2018年6月中考数学最短路径问题(经典)

合集下载

(完整版)初中数学[最短路径问题]典型题型及解题技巧

(完整版)初中数学[最短路径问题]典型题型及解题技巧

(完整版)初中数学[最短路径问题]典型题型及解题技巧初中数学[最短路径问题]典型题型及解题技巧最短路径问题中,关键在于,我们善于作定点关于动点所在直线的对称点,或利⽤平移和展开图来处理。

这对于我们解决此类问题有事半功倍的作⽤。

理论依据:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移” “⽴体图形展开图”。

教材中的例题“饮马问题”,“造桥选址问题” “⽴体展开图”。

考的较多的还是“饮马问题”。

知识点:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。

“饮马问题”,“造桥选址问题”。

考的较多的还是“饮马问题”,出题背景变式有⾓、三⾓形、菱形、矩形、正⽅形、梯形、圆、坐标轴、抛物线等。

解题总思路:找点关于线的对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查。

⼀、两点在⼀条直线异侧例:已知:如图,A,B在直线L的两侧,在L上求⼀点P,使得PA+PB h 最⼩。

解:连接AB,线段AB与直线L的交点P,就是所求。

(根据:两点之间线段最短.)⼆、两点在⼀条直线同侧例:图所⽰,要在街道旁修建⼀个奶站,向居民区A、B提供⽜奶,奶站应建在什么地⽅,才能使从A、B到它的距离之和最短.■解:只有A、C、B在⼀直线上时,才能使AC+BC最⼩.作点A关于直线“街道”的对称点A ',然后连接A ' B,交“街道”于点C,则点C就是所求的点.、⼀点在两相交直线内部例:已知:如图A是锐⾓/ MON内部任意⼀点,在/ MON的两边OM,ON上各取⼀点B,C,组成三⾓形,使三⾓形周长最⼩.解:分别作点A 关于0M , ON 的对称点AAOM , ON 于点B 、点C ,则点B 、点C 即为所求分析:当AB 、BC 和AC 三条边的长度恰好能够体现在⼀条直线上时,三⾓形的周长最⼩例:如图,A.B 两地在⼀条河的两岸,现要在河上建⼀座桥MN ,桥造在何处才能使从A 到B 的路径AMNB 最短?(假设河的两岸是平⾏的直线,桥要与河垂直)解:1.将点B 沿垂直与河岸的⽅向平移⼀个河宽到 E ,2.连接AE 交河对岸与点M,则点M 为建桥的位置,MN 为所建的桥证明:由平移的性质,得 BN // EM 且 BN=EM, MN=CD, BD // CE, BD=CE,所以 A.B 两地的距:AM+MN+BN=AM+MN+EM=AE+MN, 若桥的位置建在 CD 处,连接AC.CD.DB.CE, 则AB 两地的距离为:AC+CD+DB=AC+CD+CE=AC+CE+MN,在⼛ACE 中AC+CE >AE,⼆ AC+CE+MN >AE+MN,即 AC+CD+DB >AM+MN+BN 所以桥的位置建在CD 处,AB 两地的路程最短。

【中考专题】2018年 中考数学专题 最短路程问题 (含答案)

【中考专题】2018年 中考数学专题 最短路程问题 (含答案)

