x→+∞时,x3(e x﹣1)>>e x+1,f(x)→0,故排除B.故选:D.8.为了纪念中华人民共和国成立70周年,某单位计划印制纪念图案.为了测算纪念图案的面积,如图,作一个面积约为12cm2的正六边形将其包含在内,并向正六边形内随机投掷300个点,已知有124个点落在纪念图案部分,据此可以估计纪念图案的面积约为()A.3cm2B.4cm2C.5cm2D.6cm2【分析】设纪念图案的面积为S,由题意可得:≈,解得S.解:设纪念图案的面积为S,由题意可得:≈,解得S≈5cm2.故选:C.9.已知函数,把函数f(x)的图象上每个点向右平移个单位得到函数g(x)的图象,则函数g(x)的一条对称轴方程为()A.B.x=πC.x=2πD.【分析】根据三角函数的图象平移得出函数g(x)的解析式,再求函数g(x)的对称轴方程即可.解:函数,把函数f(x)的图象上每个点向右平移个单位,得y=f(x﹣)=sin[(x﹣)﹣]=sin(x﹣)=﹣cos x的图象,则函数y=g(x)=﹣cos x;所以函数g(x)的对称轴方程为x=kπ,k∈Z;即x=2kπ,k∈Z;令k=1,得x=2π,所以x=2π是g(x)的一条对称轴方程.故选:C.10.设α是给定的平面,A,B是不在α内的任意两点.有下列四个命题:①在α内存在直线与直线AB异面;②在α内存在直线与直线AB相交;③存在过直线AB的平面与α垂直;④存在过直线AB的平面与α平行.其中,一定正确的是()A.①②③B.①③C.①④D.③④【分析】根据空间中的直线与平面、以及平面与平面的位置关系,判断题目中的命题真假性即可.解:对于①,无论直线AB与α平行,还是直线AB与α相交,都在α内存在直线与直线AB异面,所以①正确;对于②,当直线AB与α平行时,平面α内不存在直线与直线AB相交,所以②错误;对于③,无论直线AB与α平行,还是直线AB与α相交,都存在过直线AB的平面与α垂直,所以③正确;对于④,若直线AB与α相交,则不存在过直线AB的平面与α平行,所以④错误;综上知,正确的命题序号是①③.故选:B.11.已知椭圆C:=1(a>b>0)的左焦点为F,直线y=与C相交于A,B两点,且AF⊥BF,则C的离心率为()A.B.﹣1 C.D.﹣1【分析】可解得点A、B坐标,由AF⊥BF,得•=0,把b2=a2﹣c2代入该式整理后两边同除以a4,得e的方程,解出即可,注意e的取值范围解:由,消y可得得(3a2+b2)x2=a2b2,解得x=±,分别代入y=±,∴A(,),B(﹣,﹣),∴=(+c,),=(c﹣,﹣),∴•=c2﹣﹣=0,∴c2=,(*)把b2=a2﹣c2代入(*)式并整理得4a2c2﹣c4=4a2(a2﹣c2),两边同除以a4并整理得e4﹣8e2+4=0,解得e2=4﹣2∴e=﹣1,故选:D.12.已知函数f(x)(x∈R)满足f(x)=﹣f(2﹣x),函数g(x)=a(e x﹣1﹣e1﹣x),若方程f(x)=g(x)有2019个解,记为x i(i=1,2,…,2019),则=()A.2019 B.4038 C.2020 D.4040【分析】分析可知,函数f(x)与g(x)均关于(1,0)对称,根据对称性即可得解.解:∵f(x)=﹣f(2﹣x),∴f(x)关于(1,0)对称,∵g(x)=a(e x﹣1﹣e1﹣x),∴g(2﹣x)=a(e1﹣x﹣e x﹣1)=﹣a(e x﹣1﹣e1﹣x)=﹣g(x),∴g(x)关于(1,0)对称,∵方程f(x)=g(x)有2019个解,即y=f(x)与y=g(x)有2019个交点,∴必有一个交点的横坐标为1,且其余2018个交点关于关于(1,0)对称,共1009对,而且每对横坐标之和为2,∴.故选:A.二、填空题:本大题共4小题,每小题5分,共20分.请把答案填在答题卡的相应位置上.13.已知函数f(x)=,满足f(﹣1)+f(a)=0,则a的值为2018 .【分析】推导出f(a)=﹣f(﹣1)=﹣e0=﹣1.当a<0时,f(a)=e a+1=﹣1,当a ≥0时,f(a)=a﹣2019=﹣1,由此能求出a的值.解:∵函数f(x)=,满足f(﹣1)+f(a)=0,∴f(a)=﹣f(﹣1)=﹣e0=﹣1.当a<0时,f(a)=e a+1=﹣1,无解,当a≥0时,f(a)=a﹣2019=﹣1,解得a=2018.故答案为:2018.14.已知,则=.【分析】利用换元法结合三角函数的诱导公式进行化简即可.解:设θ=α+,则sinθ=,α=θ﹣,则=cos(θ﹣﹣)=cos(θ﹣)=cos(﹣θ)=sinθ=,故答案为:15.已知△ABC的内角A,B,C的对边分别为a,b,c,满足b cos A+a cos B=2c cos B,,则△ABC外接圆的面积为4π.【分析】由正弦定理,两角和的正弦函数公式化简已知等式可得sin C=2sin C cos B,由sin C≠0,可得cos B=,结合范围B∈(0,π),可得B=,设△ABC外接圆的半径为R,则由正弦定理可求R的值,进而即可得解△ABC外接圆的面积.解:∵b cos A+a cos B=2c cos B,∴由正弦定理可得sin B cos A+sin A cos B=2sin C cos B,∴sin(A+B)=sin C=2sin C cos B,∵sin C≠0,∴可得cos B=,∵B∈(0,π),∴可得B=,∵,∴设△ABC外接圆的半径为R,则由正弦定理可得2R===4,可得R=2,∴△ABC外接圆的面积为S=πR2=4π.故答案为:4π.16.如图,六氟化硫(SF6)的分子是一个正八面体结构,其中6个氟原子(F)恰好在正八面体的顶点上,而硫原子(S)恰好是正八面体的中心.若把该分子放入一个球内,则这个球的体积与六氟化硫分子体积之比的最小值为π.【分析】连结EF,SF,则S在线段EF上,当球半径R=SF=EF时,这个球的体积与六氟化硫分子体积之比取最小值,由此能求出结果.解:连结EF,SF,则S在线段EF上,当球半径R=SF=EF时,这个球的体积与六氟化硫分子体积之比取最小值,六氟化硫(SF6)的分子是一个正八面体结构,这个正八面体结构是两个正四棱锥组合而成,设正四棱锥的底面正方形的边长为x,则2x2=4R2,解得x=,∴这个球的体积与六氟化硫分子体积之比的最小值为:=π.故答案为:π.三、解答题:本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.第17至21题为必考题,每个试题考生都必须作答,第22、23题为选考题,考生根据要求作答.(一)必考题:本大题共5小题,每小题12分,共60分.17.