低压计量装置在实际工作中常常出现电流互感器

合集下载

电流互感器与电能表的配合选用

电流互感器与电能表的配合选用

电能表与电流互感器的合理选用低压计量装置在实际工作中常常出现电流互感器(TA)和电能表选用不当、联用不妥的现象,给企业造成很大损失。

特别在农村用电中,存在问题更为普遍。

例如,有一个用电户安装了一台20kV·A变压器,电工在计量装置中配3只50/5A的TA,再联用一只DT8—25(50)的电能表,一个月下来只计得用电量450kW·h左右。

像TA变比选大、配小、准确级次不够,电能表容量偏大、偏小等更是常见。

笔者结合工作实际,针对计量装置的一些技术问题和有关规章,谈一些肤浅认识,以供大家参考。

1 TA的合理选用1.1 本地区用电户多属第Ⅳ类、第Ⅴ类电能表计量装置,老规程要求TA准确级次为0.5级就可以,而新的DL/T448—2000《电能计量装置技术管理规程》要求,应配置准确级次为0.5S级的TA。

1.2 现在安装的低压电流互感器多采用穿心式,灵活性大,可根据实际负荷电流大小选择变比,但确定穿绕匝数要注意铭牌标注方法,否则容易出错。

通常穿绕匝数是以穿绕入互感器中心的匝数为准,而不是以绕在外围的匝数为准,当误为外围匝数时,计算计量电能将会出现很大差错。

1.3 TA如何选择,简单说来就是怎样确定额定一次电流的问题。

它应“保证其在正常运行中的实际负荷电流达到额定值的60%左右,至少应不小于30%”。

如有一台100kV·A配变供制砖机生产用电,负荷率为70%左右,那么在正常生产时的实际负荷电流约100A,按上面所述标准选择,就应该配置150/5A规格的TA,这样就保证了轻负荷时工作电流不低于30%额定值,同时也满足了对TA的二次侧实际负荷的要求。

1.4 TA变比选大,在实际工作中常发生。

当用电处在轻负荷时,实际负荷电流将低于TA的一次额定电流的30%,特别当负载电流低到标定电流值的10%及以下时,比差增加,并且是负误差。

所以,为了避免TA长期运行在低值区间,对于农村负荷或变化较大的负荷,宜选用高于60%额定值,只要最大负荷电流不超过额定值的120%即可。

电流互感器与电表的选配

电流互感器与电表的选配

电流互感器与电表的选配低压计量装置在实际工作中常常出现电流互感器(TA)和电能表选用不当、联用不妥的现象,给企业造成很大损失。

特别在农村用电中,存在问题更为普遍。

例如,有一个用电户安装了一台20kV·A变压器,电工在计量装置中配3只50/5A的TA,再联用一只DT8—25(50)的电能表,一个月下来只计得用电量450kW·h左右。

像TA变比选大、配小、准确级次不够,电能表容量偏大、偏小等更是常见。

笔者结合工作实际,针对计量装置的一些技术问题和有关规章,谈一些肤浅认识,以供大家参考。

1.TA的合理选用1.1本地区用电户多属第Ⅳ类、第Ⅴ类电能表计量装置,老规程要求TA准确级次为0.5级就可以,而新的DL/T448—2000《电能计量装置技术管理规程》要求,应配置准确级次为0.5S级的TA。

1.2现在安装的低压电流互感器多采用穿心式,灵活性大,可根据实际负荷电流大小选择变比,但确定穿绕匝数要注意铭牌标注方法,否则容易出错。

通常穿绕匝数是以穿绕入互感器中心的匝数为准,而不是以绕在外围的匝数为准,当误为外围匝数时,计算计量电能将会出现很大差错。

1.3TA如何选择,简单说来就是怎样确定额定一次电流的问题。

它应“保证其在正常运行中的实际负荷电流达到额定值的60%左右,至少应不小于30%”。

如有一台100kV·A配变供制砖机生产用电,负荷率为70%左右,那么在正常生产时的实际负荷电流约100A,按上面所述标准选择,就应该配置150/5A规格的TA,这样就保证了轻负荷时工作电流不低于30%额定值,同时也满足了对TA的二次侧实际负荷的要求。