2018年中考数学专题最短路程问题一、选择题:1.如图,在四边形ABCD中,∠C=50°,∠B=∠D=90°,E,F分别是BC,DC上的点,当△AEF的周长最小时,∠EAF的度数为 ( )A.50°B.60°C.70°D.80°2.如图,在菱形ABCD中,对角线AC=6,BD=8,点E、F分别是边AB、BC的中点,点P在AC上运动,在运动过程中,存在PE+PF的最小值,则这个最小值是( )A.3 B.4 C.5 D.63.如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为( )A.2 B.C.D.4.在平面直角坐标系中,已知A(﹣1,﹣1)、B(2,3),若要在x轴上找一点P,使AP+BP最短,则点P的坐标为( )A.(0,0) B.(﹣2.5,0) C.(﹣1,0) D.(﹣0.25,0)5.如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为()A.1 B.2 C.3 D.46.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE 的周长最小时,点E的坐标为()A.(3,1)B.(3,)C.(3,)D.(3,2)二、填空题:7.如图,菱形ABCD中,AB=4,∠B=60°,E,F分别是BC,DC上的点,∠EAF=60°,连接EF,则△AEF的面积最小值是.8.如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值为.9.在⊙O中,AB是⊙O的直径,AB=8cm,==,M是AB上一动点,CM+DM的最小值是cm.10.在如图所示的平面直角坐标系中,点P是直线y=x上的动点,A(1,0),B(2,0)是x轴上的两点,则PA+PB的最小值为______.11.如图,已知正方形ABCD的边长为10,点P是对角线BD上的一个动点,M、N分别是BC、CD边上的中点,则PM+PN的最小值是___________.12.如图,在平面直角坐标系中,已知点A(2,3),点B(﹣2,1),在x轴上存在点P到A,B两点的距离之和最小,则P点的坐标是______.13.已知点A(1,5),B(3,1),点M在x轴上,当AM+BM最小时,点M的坐标为.14.如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,PN+PM+MN的最小值是5cm,则∠AOB的度数是.15.如图,在锐角△ABC中,AB=4,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是.参考答案1.答案为:D;2.答案为:C.3.答案为:B.4.答案为:D.5.答案为:C6.答案为:D.7.答案为:.8.答案为:69.案为:8.10.答案为:.11.答案为:1012.答案为:(﹣1,0).13.答案为:(,0).14.答案为:30°.15.答案为:4.。

初中数学最短路径问题典型题型及解题技巧

初中数学最短路径问题典型题型及解题技巧

初中数学[最短路径问题]典型题型及解题技巧最短路径问题中,关键在于,我们善于作定点关于动点所在直线的对称点,或利用平移和展开图来处理。

这对于我们解决此类问题有事半功倍的作用。

理论依据:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”“立体图形展开图”。

教材中的例题“饮马问题”,“造桥选址问题”“立体展开图”。

考的较多的还是“饮马问题”。

知识点:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。

“饮马问题”,“造桥选址问题”。

考的较多的还是“饮马问题”,出题背景变式有角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。

解题总思路:找点关于线的对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查。

一、两点在一条直线异侧例:已知:如图,A,B在直线L的两侧,在L上求一点P,使得PA+PB最小。

解:连接AB,线段AB与直线L的交点P ,就是所求。

(根据:两点之间线段最短.)二、两点在一条直线同侧例:图所示,要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短.解:只有A、C、B在一直线上时,才能使AC+BC最小.作点A关于直线“街道”的对称点A′,然后连接A′B,交“街道”于点C,则点C就是所求的点.三、一点在两相交直线内部例:已知:如图A是锐角∠MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形,使三角形周长最小.解:分别作点A关于OM,ON的对称点A′,A″;连接A′,A″,分别交OM,ON 于点B、点C,则点B、点C即为所求分析:当AB、BC和AC三条边的长度恰好能够体现在一条直线上时,三角形的周长最小例:如图,A.B 两地在一条河的两岸,现要在河上建一座桥MN ,桥造在何处才能使从A 到B 的路径AMNB 最短?(假设河的两岸是平行的直线,桥要与河垂直)解:1.将点B 沿垂直与河岸的方向平移一个河宽到E ,2.连接AE 交河对岸与点M,则点M 为建桥的位置,MN 为所建的桥。

