乌鞘岭软岩大变形隧道
乌鞘岭隧道围岩变形控制

• ①复核队根据每日验证量测原始资料进行量测分 析,8:30时将前日验证量测原始资料及分析报 告(含变形验证及处理意见)报铁一院设计队。 如发现岭脊重点地段和累计变形大于20cm且变形 未稳定及变形突变地段的情况异常或有失稳危险, 上报建设指挥部。
Байду номын сангаас
1.2、岭脊千枚岩地层
• 9号斜井开挖至正洞后,掌子面围岩以黑色至深灰色千枚 岩为主,中部夹薄层板岩,局部有渗水,节理裂隙、小断 层和严重的揉皱随处可见。在千枚岩与板岩互层区,软硬 岩相间,爆破药量难以控制,开挖成型差,产生不同程度 的掉块或局部坍塌。在全千枚岩区,岩体相当破碎,开挖 时易于钻进,但易塌孔。遇水后软化似弹簧土,泥化呈淤 泥状。初期支护施作后,围岩变形大,最大水平收敛419 毫米,且长期不收敛,局部地段4~5个月不趋于稳定。
1、工程地质
• 隧道位于祁连山东北部中高山区,地层岩性复杂, 其分布主要受区域断裂构造控制。区内出露的地 层主要有第四系、第三系、白垩系、三叠系、志 留系、奥陶系等,并伴有加里东晚期闪长岩体的 侵入。地质构造褶皱在本区较为发育,褶皱形态 复杂;区内断裂构造发育,主要为区域性大断裂, 走向基本为北西向,压性~压扭性,具有深切割、 延伸长、规模大的特点,破碎带一般较宽,断带 内物质主要为碎裂岩、断层角砾。
• ③施工中注意保护,防止爆破和其它情况 的破坏,量测点上不得悬挂其它任何物品。
1.4、量测仪器及量测频率要求
序号
监测项目
量测方法和仪器
软岩大变形研究现状

隧道围岩大变形阶段报告1.概述深埋隧道通过软岩和断层带时,在高的地应力和富水条件下通常产生大变形.这种隧道围岩变形量大,而且位移速度也很大,一般可以达到数十厘米到数米,如果不支护或支护不当,收敛的最终趋势是隧道将被完全封死,如果发生在永久衬砌构筑以前,往往表现为初期支护严重破裂、扭曲,挤出面侵入限界.这种大变形危害巨大,严重影响施工工期或者线路正常运营,而且整治费用高昂.在国内外相继出现了大量的隧道围岩大变形工程实例,并且在治理这些问题中取得了很多经验.日本的岩手隧道,长25.8km,采用新奥法施工.地质条件为凝灰岩与泥岩互层,单轴抗压强度为2~6MPa.施工中净空位移和拱顶沉降都是很大的,上断面的净空位移100~400mm,最大到411mm;下断面的净空位移最大为200mm,拱顶下沉为10~100mm.日本惠那山隧道,长8.635km,围岩以花岗岩为主,其中断层破碎带较多,局部为粘土,岩体节理发育、破碎,岩石的抗压强度为 1.7~3.0MPa,隧道埋深为400~450m,原始地应力为10~11MPa.施工时产生了大变形,在地质最差的地段,拱顶下沉达到930mm,边墙收敛达到1120mm,有600cm2面积的喷射混凝土侵入模筑混凝土净空.最后采用9.0m和13.5m的长锚杆,并重新喷护20cm厚的钢纤维混凝土后,结构才得以基本稳定.陶恩隧道长6400m,开挖断面面积90-105m2,位于显著变质的岩带内,如片岩、千枚岩等,主要岩层为绢云母、千枚岩夹绿泥石,抗压强度,洞内无地下水活动,隧道埋深为600-1000m,原始地应力为16.0-27.0 MPa,侧压力系数近似为1.0,围岩强度比为.陶恩隧道采用台阶法施工,在设计时,由于对在挤压性围岩隧道施工缺乏经验,采用的初期支护参数较小,导致拱顶发生1.2m的位移.