1.4TA变比选大,在实际工作中常发生。

当用电处在轻负荷时,实际负荷电流将低于TA的一次额定电流的30%,特别当负载电流低到标定电流值的10%及以下时,比差增加,并且是负误差。

所以,为了避免TA长期运行在低值区间,对于农村负荷或变化较大的负荷,宜选用高于60%额定值,只要最大负荷电流不超过额定值的120%即可。

低压三相四线电能计量装置错误连接线分析和判断

低压三相四线电能计量装置错误连接线分析和判断

低压三相四线电能计量装置错误连接线分析和判断低压三相四线电能计量装置是一种重要的电能计量设备,通常被用于对低压电网中的电能进行计量。

但是,在实际应用过程中,由于操作不规范或者其它原因,可能会出现错误的连接,从而影响到设备的正常工作和计量精度。

本文将会对低压三相四线电能计量装置的错误连接线进行分析和判断。

低压三相四线电能计量装置一般由电压互感器、电流互感器、三相四线电能表和配电箱等组成。

这些部件都有特定的接线方法,正确的连接方式可以确保设备正常工作和计量精度。

当这些部件的接线发生错误时,可能会导致电能计量装置无法正常工作,甚至导致计量精度大幅降低。

错误连接线的判断方法:1. 对比装置说明书:在进行接线之前,应当认真阅读电能计量装置的说明书,确认每个部件的正确接线方法,以免错误连接。

3. 逐一排除法:对电能计量装置的每一个部件进行逐一排查,以确定是否存在错误连接或接线不良的情况。

1. 连接绝缘带的位置不对:有时候,在连接电缆时,绝缘带的位置可能会连接到器件的导电部分上,导致电路短路,应当及时更换正确的绝缘带。

2. 连接头未必负:在连接电线时,连接头必须正确接地,否则可能会导致电器短路。

应当注意检查连接头的负极性。

3. 接线处错位放置:在连接电器时,应该注意每根电线与器件接触的位置,以确保电路正确连接。

4. 电缆长度不符合要求:由于低压电能计量装置需要计量的电压和电流比较小,而电缆的长度和其电感系数成正比,电缆长度过长可能会导致电流损失和测量误差增加,应当根据实际情况选择更合适的线缆。