已知各项均为正数的等比数列{a n}满足a1=1,a2+a3=12,n∈N*.(1)求数列{a n}的通项公式;(2)设{b n﹣a n}是首项为1,公差为2的等差数列,求数列{b n}的前n项和T n.【分析】(1)直接利用已知条件和定义求出数列的通项公式.(2)利用(1)的结论,进一步利用分组法求出数列的和.解:(1)因为{a n}是正数等比数列,且a1=1,a2+a3=12,所以,即q2+q﹣12=0,分解得(q+4)(q﹣3)=0,又因为a n>0,所以q=3,所以数列{a n}的通项公式为;(2)因为{b n﹣a n}是首项为1,公差为2的等差数列,所以b n﹣a n=1+(n﹣1)×2=2n﹣1,所以,所以T n=b1+b2+…+b n=(30+1)+(31+3)+…+(3n﹣1+2n﹣1),=(30+31+…+3n﹣1)+(1+3+…+2n﹣1),=,=.18.某农科所对冬季昼夜温差(最高温度与最低温度的差)大小与某反季节大豆新品种一天内发芽数之间的关系进行了分析研究,他们分别记录了12月1日至12月6日每天昼夜最高、最低的温度(如图1),以及实验室每天每100颗种子中的发芽数情况(如图2),得到如下资料:(1)请画出发芽数y与温差x的散点图;(2)若建立发芽数y与温差x之间的线性回归模型,请用相关系数说明建立模型的合理性;(3)①求出发芽数y与温差x之间的回归方程(系数精确到0.01);②若12月7日的昼夜温差为8℃,通过建立的y关于x的回归方程,估计该实验室12月7日当天100颗种子的发芽数.参考数据:=2051,≈4.2,≈6.5.参考公式:相关系数:r=(当|r|>0.75时,具有较强的相关关系).回归方程中斜率和截距计算公式:=,=.【分析】(1)直接根据资料画出发芽数y与温差x的散点图即可;(2)先求出相关系数r,判断r是否大于0.75,再说明建立模型的合理性;(3)直接根据条件求出线性回归方程,再将x=8代入回归方程中计算出发芽数.解:(1)散点图如图所示(2)≈=,∵y与x的相关系数近似为0.952>0.75,说明y与x的线性相关程度较强,从而建立发芽数y与温差x之间的线性回归模型是合理的.(3)①由最小二乘估计公式,得≈=,,∴,②当x=8时,(颗),∴估计该实验室12月7日当天种子的发芽数为20颗,19.如图1,AD,BC是等腰梯形CDEF的两条高,AD=AE=CD=2,点M是线段AE的中点,将该等腰梯形沿着两条高AD,BC折叠成如图2所示的四棱锥P﹣ABCD(E,F重合,记为点P).(1)求证:BM⊥DP;(2)求点M到平面BDP距离h.【分析】(1)由已知可得AD⊥AP,AD⊥AB,得到AD⊥平面ABP,则AD⊥BM;再证明BM ⊥AP;由线面垂直的判定可得BM⊥平面ADP,从而得到BM⊥DP;(2)取BP中点N,连结DN,由题意AD⊥平面ABP,由V M﹣BDP=V D﹣BMP,即可求得点M到平面BDP的距离h.【解答】(1)证明:∵AD⊥EF,∴AD⊥AP,AD⊥AB,又AP∩AB=A,AP,AB⊂平面ABP,∴AD⊥平面ABP.∵BM⊂平面ABP,∴AD⊥BM;由已知得,AB=AP=BP=2,∴△ABP是等边三角形,又∵点M是AP的中点,∴BM⊥AP;∵AD⊥BM,AP⊥BM,AD∩AP=A,AD,AP⊂平面ADP,∴BM⊥平面ADP,∵DP⊂平面ADP,∴BM⊥DP;(2)解:取BP中点N,连结DN,∵AD⊥平面ABP,AB=AP=AD=2,∴,∴DN⊥BP,在Rt△DPN中,,∴,∵AD⊥平面ABP,∴,∵V M﹣BDP=V D﹣BMP,∴,又,∴,即点M到平面BDP的距离为.20.已知函数f(x)=e x﹣2ax(a∈R).(1)若f(x)的极值为0,求实数a的值;(2)若f(x)≥2xlnx﹣2x对于x∈(2,4)恒成立,求实数a的取值范围.【分析】(1)先对函数求导,然后结合导数与单调性,极值的关系可求,(2)分离系数可得,对于x∈(2,4)恒成立,构造函数,原问题转化为2a≤H(x)min,x∈(2,4),结合导数与函数的性质可求.解:(1)由题得f'(x)=e x﹣2a,①当a≤0时,f'(x)>0恒成立∴f(x)在(﹣∞,+∞)上单调递增,没有极值.②当a>0时,由f'(x)=0,得x=ln2a,当x∈(﹣∞,ln2a)时,f'(x)<0,f(x)在(﹣∞,ln2a)上单调递减当x∈(ln2a,+∞)时,f'(x)>0,f(x)在(ln2a,+∞)上单调递增,∴f(x)在x=ln2a时取到极小值,∵f(x)的极值为0,∴f(ln2a)=0,∴e ln2a﹣2aln2a=0即 2a(1﹣ln2a)=0,∴,(2)由题得e x﹣2ax≥2xlnx﹣2x对于x∈(2,4)恒成立,∴对于x∈(2,4)恒成立,令,原问题转化为2a≤H(x)min,x∈(2,4),又,令G(x)=e x x﹣e x﹣2x,则G'(x)=e x x﹣2>0在x∈(2,4)上恒成立,∴G(x)在(2,4)上单调递增,∴G(x)>G(2)=2e2﹣e2﹣4=e2﹣4>0,∴H'(x)>0∴,在(2,4)上单调递增,∴,∴,21.已知抛物线C:y2=4x,在x轴正半轴上任意选定一点M(m,0)(m>0),过点M作与x轴垂直的直线交C于P,Q两点.(1)设m=1,证明:抛物线C:y2=4x在点P,Q处的切线方程的交点N与点M关于原点O对称;(2)通过解答(1),猜想求过抛物线C:y2=2px(p>0)上一点G(x0,y0)(不为原点)的切线方程的一种做法,并加以证明.【分析】(1)m=1时可求得x=1与抛物线的交点P,Q的坐标,设在P处的切线方程,与抛物线联立用判别式为零求出斜率,进而求出在P处的切线方程,同理求出在Q处的切线方程,两式联立求出交点即N的坐标,证出N与点M关于原点O对称;(2)故G做GM⊥x轴交于M,求得M关于原点的对称点M',则GM'为抛物线的切线,将直线GM'与抛物线联立可得判别式为零,证得直线GM'与抛物线相切.解:(1)解法一:证明:当m=1时,点M(1,0),P(1,2),Q(1,﹣2),设在点P处的切线的斜率为k(k≠0),联立得,由,得k=1,故在点P处的切线方程为y=x+1,同理,求得在点Q的切线方程为y=﹣x﹣1,由得交点N(﹣1,0),所以交点N与点M关于原点O对称;解法二:m=1时,点M(1,0),P(1,2),Q(1,﹣2,由y2=4x得,故或,所以在点P处的切线方程为y﹣2=x﹣1即y=x+1,在点Q处的切线方程为y+2=﹣(x﹣1)即y=﹣x﹣1,由得交点N(﹣1,0),所以交点N与M关于原点O对称;(2)解法一:过点G(x0,y0),(x0≠0)作与x轴垂直的直线交x轴于点M(x0,0),作点M关于原点对称的点M'(﹣x0,0),猜想切线方程为直线GM':,即y0y=p(x+x0),其中,联立得,∵,所以y0y=p(x+x0)与抛物线y2=2px相切.