而后把锚杆改为6m,并初次采用纵向伸缩缝,缝宽20cm,间隔3m,支撑也是可缩的,并在隧道底部增加了隧底锚杆,喷射混凝土厚度保持25cm不变.上述补强措施对大变形起到了一定的控制作用,但已完成段,其洞壁已严重侵入二次衬砌净空,只能采取扩挖的办法处理,增加了施工的难度,同时又具有一定的危险性.此时的净空收敛大约是20-25cm.要再大时,要增打9m以上长度的锚杆.奥地利阿尔贝格隧道隧道长13980m,开挖断面面积90-103m2,岩石主要为千枚岩、片麻岩,局部为含糜棱岩的片岩、绿泥岩,岩石强度为1.2~1.9 MPa,隧道的埋深平均为350m,最大埋深为740m,原始地应力为13.0 MPa,围岩强度比为0.1~0.2.隧道采用自上而下的分布开挖法,先开挖弧形导坑,施作初期支护,然后再开挖台阶<分左、右两次分别进行>,最后检底.由于阿尔贝格隧道是在陶恩隧道之后施工的,该隧道设计时的初期支护就比较强,喷射混凝土厚20~25cm,锚杆长6.0m,同时安设了可缩刚架.但是由于岩层产状不利,锚杆的长度仍不够,施工中支护产生了很大变形,拱顶下沉量达到15~35cm,最大水平收敛达70cm,变形速度达11.5cm/d,后来采取将锚杆的长度增加到9.0~12.0m的办法,才是变形得到了控制,变形速度降为5.0cm/d,变形收敛时间为100~150d.家竹箐隧道隧道全长4990m.隧道位于盘关向斜东翼,属单斜构造,岩层产状N20°~35°E/18°~30°NW.由于距向斜轴部较远,故皱褶、断层不发育,只在隧道中部煤系地层中发育有一正断层F1,其破碎带宽15~20 m. 隧道横穿家竹箐煤田.隧道南段为玄武岩,北段为灰岩,北段为灰岩,中部3890 m为砂、泥岩与为钙质、泥质胶结的砂岩夹泥岩的煤系地层.隧道掘进进入分水岭之下的地层深部后,在接近最大埋深<404m>的煤系地层地段,由于高地应力的作用,锚喷支护相继发生严重变形.在一般地段,拱顶下沉为50-80cm,侧壁内移50-60cm,底部隆起50-80cm;在变形最严重地段,拱顶下沉达到240cm,底部隆起达到80-100cm,侧壁内移达到160cm.为整治病害具体措施如下:①设置特长锚杆加固地层;②改善隧道断面形状,加大边墙曲率;③采用先柔后刚、先放后抗的支护措施;④加大预留变形量;⑤提高二次衬砌的刚度;⑥加强仰拱.大变形得到迅速整治,衬砌施工后,结构完好,未出现任何开裂现象,经预埋的应力、应变计测试,有足够的安全储备.木寨岭隧道全长1710m,穿越地层围岩主要为二叠系炭质板岩夹砂岩与硅质砂板岩.存在的主要构造体系是山字型构造体系.属地应力集中区,隧道穿越区为沟谷侧,原始地应力难以释放.隧道主要地质为炭质板岩夹泥岩,局部泥化软弱,呈灰黑色,围岩层理呈褶皱状扭曲变形严重,大部分地段围岩较破碎,洞身渗涌水频繁,部分地段呈股流.隧道在高地应力大变形地段,严重处拱顶累计下沉达155cm.经研究主要采取的处理措施有:①开挖总体采用双侧壁法;②初期支护钢架与临时支撑采用I22型工字钢、自进式锚杆,超前支护小导管,拱脚两侧增设小导管锁脚.导坑开挖时预留变形;③修改原设计仰拱;④二次衬砌采用双层钢筋网,与仰拱预留钢筋焊接;⑤对需换拱段与开挖后变形较大的地段,除施作长的自进式锚杆外,再采用小导管进行双液注浆.2.发生围岩大变形的地质条件与隧道围岩大变形发生机理大变形目前还没有一个统一的定义,目前有的学者提出根据围岩变形是否超支护的预留变形量来定义大变形,即在隧道,如果初期支护发生了大于25 cm<单线隧道> 和50cm<双线隧道>的位移,则认为发生了大变形.