错误连接线对电能计量装置的影响:错误的连接方式可能会导致电能计量装置失效,得到的计量数据不准确。

在严重情况下,可能会导致短路或者火灾等安全事故发生。

因此,在使用低压三相四线电能计量装置时,应当认真阅读说明书、检查配线图、逐一排除错误连接,保证设备正常工作和计量精度。

同时,使用电能计量装置的人员应具备相应的电力知识和正确的操作技能,确保安全使用。

抗直流偏磁电流互感器在低压系统中的研究与应用

抗直流偏磁电流互感器在低压系统中的研究与应用

抗直流偏磁电流互感器在低压系统中的研究与应用赵玉富,张㊀龙,田闽哲,徐二强,罗辉勇(国网河南省电力公司电力科学研究院,河南㊀郑州㊀450052)作者简介:赵玉富(1976-),男,高级工程师,长期从事电能计量技术现场工作和电磁测量方面的研究工作㊂摘㊀要:在直流偏磁的影响下,电流互感器铁芯趋于饱和,其误差往负方向偏移,导致电能计量装置少计电量,有悖于电量交易的公正㊁公平㊂本文论述了直流偏磁对电流互感器产生影响的原理和相关试验验证,详细阐述了抗直流偏磁电流互感器的原理和相关试验验证,并应用于低压系统现场,取得了良好的效果㊂关键词:直流偏磁;电流互感器;低压系统;研究;应用中图分类号:TM452㊀㊀㊀㊀文献标识码:B㊀㊀㊀㊀文章编号:411441(2019)01-0038-040㊀前言按照国网公司营销计量[2017]9号任务单要求,国网河南电科院配合国网计量中心开展抗直流偏磁电流互感器在低压系统中的研究与应用㊂直流偏磁存在于整个电力系统中,主要由以下几个方面原因产生:(1)地磁感应电流㊂地磁风暴产生时,地磁场的变化在地球表面诱发电位梯度,在变压器绕组中产生低频感应电流,一般近似认为是直流电流;(2)高压直流输电中的大地回流㊂高压直流输电采用单极大地回路方式时,导致大地中回流的直流电流经接地中性点流入变压器绕组,进入交流系统;(3)线路故障时的直流分量;(4)不对称负载产生的直流分量,如相控整流器㊁单波整流器㊁线路换向逆变器㊁变频设备等都能产生直流分量㊂直流偏磁是指在变压器或电流互感器的励磁电流中出现了直流分量,导致铁芯半周磁饱和以及由此引起的一系列电磁效应[1]㊂在出现直流偏磁情况时,主磁通中存在直流分量,交变磁通与直流磁通叠加,两种磁通方向一致的半个周期磁通增强,两种磁通方向相反的半个周期磁通减弱,导致励磁电流正负半周期不对称,加快铁芯饱和,铁芯饱和影响电流互感器传变特性,从而影响电流互感器的计量误差㊂所以在第(4)种直流分量中存在着人为因素,达到低压电能计量装置少计电能量的目的[2]㊂1㊀直流偏磁对电流互感器计量误差的影响1.1㊀理论分析及仿真电流互感器T 型等效电路[3]如图1所示㊂图1㊀电流互感器T 型等效电路其一次和二次感应电动势相等㊂相应的磁滞回线如图2所示,图中H m 和B m 分别为磁场强度H 和磁感应强度B 的最大值㊂当电流互感器有直流经过时互感器铁芯产生直流磁通Φdc ,在直流磁通Φdc 的作用下磁通Φ曲线发生了偏移,使电流互感器的工作点由线性区进入到饱和区,激磁电流i 增大而且发生了畸变,如图3所示㊂图2㊀B -H 曲线DOI:10.19755/ki.hnep.2019.s1.010图3㊀电流互感器直流偏磁产生的原理图由于铁芯磁阻的存在,电流互感器在转变电流的过程中,必须消耗一小部分电流用于激磁,使铁芯磁化,从而在二次线圈产生感应电势和二次电流,电流互感器的误差就是由铁芯消耗的励磁电流引起的㊂文献[3]推导出的电流互感器误差公式为:ε=(Z 2ᶄ+Z b ᶄ)L 2πfμSN 22(1)当存在直流偏磁电流时,产生的磁通导致铁芯磁导率下降,激磁电流增大,电流互感器的误差增大,不管偏磁方向如何,都会使电流互感器误差曲线往负方向偏移㊂文献[4-5]用软件仿真的方法证明了这一点,但直流含量达到多少才会使电流互感器的误差有明显的改变,这需要试验进一步验证㊂1.2㊀试验验证采用传统比较法测试直流含量达到多大时才能对电流互感器误差产生明显的影响,试验线路图如图4所示,直流分量作为影响量加入被测电流互感器㊂图4㊀直流对电流互感器误差影响的测试原理图图中CT X 是被试电流互感器0.2S 级,CT 0就是同变比的标准电流互感器,为防止直流分量流入标准电流互感器回路加装了阻断电容器C,也可以采用零磁通标准电流互感器(如双级标准电流互感器㊁霍尔标准电流互感器等),这样就不用加装阻断电容防止直流分量流入标准电流互感器回路㊂试验回路工频交流为100A,改变被试电流互感器回路直流分量测试其误差数据如表1所示㊂表1㊀在不同直流含量下电流互感器的误差DC(A)012345f(%)0.1040.1140.1370.1490.085-0.075δ( ) 1.615.152.797.0140.2187.3DC(A)/678910f(%)/-0.298-0.633-1.023-1.480-1.988δ( )/230.9278.0321.9366.3409.5图5可以看出电流互感器在直流分量的影响下㊀㊀㊀直流分量(A)直流分量(A)图5㊀电流互感器在不同直流含量下的误差曲线图其误差发生变化(虚线为国家检定规程规定的合格范围),随着直流分量的增大比值差往负方向移,幅度越来越大直至铁芯饱和㊂2㊀抗直流偏磁电流互感器2.1㊀理论分析在直流偏磁产生的原因中第(3)条就是线路故障产生的直流,线路故障时线路保护装置能及时准确地动作切断故障点的重要前提就是保护装置能够准确及时地收到满足其动作的各个信号,其中最重要的就是故障电流信号,这就需要保护用电流互感器绕组能及时准确地把一次故障电流信号传到二次,抗直流偏磁电流互感器就可以采用电流互感器保护绕组铁芯的方式,但电流互感器保护绕组在正常工频电流下准确度等级不高,满足不了电能计量装置的要求㊂因此可以考虑将普通电流互感器和保护用电流互感器组成双铁芯互感器,既能满足正常情况下电能计量装置误差的要求,又能满足在直流偏磁影响下准确可靠的计量㊂图6是开气隙的电流互感器示意图,铁芯磁路长度为l,初级线圈匝数为N,铁芯气隙宽度为l