解法二:过点G(x0,y0),(x0≠0)作与x轴垂直的直线交x轴于点M(x0,0),作点M关于原点对称的点M'(﹣x0,0),猜想切线方程为直线GM':,即y0y=p(x+x0),其中,由y2=2px得,∴或,所以在点G(x0,y0)处的切线斜率为或故点G(x0,y0)处的切线方程为或,由得或所以在点G(x0,y0)处切线方程为,整理得,即y0y=p(x+x0).(二)选考题:共10分,请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,圆C的普通方程为x2+y2﹣4x﹣6y+5=0.在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为.(1)写出圆C的参数方程和直线l的直角坐标方程;(2)设点P在C上,点Q在l上,求|PQ|的最小值及此时点P的直角坐标.【分析】(1)直接利用转换关系的应用,把参数方程极坐标方程和直角坐标方程之间进行转换.(2)利用点到直线的距离公式的应用和方程组的解法的应用求出结果.解:(1)圆C的方程可化为(x﹣2)2+(y﹣3)2=8,圆心为C(2,3),半径为,∴圆C的参数方程为(α为参数)直线l的极坐标方程可化为ρsinθ+ρcosθ=﹣3,∵,∴直线l的直角坐标方程为x+y+3=0.(2):曲线C是以C(2,3)为圆心,半径为的圆,圆心C(2,3)到直线l:x+y+3=0的距离,所以,此时直线PQ经过圆心C(2,3),且与直线l:x+y+3=0垂直,k PQ•k l=﹣1,所以k PQ=1,PQ所在直线方程为y﹣3=x﹣2,即y=x+1.联立直线和圆的方程,解得或当|PQ|取得最小值时,点P的坐标为(0,1)所以,此时点P的坐标为(0,1).[选修4-5:不等式选讲]23.已知函数f(x)=|x+1|﹣|x﹣2|.(1)解不等式f(x)≤1;(2)记函数f(x)的最大值为s,若=s(a,b,c>0),证明:≥3.【分析】(1)先将f(x)写为分段函数的形式,然后根据f(x)≤1分别解不等式即可;(2)先由(1)得到f(x)的最大值s,然后利用基本不等式即可证明≥3成立.解:(1),①当x≤﹣1时,﹣3≤1恒成立,所以x≤﹣1;②当﹣1<x<2时,2x﹣1≤1,即x≤1,所以﹣1<x≤1;③当x≥2时,3≤1显然不成立,所以不合题意;综上,不等式的解集为(﹣∞,1].(2)证明:由(1)知f(x)max=3=s,于是,所以≥=6,当且仅当a=b=c=1时取等号,所以.。
2020-2021学年上学期高一数学期末模拟卷03(人教A版新教材)(浙江专用)【解析版】

数学模拟试卷03第I 卷 选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2020·河北高二学业考试)已知集合{}012M =,,,{}1,2N =,则M N ⋃=( ).A .{}1,2B .{}0C .{}0,1,2D .{}0,1【答案】C 【解析】由并集定义可得:{}0,1,2M N =.故选:C.2.(2019·浙江高二学业考试)已知a ,b 是实数,则“a b >”是“22a b >”的( ). A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】若a b >,则a b b >≥,即a b >,故22a b >. 取1,2a b ==-,此时22a b >,但a b <, 故22a b >推不出a b >, 故选:A.3.(2019·伊宁市第八中学高一期中)若偶函数()f x 在区间(]1-∞-,上是增函数,则( ) A .3(1)(2)2f f f ⎛⎫-<-< ⎪⎝⎭B .3(1)(2)2f f f ⎛⎫-<-< ⎪⎝⎭C .3(2)(1)2f f f ⎛⎫<-<- ⎪⎝⎭D .3(2)(1)2f f f ⎛⎫<-<- ⎪⎝⎭【答案】D 【解析】函数()f x 为偶函数,则()()22f f =-.又函数()f x 在区间(]1-∞-,上是增函数. 则()()3122f f f ⎛⎫<-<- ⎪⎝⎭-,即()()3212f f f ⎛⎫<-<- ⎪⎝⎭故选:D.4.(2020·黑龙江哈尔滨市第六中学校高三开学考试(理))设2313a ⎛⎫= ⎪⎝⎭,532b =,21log 3c =,则( )A .b a c <<B .a b c <<C .c a b <<D .b c a <<【答案】C 【解析】23110133⎛⎫⎛⎫<<= ⎪ ⎪⎝⎭⎝⎭,503221>=,221log log 103<=, ∴c a b <<. 故选:C5.(2020·江苏南通市·高三期中)已知角α的终边经过点()3,4P ,则πcos 24α⎛⎫+= ⎪⎝⎭( )A .50-B .50C .50-D .50【答案】A 【解析】角α的终边经过点()3,4P ,5OP ∴==,由三角函数的定义知:3cos 5α=,4sin 5α, 2237cos 22cos 121525αα⎛⎫∴=-=⨯-=- ⎪⎝⎭,4324sin 22sin cos 25525ααα==⨯⨯=,()()π724cos 2cos2cos sin 2sin 4442525ππααα∴+=-=-=.故选:A.6.(2020·甘肃兰州市·西北师大附中高三期中)函数()f x 在[)0,+∞单调递增,且()3f x +关于3x =-对称,若()21f -=,则()21f x -≤的x 的取值范围( )A .[]22-,B .(][),22,-∞-+∞C .()[),04,-∞+∞D .[]0,4【答案】D 【解析】因为()3f x +关于3x =-对称,所以()f x 关于y 轴对称,所以()()221f f -==, 又()f x 在[)0,+∞单调递增,由()21f x -≤可得222x -≤-≤,解得:04x ≤≤, 故选:D7.(2020·浙江高一期末)对于函数()12sin 3()42f x x x R π⎛⎫=-++∈ ⎪⎝⎭,有以下四种说法: ①函数的最小值是32-②图象的对称轴是直线()312k x k Z ππ=-∈ ③图象的对称中心为,0()312k k Z ππ⎛⎫-∈⎪⎝⎭ ④函数在区间7,123ππ⎡⎤--⎢⎥⎣⎦上单调递增. 