姜云、李永林等将隧道围岩大变形定义为:隧道与地下工程围岩的一种具有累进性和明显时间效应的塑性变形破坏,它既区别于岩爆运动脆性破坏,又区别于围岩松动圈中受限于一定结构面控制的坍塌、滑动等破坏.同时将隧道围岩大变形分为受围岩岩性控制、受围岩结构构造控制和受人工采掘扰动影响三个大的类型.2.1大变形发生的地质条件发生大变形的隧道一般具有以下地质特征:〔1〕隧道围岩条件.发生大变形的围岩主要有:①显著变质的岩类,如片岩、千枚岩等;②膨胀性凝灰岩;③软质粘土层和强风化的凝灰岩;④凝灰岩和泥岩分互层;⑤泥岩破碎带和矿化变质粘土等.这类围岩的凝聚强度c值较低,内摩擦角 值很小,单轴抗压强度较低.〔2〕隧道处于高应力区,且大变形地段的隧道一般埋深在100m以上.〔3〕隧道围岩的天然含水量大.2.2隧道围岩大变形发生的机理人们通常把大变形机制分为两大类:〔1〕大变形的原因之一,是开挖形成的应力重分布超过围岩强度而发生塑性变化.如果发生缓慢就属于挤出〔如果是立刻发生就属于岩爆〕.〔2〕大变形的原因之二,是岩石中的某些矿物成分和水反应而发生膨胀.发生膨胀变形的围岩在开挖时一般有较高的强度,变形主要发生在隧道运营过程中,一般表现为底部鼓起,而隧道顶部和边墙保持较好的工作状态.在隧道通过炭质板岩和断层带时,引起大变形的原因主要为第一条.同时国内外学者也认为,软岩隧道的大变形可以描述为一种以挤出为主、膨胀为辅的水-力耦合过程.而对于第一条原因目前国内外学者认为围岩挤出是开挖引起的应力重分布超过岩体强度时屈服的结果,并且通过一些列的研究将围岩挤出的力学机制分为以下三大类:〔1〕完全剪切的破坏〔如图1a〕.在连续的塑性岩体与含有大开裂度裂隙的非连续岩体中会发生这种破坏.〔2〕弯曲破坏〔如图1b〕.一般发生在千枚岩与云母片岩等变质岩或泥岩、油页岩、泥质砂岩与蒸发岩等薄层状塑性沉积岩中.〔3〕剪切和滑动破坏〔如图1c〕.发生于相对厚层的沉积岩中,包括沿层面的滑动和完整岩石的剪切两种破坏形式.〔a 〕完全剪切的破坏 〔b 〕弯曲破坏 〔c 〕剪切和滑动破坏图1 挤出性围岩隧道失稳形式分类3.大变形的预测研究现状隧道的大变形给隧道施工和运营造成了很大的困难,国内外学者对隧道大变形的预测进行了大量的研究.目前在预测隧道变形的方法中具有代表性的有C&C 法,这种方法由Egger 〔1973〕、Kastner 〔1974〕和Hoek 、Brown 〔1980〕提出,并逐步完善.这种方法基于以下假设:〔1〕圆形隧道;〔2〕课题可以概化为二维平面应变问题;〔3〕均质各向同性介质;〔4〕弹-塑性材料;〔5〕现场地应力属于静水压力场;〔6〕均匀的径向支护压力.其计算公式如下:〔1〕弹性状态下的围岩位移〔i u 〕011()i i u P P r μκ+=-〔1〕 其中,μ、κ分别为岩石的泊松比和杨氏模量;0P 、1P 分别为地静压力和支护压力;i r 为隧道半径.〔2〕塑性状态下的位移〔j u 〕Hoek-Brown 方法:1j j u r ⎡=-⎢⎣ 〔2〕 式中当e j r r <,2ln e j r R D r ⎡⎤=⋅⎢⎥⎢⎥⎣⎦;e jr r >, 1.1R D = 式中,r m 、r s 为破碎岩石的常数;e r 、e u 、re σ分别为弹性和塑性边界处的半径、位移和径向应力.此外还有Egger 和Kastner 也提出了相应的塑性状态向的围岩位移预测方法.4.