g(l g≪l),一次电流为I㊂气隙的宽度非常小,磁通和气隙的界面垂直,并通过气隙保持连续[6],铁芯内部磁感应强度与界面是正交的㊂则下式成立:B=μ0Hair =μ0μγH(2)式中,B为磁感应强度,H air为气隙中的磁场强度,H 为铁芯磁场强度,μ0为真空磁导率,μγ为铁芯磁导率㊂由安培环路定律可得:NI=Hair lg+Hl=Hμrlg+l()(3)图6㊀带气隙电流互感器示意图从式(3)可以看出,在同样大小的一次电流情况下,铁芯开气隙电流互感器要比铁芯无气隙的磁场强度下降,即磁导率减小,抗磁饱和能力增强,磁导率下降也就意味着测量不够准确,因此要将普通电流互感器铁芯与开气隙铁芯组合起来形成双铁芯电流互感器,正常交流工作条件下普通铁芯工作,有直流偏磁时气隙铁芯工作,这样可以保证电流互感器在直流偏磁下的误差㊂气隙的大小不同磁导率下降多少也不同,需要专业计算和仿真分析㊂2.2㊀试验验证采用图4的试验线路,将图中的普通电流互感器换成抗直流偏磁电流互感器,抗直流偏磁电流互感器准确度等级2级,变比为500/5(A),二次额定负荷5VA㊂工频交流为100A,改变直流分量大小,试验方法同上,得到的试验数据如表2所示㊂表2㊀在不同直流含量下抗直流偏磁电流互感器的误差DC(A)012345f(%)0.1110.1050.0750.0440.018-0.001δ( ) 1.722.537.048.258.656.9DC(A)67891015f(%)-0.015-0.026-0.034-0.039-0.044-0.056δ( )73.479.583.489.794.6115.9DC(A)20304050//f(%)-0.063-0.079-0.104-0.146//δ( )134.2166.5195.5222.9//从表2中可以看出在正常交流工作状态下,抗直流偏磁电流互感器能满足0.2S级电流互感器的误差数据要求;在直流偏磁的作用下,该电流互感器的误差数据基本能满足准确等级2级的要求㊂3㊀应用只有经过现场长时间试运行,抗直流偏磁电流互感器才能真正投入到实际应用㊂首先寻找有直流分量的用户作为试运行点,含有直流分量的用户都有人为的因素在里面,因此具有很大的隐蔽性,靠技术人员现场测试很难发现㊂在河南电网比较典型的三个地市济源㊁安阳和许昌,从负荷性质分析现场大量测试仅发现一家含有直流分量的用户,而且直流分量比较小(仅1%),但谐波含量比较大(达到12%),为了验证抗直流偏磁电流互感器的可靠性,在该用户处加装一套抗直流偏磁电流互感器电能计量装置与原电能计量装置进行比对,如图7所示㊂图7㊀加装抗直流偏磁电流互感器现场图从2017年7月至12月份提取的电能量数据如表3所示㊂表3㊀现场测试数据原计量装置(kWh)新计量装置(kWh)电量差(%)平均电流(A)月份36373626-0.30%45.57月41504138-0.29%51.98月38913873-0.46%48.69月34923477-0.43%43.710月32183203-0.47%40.211月46764656-0.43%58.512月表3可以看出,抗直流偏磁电流互感器和普通电流互感器在正常交流工作状态下基本一样,从另一方面证明了抗直流偏磁电流互感器与普通电流互感器一样能正常工作,两套计量装置计量电量基本相同㊂国网湖南湘潭公司发现某低压专变用户投产之后线路损耗增大很多,现场检查电能计量装置接线无问题,把电能表和电流互感器拆回到实验室检测都满足国家检定规程要求,在该用户正常生产时现场测试用户电能质量发现谐波含量很大,有很大的直流分量,加装抗直流偏磁电流互感器进行对比,截取几天的数据如表4所示㊂表4㊀现场测试数时间台区供电量(kWh)台区售电量(kWh)台区线损率(%)原计量装置新计量装置原计量装置新计量装置3月5日1267.2935.51232.926.2 2.73月6日1222.4952.91208.122.1 1.23月7日1772.81501.21714.415.3 3.33月8日1734.41416.11705.518.4 1.73月9日1702.41404.81660.417.52.5从表4中可以看出,抗直流偏磁电流互感器能正常计量该用户的用电量㊂从公开㊁公正㊁公平电能计量专业角度出发,抗直流偏磁电流互感器将在台区高线损率㊁电加热㊁整流变频等三类用户中有广阔的应用市场㊂参考文献[1]李长云,李庆民,李贞等.直流偏磁下电流互感器的传变特性[J].中国电机工程学报,2010(19)ʒ127-132.[2]靳绍平,李敏,刘见等.低压抗直流互感器及检测装置研究[J].电测与仪表.2016(13)ʒ59-63.[3]赵玉富,朱保华.TA 误差分析[J].河南电力.2007(2)ʒ27-29.[4]田晓倩.直流偏磁对电流互感器及电能计量的影响研究[D].保定:华北电力大学,2014.[5]申路,裴东峰,未超,等.直流偏磁对测量用CT 影响及补偿方法的研究[J].电工电气.2017(3)ʒ23-27.[6]肇巍.电流互感器电磁场数值分析与屏蔽设计[D].沈阳:沈阳工业大学,2008.收稿日期:2018-07-16。