其中正确的说法的个数是( ) A .1 B .2C .3D .4【答案】A 【解析】函数()12sin 3()42f x x x R π⎛⎫=-++∈ ⎪⎝⎭, 当3=42x ππ+时,即=12x π,函数()f x 取得最小值为132122-⨯+=-,故①正确;当342x k πππ+=+时,即=,123k x k Z ππ+∈,函数()f x 的图象的对称轴是直线=,123k x k Z ππ+∈,故②错误; 当34x k ππ+=时,即,123k x k Z ππ=-+∈,函数()f x 的图象的对称中心为1,,1232k k Z ππ⎛⎫-+∈ ⎪⎝⎭,故③错误; 当3232242k x k πππππ+≤+≤+,即2523,123123k k x k Z ππππ+≤≤+∈,函数()f x 的递增区间为252,,123123k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦, 当1k =-时,()f x 的递增区间为7,124ππ⎡⎤--⎢⎥⎣⎦,故④错误. 故选:A8.(2020·山西吕梁市·高三期中(文))函数1()11f x x=+-的图象与函数()2sin 1(24)g x x x π=+-的图象所有交点的横坐标之和等于( ) A .8 B .6C .4D .2【答案】A 【解析】由函数图象的平移可知, 函数1()11f x x=+-与函数()2sin 1g x x π=+的图象都关于(1,1)M 对称. 作出函数的图象如图,由图象可知交点个数一共8个(四组,两两关于点(1,1)对称), 所以所有交点的横坐标之和等于428⨯=.故选:A9.(2020·山西吕梁市·高三期中(文))已知函数2,0()()21,0x e a x f x a R x x ⎧+=∈⎨->⎩,若函数()f x 在R 上有两个零点,则a 的取值范围是( ) A .(,1)-∞- B .[2,0)-C .(1,0)-D .[1,0)-【答案】B 【解析】当0x >时,()21f x x =-有一个零点12x =,只需当0x ≤时,20x e a +=有一个根,利用“分离参数法”求解即可.解:因为函数()2,021,0x e a x f x x x ⎧+≤=⎨->⎩, 当0x >时,()21f x x =-有一个零点12x =, 所以只需当0x ≤时,202x xa e a e +==-即有一个根即可,因为2xy e =单调递增,当0x ≤时,(]0,1xe ∈,所以(]0,2a -∈,即[)2,0a ∈-,故选:B.10.(2020·河北高二学业考试)已知函数()f x 是定义在R 上的奇函数,当0x ≥时,()()2log 1f x x =+,则不等式()2f x ≤的解集是( ). A .[]3,3- B .[]4,4-C .(][),33,-∞-+∞D .(][),44,-∞-⋃+∞【答案】A 【解析】0x ≥时,()()2log 1f x x =+,()f x ∴在[)0,+∞上单调递增,又()f x 是定义在R 上的奇函数,()f x ∴在R 上单调递增,易知()()223log 31log 42f =+==,()()332f f -=-=-, 由()2f x ≤, 解得:()22f x -≤≤, 由()f x 在R 上单调递增, 解得:33x -≤≤,()2f x ∴≤的解集是[]3,3-.故选:A.第II 卷 非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.(2020·上海青浦区·高三一模)圆锥底面半径为1cm ,母线长为2cm ,则其侧面展开图扇形的圆心角θ=___________.【答案】π; 【解析】因为圆锥底面半径为1cm ,所以圆锥的底面周长为2cm π, 则其侧面展开图扇形的圆心角22πθπ==, 故答案为:π.12.(2020·浙江宁波市·高三期中)设2log 3a =,则4a =______(用数值表示),lg 36lg 4=______.(用a 表示)【答案】9 1a + 【解析】2log 3a =,22394429log log a ∴===,4222236log 36log 6log (23)log 2log 314lg a lg ===⨯=+=+, 故答案为:9,1a +.13.(2020·深圳科学高中高一期中)某移动公司规定,使用甲种卡,须付“基本月租费”(每月需交的固定费用)30元,在国内通话时每分钟另收话费0.10元;使用乙种卡,不收“基本月租费”,但在国内通话时每分钟话费为0.2元.若某用户每月手机费预算为50元,则使用__________种卡才合算;若要使用甲种卡合算,则该用户每月手机费预算(元)的区间为__________. 【答案】乙 (60,)+∞ 【解析】由题意,设月通话时间为t 分钟,有甲费用为300.1t +,乙费用为0.2t , ∴每月手机费预算为50元,则:由300.150t +=知,甲的通话时间为200分钟, 由0.250t =知,乙的通话时间为250分钟, ∴用户每月手机费预算为50元,用乙种卡合算;要使用甲种卡合算,即月通话时间相同的情况下甲费用更低,即300.10.2t t +<, 解得300t >时,费用在(60,)+∞. 故答案为:乙,(60,)+∞14.(2020·商丘市第一高级中学高一期中)设函数()112,1,1x e x f x x x -⎧<⎪=⎨⎪≥⎩则()3f x ≤成立的x 的取值范围为______. 【答案】(],9-∞ 【解析】当1x <时,由13x e -≤得1ln3x ≤+,所以1x <; 当1≥x 时,由213x ≤得9x ≤,所以19x ≤≤. 综上,符合题意的x 的取值范围是(,9]-∞. 故答案为:(,9]-∞.15.(2020·辽宁本溪市·高二月考)摩天轮是一种大型转轮状的机械建筑设施,稳坐于永乐桥之上的“天津之眼”作为世界上唯一一座建在桥上的摩天轮,其巧夺天工和奇思妙想确是当之无愧的“世界第一”.如图,永乐桥摩天轮的直径为110m ,到达最高点时,距离地面的高度为120m ,能看到方圆40km 以内的景致,是名副其实的“天津之眼”.实际上,单从高度角度来看,天津之眼超越了曾大名鼎鼎的伦敦之眼而跃居世界第一.永乐桥摩天轮设置有48个座舱,开启后按逆时针方向匀速旋转,游客在座舱转到距离地面最近的位置进舱,转一周大约需要30min .游客甲坐上摩天轮的座舱,开始转到min t 后距离地面的高度为m H ,则转到10min 后距离地面的高度为______m ,在转动一周的过程中,H 关于t 的函数解析式为______.【答案】1852 π55cos 6515H t =-+,030t ≤≤. 