(完整)初中数学最短路径问题典型题型复习.doc

(完整)初中数学最短路径问题典型题型复习.doc

初中数学《最短路径问题》典型题型知识点:“两点之间线段最短” ,“垂线段最短”,“点关于线对称”,“线段的平移”。

“饮马问题”,“造桥选址问题”。

考的较多的还是“饮马问题”,出题背景变式有角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。

解题总思路:找点关于线的对称点实现“折”转“直” ,近两年出现“三折线”转“直”等变式问题考查。

一、两点在一条直线异侧例:已知:如图, A,B 在直线 L 的两侧,在 L 上求一点 P,使得 PA+PB 最小。

解:连接 AB, 线段 AB 与直线 L 的交点 P ,就是所求。

(根据:两点之间线段最短 .)二、两点在一条直线同侧例:图所示,要在街道旁修建一个奶站,向居民区 A、B 提供牛奶,奶站应建在什么地方,才能使从 A、B 到它的距离之和最短.解:只有 A、C、B 在一直线上时,才能使AC+ BC 最小.作点 A关于直线“街道”的对称点 A ′,然后连接A ′B,交“街道”于点C,则点 C 就是所求的点.三、一点在两相交直线内部例:已知:如图 A 是锐角∠ MON内部任意一点,在∠ MON的两边OM,ON上各取一点 B,C,组成三角形,使三角形周长最小 .解:分别作点 A 关于 OM ,ON 的对称点 A ′, A ″;连接 A ′, A ″,分别交 OM ,ON 于点B 、点 C,则点 B、点C 即为所求分析:当 AB 、 BC 和 AC 三条边的长度恰好能够体现在一条直线上时,三角形的周长最小例:如图, A.B 两地在一条河的两岸,现要在河上建一座桥MN,桥造在何处才能使从 A 到 B 的路径 AMNB最短?(假设河的两岸是平行的直线,桥要与河垂A·直)解: 1.将点 B 沿垂直与河岸的方向平移一个河宽到E,2.连接 AE 交河对岸与点M,则点 M 为建桥的位置,MN 为所建的桥。

证明:由平移的性质,得BN ∥ EM且BN=EM, MN=CD, BD∥CE, BD=CE,MNEB所以 A.B 两地的距 :AM+MN+BN=AM+MN+EM=AE+MN, 若桥的位置建在 CD 处,连接 AC.CD.DB.CE, 则 AB 两地的距离为:AC+CD+DB=AC+CD+CE=AC+CE+MN,在△ ACE 中,∵ AC+CE >AE, ∴ AC+CE+MN > AE+MN, 即 AC+CD+DB > AM+MN+BN所以桥的位置建在CD 处, AB 两地的路程最短。

中考数学蚂蚁爬行的最短路径试题(带解析)

中考数学蚂蚁爬行的最短路径试题(带解析)

蚂蚁爬行的最短路径1.一只蚂蚁从原点 0 出发来回爬行,爬行的各段路程依次为: +5,-3,+10,-8 ,-9,+12, -10.回答下列问题:(1)蚂蚁最后是否回到出发点 0;(2)在爬行过程中,如果每爬一个单位长度奖励 2 粒芝麻,则蚂蚁一共得到多少粒芝麻. 解:( 1)否, 0+5-3+10-8-9+12-10=-3 ,故没有回到 0; (2)( |+5|+|-3|+|+10|+|-8|+|-9|+|+12|+|-10|)×2=114 粒2. 如图,边长为 1 的正方体中,一只蚂蚁从顶点 A 出发沿着正方体的外表面爬到顶点B 的最短距离是 .3.(2006?茂名)如图,点 A 、B 分别是棱长为 2 的正方体左、右两侧面的中心,一蚂蚁从点 A 沿其表面爬到点 B 的最短路程是 cm解:如图将正方体展开,根据“两点之间,线段最短”知,线段 AB= 22 12 5 .AB 即为最短路线.B 的最短路程是两个棱长的长,即 2+2=4.4.如图,一只蚂蚁从正方体的底面 A 点处沿着表面爬行到点上面的B点处,它爬行的最短路线是()A.A? P? B B .A? Q? B C .A? R? B D .A? S? B解:根据两点之间线段最短可知选A.故选A.5.如图,点 A 的正方体左侧面的中心,点 B 是正方体的一个顶点,正方体的棱长为2,蚂蚁从点A沿其表面爬到点 B 的最短路程是()解:如图,AB= 1 2 2 12 10 .故选C.6.正方体盒子的棱长为2,BC的中点为M,一只蚂蚁从 A 点爬行到M点的最短距离为()解:展开正方体的点M所在的面,∵BC的中点为M,1所以MC= BC=1,2在直角三角形中AM= = .7.如图,点A和点B分别是棱长为20cm的正方体盒子上相邻面的两个中心,一只蚂蚁在盒子表面由A处向 B 处爬行,所走最短路程是cm 。