大变形的一般治理措施根据国内外的施工经验,对大变形的治理措施归纳如下:〔1〕加强稳定掌子面的辅助措施① 正面喷混凝土和打锚杆;② 打超前锚杆或钢筋.〔2〕加强基脚的措施,这是基本的,即首先要把底鼓和侧壁的挤入控制住,包括:① 向底部地层注浆加固;②向两侧打底部锚杆;③支撑加底部与加劲肋;④设底部横撑或临时仰拱.〔3〕防止断面挤入的措施①增打加长锚杆,主要在两侧,锚杆长度一定要深入到围岩塑性区一定X围才有效果;②设底部横撑,打底部锚杆,修筑仰拱,这是极为重要的工程措施;③缩短台阶长度,与早闭合;④下半断面、仰拱同时施工;⑤设纵向伸缩缝,采用可缩性支撑〔4〕防止衬砌开裂的措施①采用湿喷钢纤维混凝土;②设加强钢筋;③设纵向伸缩缝.〔5〕设立日常量测管理体制与管理基准①监测初期位移速度;②最终位移值的预测;③建立控制基准值;〔6〕加强施工地质预报①预测和预报掌子面前方的地质状态;②建立地质数据库,与时反馈;③各种岩类的特性试验数据的测试.这些措施是综合的,是相互补充的,应视具体情况采用.这些措施也是一般性的,当条件变化很大时,还要采用一些特殊的辅助施工措施,如注浆加固,改良岩体等措施.5.郎洞断层束破碎带地质概况5.1二郎洞断裂带〔F3〕该断层位于二郎洞附近,西起阿尔扎沟以西,向南经果可沟沟脑、二郎洞、肯德隆沟、茶卡北山以北,延伸长度约130km.该断裂是北侧南祁连海西期地槽和南侧南秦岭印支期地槽的分界断层,沿断裂带岩浆活动强烈,断层两侧岩层破碎,沿断裂有一系列与之近于平行的断裂,共同组成断层束,断层两侧岩层产状较乱,多拖拉现象和挠曲.地貌上主要表现为一系列断层谷地、垭口和洼陷地带,航、卫片上线性影像明显.断层形成于华力西期,在印支期以来仍有活动.断层产状:N40°~70°W/40°~80°N,属逆断层,主断层破碎带宽100~500m,断层西段发生过6级地震,东段可见第四系中更新统地层中的断坎,未见第四系全新统地层错动,该断层在隧道通过附近主要表现为断层负地形,未见新活动迹象,属晚更新世活断层.隧于DK303+611~DK304+071,通过长度460 m ,由断层泥砾与碎裂岩组成,Ⅴ级-Ⅵ级围岩.由于该断裂为区域性深大断裂,断层规模大,并且未来还有发生中强地震的可能性,因此对工程影响较大.5.2围岩情况隧道在二郎洞断裂带附近,岩性主要为石炭系片岩、##岩、志留系变质砂岩夹板岩,受地质构造影响较严重,岩体节理、裂隙较发育.其中软岩占主体.5.3涌水情况该区地下水类型主要为基岩裂隙水、构造裂隙水,岩层富水性较差,为弱富水区.根据地表测流,本区地下水径流模数M=563.72 m3/d·km2,水化学类型属HCO3-Ca·Na型水,矿化度小于1g/L,地下水无侵蚀性.双线同时施工时参数常涌水量为3825.12m3/d,最大涌水量为7650.24m3/d.5.4地应力根据场址与邻近地区的震源机制解和区域水平运动与构造应变场特征,可以看出本区域构造应力场主压应力优势方位为北东向.根据实测结果,隧道部位最大主应力方向为N33°E~ N43°E,平均为N38°E,和隧道轴线〔线路走向N54°E〕的夹角为21°~11°,平均为16°.根据3个孔地应力的实测结果分析,最大水平主应力的最大值为22.04 MPa,DSZ-8孔最大水平主应力测值明显高于DSZ-1孔、DSZ-7孔,而DSZ-8孔位于f17断层附近〔F3断裂带内〕,说明,随着钻孔所处构造部位的不同,所反映的构造应力强度差异也较大,在断裂带附近存在应力集中现象.