简析低压计量现场工作注意要点

简析低压计量现场工作注意要点

简析低压计量现场工作注意要点1 低压计量设备的选取和配置1.1 选型运维管理人员在选用智能电能表时,需选择经过国家和省级计量机构检测合格的产品,安装的低压计量设备必须有生产许可证和出厂检测合格证,并且依据低压计量设备有关检验规定对计量装置进行复检,检测合格的低压电能计量设备才可以安装使用到现场工作中。

1.2 装置1.2.1 准确度要求。

选择的各个低压计量设备装置电能表、互感器等设备的精确度不得低于现行的相关技术准则规定。

1.2.2 接线方式。

接入中性点绝缘设备的低压计量装置必须采用三相三线智能电能表。

接入非中性点绝缘设备的低压计量装置,必须采用三相四线电能表或者三只无止逆单相电能表。

新准则制定:电流负荷在50A或以下的时候,负载宜采用直接接入智能电能表;电流负荷在50A以上时,适宜采用经电流互感器变换小电流后接入智能电能表。

为了规避误差,电流互感器和智能电能表之间的接线方式必须参照新准则的规定。

在计量装置接线过程中,若采用两只电流互感器,那二次绕组和智能电能表两者之间采用四线连接。

若采用三只电流互感器,那么二次绕组和智能电能表之间使用六线连接,不可以采用单一地三线连接或四线连接。

1.2.3 电能表限制电流的确定。

在低压计量回路中,电流负荷在50A或者以下的时候,直接接入的智能电能表,并且依照准则配置的方式是:智能电能表正常工作负载的为标称负载的70%上下为宜,为了提升低压计量的精确性,宜使用超过荷载四倍和以上的智能电能表。

对负荷变化较大的用电客户,推荐采用S 级以上等级的智能电能表。

在电能表和电流互感器配合运用的时候,常用的低压电流互感器限定二次电流是5A,依据设置准则:通过电流互感器接入的电能表,它额定的电流不适宜超出电流互感器额定二次电流的30%,它的额定最大电流应该是电流互感器二次电流的120%左右,那智能电能表的电流量应该是1.5(6)A。

当前的单相(三相)1.5(6)A类型的电能计量装置,就是专门为配置电流互感器设备制造。

电能计量装置防窃电管理措施

电能计量装置防窃电管理措施

电能计量装置防窃电管理措施电能计量装置防窃电管理措施电能计量装置防窃电管理措施摘要:电力企业在市场经济体制下也处于激烈的市场竞争当中,为了在市场竞争中取得优势,不仅需要在提高优质服务,还要在市场有序的竞争下努力提高企业的经济效益,这也是电力企业当前面临的重要课题。