【解析】如图,设座舱距离地面最近的位置为点P ,以轴心O 为原点,与地面平行的直线为x 轴,建立直角坐标系.设0min t =时,游客甲位于点()0,55P -,以OP 为终边的角为π2-; 根据摩天轮转一周大约需要30min , 可知座舱转动的角速度约为πmin 15rad , 由题意可得πππ55sin 6555cos 6515215H t t ⎛⎫=-+=-+⎪⎝⎭,030t ≤≤.当10t =时,π18555cos 1065152H ⎛⎫=-⨯+= ⎪⎝⎭. 故答案为:1852;π55cos 6515H t =-+,030t ≤≤ 16.(2020·浙江建人专修学院高三三模)已知2,0()(),0x x f x f x x ⎧≥=⎨--<⎩,若4log 3a =,则()f a =___________;()1f a -=___________.3 233-因为4log 3a =,所以43a =,即2a =01a <<,所以()2a f a ==1(1)(1)2a f a f a --=--=-==3-17.(2020·上海虹口区·高三一模)已知(0,)απ∈,且有12sin2cos2αα-=,则cos α=___________.【解析】2212sin 2cos214sin cos 12sin sin 2sin cos αααααααα-=⇒-=-⇒=,因为(0,)απ∈,所以sin 0α≠,因此由2sin 2sin cos sin 2cos tan 2(0,)2πααααααα=⇒=⇒=⇒∈,而22sin cos 1(1)αα+=,把sin 2cos αα=代入(1)得:22214cos cos 1cos cos 5αααα+=⇒=⇒=(0,)2πα∈,因此cos α=.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.(2020·黑龙江工农�鹤岗一中高二期末(文))函数()22xxaf x =-是奇函数. ()1求()f x 的解析式;()2当()0,x ∈+∞时,()24x f x m ->⋅+恒成立,求m 的取值范围.【答案】(1)()122xxf x =-;(2)5m <-.() 1函数()22x x af x =-是奇函数, ()()1222222x x x x x x a af x a f x --∴-=-=-+=-+=-,故1a =, 故()122xx f x =-; ()2当()0,x ∈+∞时,()24x f x m ->⋅+恒成立,即21(2)42x xm +<-⋅在()0,x ∈+∞恒成立,令()2(2)42x xh x =-⋅,(0)x >,显然()h x 在()0,+∞的最小值是()24h =-, 故14m +<-,解得:5m <-.19.(2020·宁夏长庆高级中学高三月考(理))已知函数()22sin cos 22222x x x f x ππ⎛⎫⎛⎫=-++- ⎪ ⎪⎝⎭⎝⎭(1)求()f x 的最小正周期;(2)求()f x 在区间[]0,π上的最小值及单调减区间.【答案】(1)最小正周期为2π;(2)()min f x =()f x 的单调递减区间为,6ππ⎡⎤⎢⎥⎣⎦. 【解析】(1)1cos ()2sin cos 222x x xf x +=+sin x x =+12sin cos 2sin 223x x x π⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭.所以()f x 的最小正周期为2π. (2)因为[]0,x π∈,所以4,333x πππ⎡⎤+∈⎢⎥⎣⎦,所以当433x ππ+=,即x π=时,函数()f x 取得最小值由4233x πππ≤+≤,得6x ππ≤≤,所以函数()f x 的单调递减区间为,6ππ⎡⎤⎢⎥⎣⎦. 20.(2019·河北师范大学附属中学高一期中)已知二次函数()f x 的图象经过点()4,4-,方程()0f x =的解集为{}0,2.(1)求()f x 的解析式;(2)是否存在实数(),m n m n <,使得()f x 的定义域和值域分别为[],m n 和[]2,2m n ?若存在,求出m ,n 的值;若不存在,说明理由.【答案】(1)21()2f x x x =-+;(2)存在;2m =-,0n =. 【解析】(1)由已知,设()()2f x ax x =-.因为()f x 的图象经过点()4,4-,所以()4442a -=-,解得12a =-, 即()f x 的解析式为21()2f x x x =-+; (2)假设满足条件实数m ,n 的存在, 由于221111()(1)2222f x x x x =-+=--+≤,因此122n ≤,即14n ≤. 又()f x 的图象是开口向下的抛物线,且对称轴方程1x =,可知()f x 在区间[],m n 上递增,故有()2()2f m m f n n=⎧⎨=⎩,并注意到14m n <≤,解得2m =-,0n =. 综上可知,假设成立,即当2m =-,0n =时,()f x 的定义域和值域分别为[],m n 和[]2,2m n .21.(2020·山西吕梁市·高三期中(文))已知函数()sin (0)3f x x πωω⎛⎫=+> ⎪⎝⎭,在,63ππ⎛⎫ ⎪⎝⎭上有最小值,无最大值,且满足63f f ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭. (1)求()f x 的最小正周期;(2)将函数()f x 的图象向右平移06πϕϕ⎛⎫<< ⎪⎝⎭个单位后得到函数()g x 的图象,若对满足()()122f x g x -=的1x 、2x 有12min 7x x π-=,求ϕ的值. 【答案】(1)37π;(2)14π. 【解析】(1)由()sin ,(0)3f x x πωω⎛⎫=+> ⎪⎝⎭,在,63ππ⎛⎫ ⎪⎝⎭上有最小值,无最大值, 可知:236T πππω-≤=,故有012ω<≤. 又6x π=与3x π=在一个周期内,且63f f ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭; 4x π∴=时,函数取到最小值.2,()432k k Z πππωπ∴+=-+∈ 故有1083k ω=-+, 又因为012ω<≤,所以143ω=. 所以函数()f x 的最小正周期为37π. (2)由()()122f x g x -=∣∣可知的()()12,f x g x 中一个对应最大值,一个对应最小值. 