故选C.8. 正方体盒子的棱长为2,BC 的中点为M,一只蚂蚁从A 点爬行到M 点的最短距离解:将正方体展开,连接M、D1,根据两点之间线段最短,MD=MC+CD=1+2,=3MD1= MD 2 DD1232 22139.如图所示一棱长为 3cm 的正方体, 把所有的面均分成 3×3个小正方形. 其边长都为 1cm ,假设一只蚂蚁每秒爬行 2cm ,则它从下底面点 A 沿表面爬行至侧面的 B 点,最少要用 2.5 秒钟解:因为爬行路径不唯一,故分情况分别计算,进行大、小比较,再从各个路线中确定最短 的路线.( 1)展开前面右面由勾股定理得 AB= = cm ;(2)展开底面右面由勾股定理得 AB==5cm ;所以最短路径长为 5cm ,用时最少: 5÷2=2.5 秒.10.(2009?恩施州)如图,长方体的长为 15,宽为 10,高为 20,点 B 离点 C 的距离为 5,一只蚂蚁如果要沿着长方体的表面从点 A 爬到点 B ,需要爬行的最短距离是 。

微课.最短路径-2018黄冈中考13题

微课.最短路径-2018黄冈中考13题
1 A. 2
D P M N B
B
).
A
C
B. 1
C.
2
D. 2
2.(2018 泸州)如图,等腰 三角形ABC的底边BC=20,面积为120.点F在边BC上, 且BF=3FC,EG是边AC的垂直平分线.若点D在EG上运动,则三角形CDF周长的 最小值为 18 .
B E
A G D F C


观ቤተ መጻሕፍቲ ባይዱ
看!
A B
作点B关于直线l 的对称点 B ,连接AB 交直线l
于点P,则PA+PB最小.PA+PB最小值为AB .
P
B
l
2018年黄冈中考数学13题 如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜, 此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B 处的最短距离为 cm.(杯壁厚度不计)
2018年黄冈中考数学13题
利用轴对称解决最短路径问题
黄冈 叶学林
知识与方法
“将军饮马”问题主要利用构造轴对称图形解决两条线段和差、三角形周长、 四边形周长等一类最值问题,会与直线、角、三角形、四边形、圆、抛物线等 图形结合,在中考中经常出现,而且大多以压轴题出现. 当两定点A、B在直线l 的同侧时,在直线l上确定点P,使得PA+PB最小.
A B
A
D
P
M
E
A C
G
B
N
F
本题考查了平面展开-最短路径问题.将图形展开,利用轴对称
的性质和勾股定理进行计算是解题的关键.
2018年中考数学最短路径问题举例
1. (2018 新疆建设兵团) 如图,点P是边长为1的菱形ABCD对角线AC上的一 个动点,点MN分别是AB,BC边上的中点,则MP+PN的最小值是(

中考数学《最短路径问题2》专题复习

中考数学《最短路径问题2》专题复习

中考压轴题(5)最短路径问题2【典型例题】1.如图,等腰三角形ABC的底边BC长为4,面积是12,腰AB的垂直平分线EF分别交AB,AC于点E、F,若点D为底边BC的中点,点M为线段EF上一动点,则△BDM的周长的最小值为_______.2.图①、图②均是6×6的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.点A、B、M、N均在格点上.要求只用无刻度的直尺,在给定的网格中按要求画图,保留作图痕迹.(1)在图①中的线段MN上确定一点P,使PA+PB的值最小.(2)在图②中的线段MN上确定两点C、D,使CD=2,且AC+CD+DB的值最小.知识点思想方法步骤其他【对应练习】3.如图,在Rt ABC中,90ACB∠︒=,6AC=,8BC=,AD平分CAB∠交BC于D点,E,F分别是AD,AC上的动点,求CE EF+的最小值.4.如图,在锐角ABC中,7AC cm=,221ABCS cm=,AD平分BAC∠,M N、分别是AD和AB 上的动点,求BM MN+的最小值并说明理由.5.如图1,△ABC中AB=AC,DE垂直平分AB分别交AB,AC于点D,E.(1)若∠C=70°,则∠A的大小为;(2)若AE=BC,求∠A的度数;(3)如图2,点M是边BC上的一个定点,若点N在直线DE上,当BN+MN最小时,点N在何处?请用无刻度直尺作出点N的位置.(不需要说明理由,保留作图痕迹)6.如图,在平面直角坐标系xOy 中,点O 为坐标原点,点A 在x 轴上,点(0,6)B ,AB AC =,AB AC ⊥,30BAO ∠=︒.(1)如图①,若点D 为AB 的中点,求OD 的长;(2)如图②,若点E 在x 轴上,且45OEB ∠=︒,求ACE ∠的度数;(3)如图③,设BF 平分ABO ∠交x 轴于点P ,点M 是射线BF 上一动点,点N 是射线PA 上一动点,OM MN -的最大值为m ,判断是否存在这样点M ,N ,使m 的值最小?若存在,请在答题卷上作出点M ,N ,并直接写出作法和m 的最小值;若不存在,请说明理由.7.阅读理解:在平面直角坐标系中,任意两点()11,A x y ,()22,B x y 之间的位置关系有以下三种情形; ①如果ABx 轴,则12y y =,12AB x x =-②如果AB y ∥轴,则12x x =,12AB y y =-③如果AB 与x 轴、y 轴均不平行,如图,过点A 作与x 轴的平行线与过点B 作与y 轴的平行线相交于点C ,则点C 坐标为()21,x y ,由①得12AC x x =-;由②得12BC y y =-;根据勾股定理可得平面直角坐标系中任意两点的距离公式()()221212AB x x y y =-+-. (1)若点A 坐标为(4,6),点B 坐标为(1,2)则AB =________; (2)若点A 坐标为(3,3),点B 坐标为(6,6),点P 是x 轴上的动点,直接写出AP PB +最小值=_______;(3)已知22(6)16(3)4M x x =-++-+,22(6)16(3)4N x x =-+--+根据数形结合,求出M的最小值?N 的最大值?。