本文对电能计量装置的作用进行了说明,并详细分析了如何正确配置计量装置的问题,并进一步阐述了加强计量装置的防窃电管理的具体办法。

关键词:电能;计量装置;窃电管理在市场经济体制下,工农业生产的快速发展,及人们生活水平的不断提高,对电能的需求量有了较大的增加,极大的促进了电力企业的快速发展,但在电力企业的发展过程中也出现了一些不和谐的现象,如在用户用电过程中的窃电行为,这不仅影响了电力企业的健康发展,也给国家带来较大的'经济损失,同时对国家的经济建设和社会的稳定发展都带来了很严重的影响。

1 电能计量装置作用在电力系统发、供、用电的各个环节中,装设了大量的电能计量装置。

用来测量发电量、厂用电量、供电量、售电量等。

为制定生产计划,搞好经济核算合理,计收电量提供依据。

在工、农业生产、商贸经营等等各项工作用电中,为加强经营管理,大力节约能源,考核单位产品耗电量,制定电力消耗定额,提高经济效果,电能计量装置是必备的计量器具。

2 正确配置计量装置2.1 提高CT、PT和电能表的精度等级。

对于负荷波动大的用户,改造中选用S级CT和电能表能更有效地提高计量装置的准确性。

2.2 增大PT二次回路导线截面、缩短二次导线长度,或安装PT二次压降补偿装置以减少二次压降引入误差对计量准确性的影响。

2.3 合理选用CT变比,确保用户正常负荷时CT一次电流达到额定值的30%以上,尽可能选择复式变比CT,同时对未使用的变比档实施防窃电措施,这样可根据用户负荷的发展情况合理选择使用变比,提高计量的准确性。