对于函数()f x 其最大值与最小值对应的x 的距离为半个周期314π. ∴有12min 314x x πϕ-+=. 即314714πππϕ=-=.22.(2020·安徽省蚌埠第三中学高一月考)设函数()()21x x a t f x a--=(0a >,且1a ≠)是定义域为R 的奇函数.(1)求t 的值;(2)若函数()f x 的图象过点31,2⎛⎫ ⎪⎝⎭,是否存在正数()1m m ≠,使函数()()22log x x m g x a a mf x -⎡⎤=+-⎣⎦在[]21,log 3上的最大值为0,若存在,求出m 的值;若不存在,请说明理由.【答案】(1)2t =;(2)不存在,理由见解析.【解析】(1)∵()f x 是定义域为R 的奇函数,∴()00f =,∴2t =;经检验知符合题意.(2)函数()f x 的图象过点31,2⎛⎫ ⎪⎝⎭,所以2132a a -=, ∴2a =(12a =-舍去), 假设存在正数m ,且1m ≠符合题意,由2a =得()()22log 2222x x x x m g x m --⎡⎤=+--⎣⎦, 设22x x t -=-,则()()22222222x x x x m t mt -----+=-+,∵[]21,log 3x ∈,2[2,3]x ∈,∴38,23t ⎡⎤∈⎢⎥⎣⎦,记()22h t t mt =-+, ∵函数()g x 在[]21,log 3上的最大值为0,∴(i )若01m <<时,则函数()22h t t mt =-+在38,23⎡⎤⎢⎥⎣⎦有最小值为1, 由于对称轴122m t =<,∴()min 31731312426h t h m m ⎛⎫==-=⇒= ⎪⎝⎭,不合题意. (ii )若1m 时,则函数()220h t t mt =-+>在38,23⎡⎤⎢⎥⎣⎦上恒成立,且最大值为1,最小值大于0, ①()max 1252512212736873241324m m m h t h m ⎧⎧<≤<≤⎪⎪⎪⎪⇒⇒=⎨⎨⎛⎫⎪⎪=== ⎪⎪⎪⎩⎝⎭⎩, 而此时7338,24823m ⎡⎤=∈⎢⎥⎣⎦,又()min 73048h t h ⎛⎫=< ⎪⎝⎭, 故()g x 在[]21,log 3无意义, 所以7324m =应舍去; ②()max 25252126313126m m h t h m ⎧⎧>>⎪⎪⎪⎪⇒⇒⎨⎨⎛⎫⎪⎪=== ⎪⎪⎪⎩⎝⎭⎩m 无解, 综上所述:故不存在正数m ,使函数()g x 在[]21,log 3上的最大值为0.。
2019年-2020学年高一上学期数学期末模拟考试试题(含答案解析)

2019年-2020 学年高一数学期末模拟考试试题一.选择题(共10小题)1.已知集合A={x|0<log4x<1},B={x|e x﹣2≤1},则A∪B=()A.(﹣∞,4)B.(1,4)C.(1,2)D.(1,2]2.某同学用二分法求方程3x+3x﹣8=0在x∈(1,2)内近似解的过程中,设f(x)=3x+3x ﹣8,且计算f(1)<0,f(2)>0,f(1.5)>0,则该同学在第二次应计算的函数值为()A.f(0.5)B.f(1.125)C.f(1.25)D.f(1.75)3.函数的图象大致是()A.B.C.D.4.函数的零点所在的区间是()A.B.C.D.5.已知a,b是非零实数,则“a>b”是“ln|a|>ln|b|”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.函数的值域为()A.B.C.(0,] D.(0,2]7.若a>b>c>1且ac<b2,则()A.log a b>log b c>log c a B.log c b>log b a>log a cC.log b c>log a b>log c a D.log b a>log c b>log a c8.已知函数f(x)=lg(ax2﹣2x+a)的值域为R,则实数a的取值范围为()A.[﹣1,1] B.[0,1]C.(﹣∞,﹣1)∪(1,+∞)D.(1,+∞)9.若x1是方程xe x=4的解,x2是方程xlnx=4的解,则x1•x2等于()A.4 B.2 C.e D.110.我国古代数学著作《九章算术》有如下问题:“今有蒲生一日,长三尺莞生一日,长一尺蒲生日自半,莞生日自倍.问几何日而长倍?”意思是:“今有蒲草第1天长高3尺,芜草第1天长高1尺以后,蒲草每天长高前一天的一半,芜草每天长高前一天的2倍.问第几天莞草是蒲草的二倍?”你认为莞草是蒲草的二倍长所需要的天数是()(结果采取“只入不舍”的原则取整数,相关数据:lg3≈0.4771,lg2≈0.3010)A.2 B.3 C.4 D.5二.填空题(共5小题)11.已知x>0,y>0,且+=1,则3x+4y的最小值是2512.函数(a>0且a≠1)的图象恒过定点P,则点P的坐标为(4,),若点P在幂函数g(x)的图象上,则g(9)=.13.函数的递减区间是(3,+∞).14.已知函数f(x)=有3个零点,则实数a的取值范围是(,1).15.对于函数f(x),若在定义域内存在实数x0满足f(﹣x0)=﹣f(x0),则称函数f(x)为“倒戈函数”.设f(x)=3x+2m﹣1(m∈R,且m≠0是定义在[﹣1,1]上的“倒戈函数”,则实数m的取值范围是.三.解答题(共4小题)16.已知函数的定义域为集合A,集合B={x|1<x<8},C={x|a <x<2a+1},(1)求集合(∁R A)∪B;(2)若A∪C=A,求a的取值范围17.(1)已知5a=3,5b=4,用a,b表示log2536.(2)求值.18.已知函数f(x)=log a(1﹣x),g(x)=log a(x+3),其中0<a<1.(1)解关于x的不等式:f(x)<g(x);(2)若函数F(x)=f(x)+g(x)的最小值为﹣4,求实数a的值.19.某工厂今年初用128万元购进一台新的设备,并立即投入使用,计划第一年维修、保养费用8万元,从第二年开始,每年的维修、保养修费用比上一年增加4万元,该设备使用后,每年的总收入为54万元,设使用x年后设备的盈利总额y万元.(1)写出y与x之间的函数关系式;(2)从第几年开始,该设备开始盈利?(3)使用若干年后,对设备的处理有两种方案:①年平均盈利额达到最大值时,以42万元价格卖掉该设备;②盈利额达到最大值时,以10万元价格卖掉该设备.问哪种方案处理较为合理?请说明理由.2019年-2020 学年高一期末模拟考试试题一.选择题(共10小题)1.已知集合A={x|0<log4x<1},B={x|e x﹣2≤1},则A∪B=()A.(﹣∞,4)B.