2018年中考数学专题复习 最短路径专题 PDF含答案

2018年中考数学专题复习 最短路径专题 PDF含答案

是 Rt
‸ 斜边
的中点.
重合时, ‴ 与 ′ 的位置关系是
上一动点(不与 , 重合),分别过 , 向直线 ‸ 作垂线, , ‴ 与 ′ 的数量关系
(2)如图 ,当点 明;
在线段
上不与点
重合时,试判断 ‴ 与 ′ 的数量关系,并给予证
(3)如图 ,当点
在线段
(或
)的延长线上时,此时( )中的结论是否成立?请画出
cm,底面直径 周 cm,在圆柱下底面的
点有一只蚂蚁,它想吃到上底面上
8. 如图 ,是一个长方体盒子,长
h 周,宽 ‸ h ,高 ‸ h .
(1)一只蚂蚁从盒子下底面的点 9. 如图, ‸ 中, h ‸, ‴
沿盒子表面爬到点 ,求它所行走的最短路线的长. ‸ 于点 ‴ , ‴ ‸ 于点 ‴ , ‴ h 周 , ‴ 与 ‴ 交于
cm.蜘蛛沿圆柱爬到
点吃苍蝇,请你算出蜘蛛爬行的
h
cm,在
6. 一只蜘蛛在一个正方体的顶点 路线有几条?
处,一只蚊子在正方体的顶点
处,如图所示,假设蚊子不动,
现在蜘蛛想尽快地捉到这只蚊子,那么它所走的最短路线是怎样的,在图上画出来,这样的最短
7. 如图,圆柱的高为 与 点相对的
点处的食物,它需要爬行的最短路程是多少厘米? π
16. 已知圆锥的底面半径为
(2)若 ‴ h ,′ 为 ‴ 的中点,求 发.在侧面上爬行一周又回到
(1)求证:‸′ 与
相切; 的长. h 高 cm ,现在有一只蚂蚁从底边上一点 出 h 高 cm ,高
点,求蚂蚁爬行的最短距离.
17. 已知,点
(1)如图 ,当点 是 ;
垂足分别为 ‴,′, 为斜边 与点
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【问题概述】最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结
点之间的最短路径.算法具体的形式包括:
①确定起点的最短路径问题- 即已知起始结点,求最短路径的问题.
②确定终点的最短路径问题- 与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题.
③确定起点终点的最短路径问题- 即已知起点和终点,求两结点之间的最短路径.
④全局最短路径问题- 求图中所有的最短路径.
【问题原型】“将军饮马”,“造桥选址”,“费马点”.
【涉及知识】“两点之间线段最短”,“垂线段最短”,“三角形三边关系”,“轴对称”,“平移”.【出题背景】角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等.
【解题思路】找对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查.【十二个基本问题】。

相关文档
最新文档