2.4 根据电网一次中性点接地方式,将一次中性点直接接地的用户计量方式由三相三线改为三相四线。

高压低压配电柜的电流互感器选择与应用

高压低压配电柜的电流互感器选择与应用

高压低压配电柜的电流互感器选择与应用在高压低压配电系统中,电流互感器是一种重要的电力测量设备,用于测量电流并将其转化为可进行监测、保护和控制的信号。

选择合适的电流互感器并正确应用,对于确保电力系统运行的安全和可靠至关重要。

本文将探讨高压低压配电柜中电流互感器的选择与应用。

一、电流互感器的选择标准1. 额定电流:电流互感器的额定电流应根据被测回路的额定电流来确定。

一般来说,额定电流应略大于被测回路电流的最大值,以确保测量的准确性和安全性。

2. 准确度等级:电流互感器的准确度等级决定了其测量结果的精度。

通常,在高精度要求的测量场合,应选择准确度等级较高的电流互感器。

3. 频率特性:电流互感器的频率特性要与被测回路的工作频率匹配。

在选型时,应注意检查电流互感器的频率范围,确保其适用于被测回路的频率。

4. 额定负载:电流互感器的额定负载是指其在额定电流下能正常工作的负载能力。

选型时,应注意互感器的额定负载是否满足系统的要求,以防止因过载而对互感器造成损害。

5. 安装方式:根据实际情况,选择适合的安装方式。

电流互感器可分为插入式和分合式两种类型,安装时需要根据电力系统的布局和结构来选择合适的方式。

二、电流互感器的应用1. 电流监测:电流互感器通过测量电流的大小来监测电力系统中的负载情况。

通过及时获取准确的电流数据,可以对电力系统的运行状态进行监测和分析,从而及早发现潜在问题,采取相应的措施。

2. 电流保护:当电力系统中出现电流异常时,电流互感器可以及时检测并发出信号,触发保护装置进行动作,切断故障回路,以保护电力设备和人员的安全。

3. 功率计量:电流互感器可以用于测量电力系统中各个回路的电流,通过与电压信号相乘,可以得到各回路的功率,用于进行电力计量和结算。

4. 节能优化:通过对电流互感器采集的电流数据进行分析,可以了解电力系统中的负载变化情况,有针对性地进行能源调整和优化,提高能源利用效率,实现节能减排的目标。

低压电流互感器描述

低压电流互感器描述

低压电流互感器描述低压电流互感器是一种用于测量低压电路中电流的装置。

它通过感应作用将电路中的电流转换为低电压信号,并将其输入测量仪器,以便进行监测和控制操作。

低压电流互感器通常由一个主线圈和一个次级线圈组成。

主线圈通常由导体绕制而成,它的匝数决定了互感器的变比。

次级线圈则是用于传递电流信号的部分,一般情况下,次级线圈的匝数较低,从而使得输出的电压信号降低到安全的范围内。

低压电流互感器具有许多优点。

首先,它可以在测量电流时提供高精度和稳定性,这对于一些需要精确控制的应用非常重要。

其次,这种互感器还具有良好的线性特性,使得测量仪器可以准确地读取输出信号并进行相应的处理。

此外,互感器还具有较小的体积和重量,使其易于安装和维护。

低压电流互感器在许多领域中都有广泛的应用。

其中包括电力系统、工业自动化和建筑物能源管理等。

在电力系统中,互感器通常被用于测量和监测电网中的电流,以确保系统的正常运行和安全性。

在工业自动化中,互感器可以帮助控制电动机的负载和效率,从而提高生产效率。

在建筑物能源管理方面,互感器可以用于监测和控制电力消耗,从而实现节能和环保的目标。

当选择低压电流互感器时,有几个关键因素需要考虑。

首先是互感器的额定电流,必须选择适当的额定电流范围以确保测量的准确性。

其次是互感器的变比,这取决于系统中电流的实际大小和测量的要求。

最后是互感器的安装方式,可以选择固定式或可拆卸式,具体取决于应用中的实际需求和便利性。

综上所述,低压电流互感器是一种重要的测量装置,可以在电力系统、工业自动化和建筑物能源管理等领域中发挥重要作用。

正确选择和使用互感器可以帮助实现准确的电流测量,并提高系统的运行效率和安全性。

因此,在实际应用中,我们应该根据具体需求和要求,选择适当的互感器,并遵循相关的安装和维护要求,以保证其正常运行和长期使用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

低压计量装置在实际工作中常常出现电流互感器(TA)和电能表选用不当、联用不妥的现象,给企业造成很大损失。

特别在农村用电中,存在问题更为普遍。

例如,有一个
用电户安装了一台20kV·A变压器,电工在计量装置中配3只50/5A的TA,再联用一只DT8—25(50)的电能表,一个月下来只计得用电量450kW·h左
右。

像TA变比选大、配小、准确级次不够,电能表容量偏大、偏小等更是常见。

笔者结合工作实际,针对计量装置的一些技术问题和有关规章,谈一些肤浅认识,以供大家参考。

1TA的合理选用
1.1本地区用电户多属第Ⅳ类、第Ⅴ类电能表计量装置,老规程要求TA准确级次为0.5级就可以,而新的DL/T448—2000《电能计量装置技术管理规程》要求,应配置准确级次为0.5S级的TA。

1.2现在安装的低压电流互感器多采用穿心式,灵活性大,可根据实际负荷电流大小选择变比,但确
定穿绕匝数要注意铭牌标注方法,否则容易出错。

通常穿绕匝数是以穿绕
入互感器中心的匝数为准,而不是以绕在外围的匝数为准,当误为外围匝数时,计算计量电能将会出现很大差错。

1.3TA如何选择,简单说来就是怎样确定额定一次电流的问题。

它应“保证其在正常运行中的实际负荷电流达到额定值的60%左右,至少应不小于30%”。

如有一台
100kV·A配变供制砖机生产用电,负荷率为70%左右,那么在正常生产时的实际负荷电流约100A,按上面所述标准选择,就应该配置150/5A规格的TA,这
样就保证了轻负荷时工作电流不低于30%额定值,同时也满足了对TA的二次侧实际负荷的要求。