(1,4)C.(1,2)D.(1,2]【答案】A【解答】解:A={x|1<x<4},B={x|x≤2},∴A∪B=(﹣∞,4).故选:A.2.某同学用二分法求方程3x+3x﹣8=0在x∈(1,2)内近似解的过程中,设f(x)=3x+3x ﹣8,且计算f(1)<0,f(2)>0,f(1.5)>0,则该同学在第二次应计算的函数值为()A.f(0.5)B.f(1.125)C.f(1.25)D.f(1.75)【答案】C【解答】解:∵f(1)<0,f(2)>0,f(1.5)>0,∴在区间(1,1.5)内函数f(x)=3x+3x﹣8存在一个零点该同学在第二次应计算的函数值=1.25,故选:C.3.函数的图象大致是()A.B.C.D.【答案】D【解答】解:由,可知当x→﹣∞时,f(x)→﹣∞,排除A,C;当x→+∞时,由指数爆炸可知e x>x3,则→0,排除B.故选:D.4.函数的零点所在的区间是()A.B.C.D.【答案】C【解答】解:由于连续函数满足f()=﹣2<0,f()=>0,且函数在区间(,)上单调递增,故函数函数的零点所在的区间为(,).故选:C.5.已知a,b是非零实数,则“a>b”是“ln|a|>ln|b|”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】D【解答】解:由于ln|a|>ln|b|⇔|a|>|b|>0,由a>b推不出ln|a|>ln|b|,比如a=1,b=﹣2,有a>b,但ln|a|<ln|b|;反之,由ln|a|>ln|b|推不出a>b,比如a=﹣2,b=1,有ln|a|>ln|b|,但a<b;∴“a>b”是“ln(a﹣b)>0”的既不充分也不必要条件.故选:D.6.函数的值域为()A.B.C.(0,] D.(0,2]【答案】A【解答】解:令t(x)=2x﹣x2=﹣(x﹣1)2+1≤1∵单调递减∴即y≥故选:A.7.若a>b>c>1且ac<b2,则()A.log a b>log b c>log c a B.log c b>log b a>log a cC.log b c>log a b>log c a D.log b a>log c b>log a c【答案】B【解答】解:因为a>b>c>1,令a=16,b=8,c=2,则log c a>1>log a b所以A,C错,则故D错,B对.故选:B.8.已知函数f(x)=lg(ax2﹣2x+a)的值域为R,则实数a的取值范围为()A.[﹣1,1] B.[0,1]C.(﹣∞,﹣1)∪(1,+∞)D.(1,+∞)【答案】B【解答】解:函数f(x)=lg(ax2﹣2x+a)的值域为R,设g(x)=ax2﹣2x+a,则g(x)能取边所有的正数,即(0,+∞)是g(x)值域的子集,当a=0时,g(x)=﹣2x的值域为R,满足条件.当a≠0时,要使(0,+∞)是g(x)值域的子集,则满足得,此时0<a≤1,综上所述,0≤a≤1,故选:B.9.若x1是方程xe x=4的解,x2是方程xlnx=4的解,则x1•x2等于()A.4 B.2 C.e D.1【答案】A【解答】解:由于x1和x2是函数y=e x和函数y=lnx与函数y=的图象的公共点A和B的横坐标,而A(),B()两点关于y=x对称,可得,因此x1x2=4,故选:A.10.我国古代数学著作《九章算术》有如下问题:“今有蒲生一日,长三尺莞生一日,长一尺蒲生日自半,莞生日自倍.问几何日而长倍?”意思是:“今有蒲草第1天长高3尺,芜草第1天长高1尺以后,蒲草每天长高前一天的一半,芜草每天长高前一天的2倍.问第几天莞草是蒲草的二倍?”你认为莞草是蒲草的二倍长所需要的天数是()(结果采取“只入不舍”的原则取整数,相关数据:lg3≈0.4771,lg2≈0.3010)A.2 B.3 C.4 D.5【答案】C【解答】设蒲草每天长的高度为数列{a n},莞草每天长的高度为数列{b n},由题意得:{a n}为等比数列,求首项为3,公比为,所以通项公式a n=3•()n﹣1,前n项和S n=6[1﹣()n],{b n}为等比数列,首项为1,公比为2,所以通项公式b n=2n﹣1,前n项和T n=2n﹣1;由题意得设n天莞草是蒲草的二倍,即2n﹣1=2•6[1﹣()n]⇒(2n)2﹣13•2n+12=0⇒2n=12或1(舍)两边取以10为底的对数,n===2+由相关数据可得,n=4,故选:C.二.填空题(共5小题)11.已知x>0,y>0,且+=1,则3x+4y的最小值是25【答案】25【解答】解:因为x>0,y>0,+=1,所以3x+4y=(3x+4y)(+)=13++≥13+2=25(当且仅当x=2y 时取等号),所以(3x+4y)min=25.故答案为:25.12.函数(a>0且a≠1)的图象恒过定点P,则点P的坐标为(4,),若点P在幂函数g(x)的图象上,则g(9)=.【答案】(4,);.【解答】解:对于函数(a>0且a≠1),令2x﹣7=1,求得x=4,y=,可得它的图象恒过定点P(4,).点P在幂函数g(x)=xα的图象上,则4α=,即22α=2﹣1,∴α=﹣,g(x)==,故g(9)==,故答案为:(4,);.13.函数的递减区间是(3,+∞).【答案】(3,+∞)【解答】解:由2x2﹣5x﹣3>0得x>3或x<﹣,设t=2x2﹣5x﹣3,则当x>3时,函数t为增函数,当x<﹣时,函数t为减函数,∵y=log0.1t为减函数,∴要求y=log0.1(2x2﹣5x﹣3)的递减区间,即求函数t=2x2﹣5x﹣3的递增区间,即(3,+∞),即函数f(x)的单调递减区间为为(3,+∞).故答案为:(3,+∞).14.已知函数f(x)=有3个零点,则实数a的取值范围是(,1).【答案】(,1).【解答】解:∵函数f(x)=有3个零点,∴a>0 且y=ax2+2x+1在(﹣2,0)上有2个零点,∴,解得<a<1,故答案为:(,1).15.对于函数f(x),若在定义域内存在实数x0满足f(﹣x0)=﹣f(x0),则称函数f(x)为“倒戈函数”.设f(x)=3x+2m﹣1(m∈R,且m≠0是定义在[﹣1,1]上的“倒戈函数”,则实数m的取值范围是.【解答】解:∵f(x)=3x+2m﹣1是定义在[﹣1,1]上的“倒戈函数,∴存在x0∈[﹣1,1]满足f(﹣x0)=﹣f(x0),∴3+2m﹣1=﹣3﹣2m+1,∴4m=﹣3﹣3+2,构造函数y=﹣3﹣3+2,x0∈[﹣1,1],令t=3,t∈[,3],y=﹣﹣t+2,y∈[﹣,0],∴﹣<0,∴﹣,故答案为:[﹣,0).三.解答题(共4小题)16.