1.4TA变比选大,在实际工作中常发生。

当用电处在轻负荷时,实际负荷电流将低于TA的一次额定电流的30%,特别当负载电流低到标定电流值的10%及以下时,比差增加,并且是负误差。

所以,为了避免TA长期运行在低值区间,对于农村负荷或变化较大的负荷,宜选用高于60%额定值,只要最大负荷电流不超过额定值的120%即可。

1.5TA变比选小,这种状况仅发生在电工对实际负荷调查不清,或用电户增加了用电负荷的时候。

曾有书上介绍TA最大工作电流可达其一次额定电流值的180%,这与
DL/T448—2000规程规定不符。

TA长时间过负荷运行也会增大误差,并且铁心和二次线圈会过热使绝缘老化。

所以,工作人员应经常测试实际负荷,及时调整TA变
比。

2电能表的合理选用
2.1新规程规定,对于Ⅳ类、Ⅴ类计量装置应选用准确级次2.0级的有功电能表。

无功电能表用于Ⅳ类计量装置时配3.0级,而对于第Ⅴ类计量装置没有作规定。

2.2许多资料(也包括老的电能计量规范)介绍或规定,电能表应工作在50%~100%标定电流范围内,误差才小。

当它工作在30%轻载负荷以下,误差变化很大。

特别是工作在标定电流10%以下时,因电能表的补偿装置调整限制,不能保证其准确度,超出允许范围的负误差更大。

所以,新颁规程提出“为
提高低负荷计量的准确性,应选用过载4倍及以上的电能表”。

目前,D86系列表属此类型,其计量负荷范围宽,正在广泛推广使用。

2.3在低压供电线路中,老的规程规定负荷电流为80A及以下时,宜采用直接接入式电能表。

新规程作了修正,降为负荷电流为50A及以下宜采用直接接入式电能表,而
且标明选配方法:“电能表的标定电流为正常运行负荷电流的30%左右。

”例如,正常运行负荷电流为30A,按30%选择它的标定电流就是9A,规范D86系列表就是
选用10(40)A规格表。

这样,既保证了在轻负荷运行时不小于30%标定电流,也满足了满负荷运行时不超过它的最大电流。

3TA与电能表的最优联用
3.1新规程规定“经电流互感器接入的电能表,其标定电流宜不超过电流互感器额定二次电流的30%,其额定最大电流应为电流互感器额定二次电流的120%左右”。


规程没有这样明确规定,所以,用DT8—25(5
0)电能表与TA联用是不妥的。

TA二次电流已标准化为5A,那么它的30%就是1.5A,其额定最大电流值就是6
A,D86系列三相(单相)1.5(6)A型式的电能表就是专为配用TA设计的。

它的启动电流只有7.5mA,使10%的实际负载计量准确度比老式5A电能表提高
了3.3倍,从而躲过了轻载误差,相应提高了经济效益。

3.2接入非中性点绝缘系统的电能计量装置,可采用“3只感应式无止逆单相电能表”,这也是新规程增加的内容。

但还需注意:①与TA联用只能采用1.5(6)A或
3(6)A两种规格的单相电能表,而且不能简单接用,必须经电能表检试人员把内部接线改成电压、电流分开进线形式(如说明书上接线图),接线才正确,不经分开而直接接
用属不正确接线,它会影响TA变比产生误差;②由于负荷性质变化,功率因数不同,计量三相四线负荷时会出现一表反转,注意在计算总电量时不可将三表的“代数和”错算成
三表的“算术和”,给一方造成经济损失。

3.3为了保证综合误差在允许范围内,TA的二次侧装接负载不能超过额定负载,否则也会增大误差。

所以,要求TA的二次连线电阻、接触电阻及接用仪表内阻之和不应超
过二次额定负载。

规程要求采用4mm2及以上的单芯铜质绝缘线。

但是,现在的低压计量装置普遍装于计量箱内,TA二次侧仅接用电能表,二次连线也很短,使用的铜质导线
电阻率又很小(不能再用铝线了),关键是要把接触电阻限制在0.1Ω以下。

TA二次端子螺丝小且短,线粗难以压紧,用2.5mm2单股铜线比较软,避免了粗线不易弯曲
压不紧的毛病,可保证接触电阻在0.1Ω以下。

3.4为了减少误差,TA与电能表之间连线方式新规程中有更严格的规定。

在计量装置中,若采用2只TA则二次绕组与电能表之间用四线连接,若采用3只TA则二次绕组
与电能表之间用六线连接,不得再采用简化的三线或四线连接。

相关文档
最新文档