已知函数的定义域为集合A,集合B={x|1<x<8},C={x|a <x<2a+1},(1)求集合(∁R A)∪B;(2)若A∪C=A,求a的取值范围【解答】解:(1)∵函数的定义域为集合A,∴A={x|}={x|﹣1<x<2},∴∁R A={x|x≤﹣1或x≥2},∵集合B={x|1<x<8},∴集合(∁R A)∪B={x|x≤﹣1或x>1}.(2)∵A={x|}={x|﹣1<x<2},C={x|a<x<2a+1},A∪C=A,∴C⊆A,当C=∅时,a≥2a+1,解得a≤﹣1,当C≠∅时,,解得﹣1<x.综上,a的取值范围是(﹣∞,].17.(1)已知5a=3,5b=4,用a,b表示log2536.(2)求值.【解答】解:(1)5a=3,5b=4,得a=log53,b=log54,log2536=,(2)原式=﹣1+2=﹣1﹣2+2=2.5﹣1=1.5.18.已知函数f(x)=log a(1﹣x),g(x)=log a(x+3),其中0<a<1.(1)解关于x的不等式:f(x)<g(x);(2)若函数F(x)=f(x)+g(x)的最小值为﹣4,求实数a的值.【解答】解:(1)不等式即为log a(1﹣x)<log a(x+3),∵0<a<1,∴1﹣x>x+3>0,得解为﹣3<x<﹣1,(2),由﹣x2﹣2x+3>0解得其定义域为(﹣3,1),∵h(x)=﹣x2﹣2x+3z在(﹣3,﹣1)上单调递增,在(﹣1,1)上单调递减,∴h(x)max=h(﹣1)=4.∵0<a<1,且F(x)的最小值为﹣4,∴log a4=﹣4.得a﹣4=4,所以a==.19.某工厂今年初用128万元购进一台新的设备,并立即投入使用,计划第一年维修、保养费用8万元,从第二年开始,每年的维修、保养修费用比上一年增加4万元,该设备使用后,每年的总收入为54万元,设使用x年后设备的盈利总额y万元.(1)写出y与x之间的函数关系式;(2)从第几年开始,该设备开始盈利?(3)使用若干年后,对设备的处理有两种方案:①年平均盈利额达到最大值时,以42万元价格卖掉该设备;②盈利额达到最大值时,以10万元价格卖掉该设备.问哪种方案处理较为合理?请说明理由.(1)由题意可知x年的维修,使用x年后的总保养、维修费用为8x+【解答】解:=2x2+6x.所以盈利总额y关于x的函数为:y=54x﹣(2x2+6x)﹣128=﹣2x2+48x﹣128(x∈N×).(2)由y>0,得﹣2x2+48x﹣128>0,即x2﹣24x+64<0,解得,由x∈N*,得4≤x≤20.答:第4年该设备开始盈利.(3)方案①年平均盈利,当且仅当,即x=8时取等号,.所以方案①总利润为16×8+42=170(万元),方案②y=﹣2(x﹣12)2+160,x=12时y取得最大值160,所以方案②总利润为160+10=170(万元),答:选择方案①处理较为合理.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广东省东莞市2019—2020学年高一上学期期末数学
试题
学校_________ 班级__________ 姓名__________ 学号__________
一、单选题
1. 已知全集,集合,,则
()
A.B.C.D.
2. 直线:的倾斜角为()
A.B.C.D.
3. 下列函数中,与函数()的值域不相同的是()A.B.C.D.
4. 已知,,,则的大小关系是()A.B.C.D.
5. 已知一个几何体的三视图如图所示,则该几何体的体积为()
A.B.C.D.
6. 东莞某中学高一(1)班组织研学活动,分别是11月16日参观“大国重器”散裂中子源中心和11月17日参观科技强企华为松山湖总部,两个活动各有30个参加名额的限制. 为公平起见,老师组织全班50名学生进行网上报
名,经过同学们激烈抢报,活动所有名额都被抢完,且有12名学生幸运地抢到了两个活动的参加名额,则有()名学生遗憾地未能抢到任何一个活动的参加名额.
A.1 B.2 C.3 D.4
7. 已知直线与直线垂直,则()A.或B.C.
D.
8. 设表示不同的直线,表示不同的平面,则下列说法正确的是
()
A.若,,则B.若,,则
D.若,,,则C.若,,则
9. 方程的根所在区间为()
A.B.C.D.
10. 小红去礼品店给大毛买了一盒生日礼物,礼盒是长、宽、高分别为、
、的长方体.为美观起见,礼品店服务员用彩绳做了一个新颖的捆扎.如图所示,彩绳以A为起点,现沿着
环绕礼盒进行捆扎,其中、、、分别为下底面各棱的中点,分别为上底面各棱上一点,则所用包装彩绳的最短长度为()
A.B.C.D.
11. 函数的图象不可能是( )
A.B.
C.D.
二、多选题
12. 如图,在长方体中,,,M、N分别为棱,的中点,则下列说法正确的是()
A.A、M、N、B四点共面B.平面平面
C.与BN所成角D.平面ADM
三、填空题
13. 函数的定义域是__________.(结果写成集合或区间)
14. 已知直线与平行,则与之间的距离为
_______
15. 我国古代数学名著《九章算术》中将底面为矩形且有一侧棱垂直于底面的四棱锥称为“阳马”,现有一“阳马”如图所示,平面,,,,则该“阳马”外接球的表面积为________.
四、双空题
16. 已知点. 若从点射出的光线经直线反射后过点,则反射光线所在直线的方程为_____________;若从点
射出的光线经直线反射,再经直线反射后回到点,则光线所经过的路程是__________(结果用表示).
五、解答题
17. 已知集合,.
(1)当时,求;
(2)若,求实数的取值范围.
18. 已知的三个顶点是,,.
(1)求边的垂直平分线方程;
(2)若的面积为,求实数的值.
19. 如图,在三棱柱中,侧棱底面,,,,分别为棱,,的中点.
(1)求证:;
(2)若,,求三棱锥的体积;
(3)判断直线与平面的位置关系,并说明理由.
20. 已知函数.
(1)判断的单调性,并说明理由;
(2)判断的奇偶性,并用定义证明;
(3)若不等式对任意恒成立,求实数的取值范围.
21. 对于一个具有正南正北、正东正西方向规则布局的城镇街道,从一点到另一点的距离是在南北方向上行进的距离加上在东西方向上行进的距离,这种距离即“曼哈顿距离”,也叫“出租车距离”.对于平面直角坐标系中的点
和,两点间的“曼哈顿距离”.
(1)如图,若为坐标原点,,两点坐标分别为和,求,,;
(2)若点满足,试在图中画出点的轨迹,并求该轨迹所围成图形的面积;
(3)已知函数,试在图象上找一点,使得最小,并求出此时点的坐标.
22. 已知函数.
(1)求函数的零点;
(2)若关于的方程()恰有个不同的实数解,求实数的取值范围.。