根据《工程岩体分级标准》〔GB50218—94〕、岩体物理力学参数与弹性力学公式,在3个孔共19个测段中,Rc/σmax<4的极高地应力占全部测段的15.8%,4<Rc/σmax<7高地应力占全部测点的10.5%,极高和高地应力占全部测点的26.1%.经综合分析,岭脊埋深较大的石炭系变质砂岩与片岩段可能存在高地应力问题.5.5结论根据2.1大变形发生的地质条件,并结合实测的地应力结果和隧道区工程地质、水文地质特征,软弱围岩〔主要指断层破碎带与一定影响X围内〕存在发生较大变形的可能. 6.关角隧道F3断层影响带大变形治理建议与注意事项结合中国中铁隧道集团通过对乌鞘岭隧道千枚岩大变形的研究,引用其控制大变形的快速施工指导思想:〔1〕开挖支护、仰拱作业区,上下断面与仰拱的各工序在时间和空间上优化组合,实现稳步有序作业,平行交叉作业.〔2〕分秒必抢,将围岩暴露时间和结构不利受力状态压缩至最短,使初期支护结构与早、快速封闭成环,从而有效控制变形.〔3〕超前支护、钻爆、锚杆、锚索、注浆、立拱等关键工序实行标准化作业.〔4〕石变我变,主动支护,步步为营,稳中求快.6.1治理建议结合以往隧道围岩施工的成功经验建议如下措施:〔1〕措施一6.乌鞘岭隧道控制大变形经验与和关角隧道F3断层影响段比较6.1乌鞘岭隧道变形情况治理经验乌鞘岭隧道设计为两座单线隧道,隧道长20050m,隧道洞身最大埋深1100m左右.隧道所经过地层岩性复杂,分布主要受区域断裂构造控制.主要有第四系、第三系、白垩系、三叠系、志留系、奥陶系等,并伴有加里东晚期的侵入.隧道施工中,在辅助坑道和正洞均发生过较为严重的变形,在高地应力下隧道发生极其严重变形,出现支护裂损、钢架扭曲,净空侵限明显等现象.乌鞘岭隧道在穿越岭脊复杂地段时出现了软岩挤压大变形问题,尤其是F7断层带,变更设计前左线隧道最大拱顶下沉1053 mm<DK177+495>,平均下沉30~35 mm/d,一般在500~600 mm左右;左线隧道内轨上1. 5 m收敛值最大1034 mm<DK177+590>,一般为700mm左右,拱脚最大978mm,一般为300~700mm;右线隧道最大拱顶下沉227 mm<YDK177+610>,一般在100~200 mm左右;右线隧道内轨4m收敛值最大548 mm<YDK177+590>,一般为300~400 mm 左右.由于施工中发生严重变形,乌鞘岭隧道在大变形段均采用钻爆法施工、台阶法开挖,台阶长度4-5m,人工手持风钻上下台阶分部钻眼、装药、连线与同时进行光面微差控制爆破;立I20或H175钢拱架3榀/2m,拱部设φ42超前小导管,长度4m,环向间距25m,注水泥水玻璃双液浆,全断面喷射C20钢纤维砼,厚度25cm,径向采用φ42注浆锚管,间距0.8×0.8m,锚管长度拱部4m,边墙6m,梅花布置,拱墙设φ8钢筋网,网格间距25×25cm.循环进尺一般为1.4 m 或2.0m.通过以上措施控制了变形,顺利通过了大变形地段.乌鞘岭特长隧道位于兰新铁路##西至##南端增建第二线乌鞘岭越岭段,隧道长20050m,在施工过程中出现了软岩大变形,在工程人员的努力下,通过一系列的工程措施顺利的通过了大变形段,取得了较好的工程经验,现就对关角隧道F3断层附近和乌鞘岭隧道发生大变形段的工程概况进行比较〔见表1〕表1 关角隧道F3断层附近和乌鞘岭隧道发生大变形段工程概况比较表从乌鞘岭隧道成功控制带变形的经验值得借鉴.乌鞘岭隧道隧道产生大变形除了地质因素以外,还有以下几点原因:①初期支护强度不足.由于F7断层的影响,本段围岩内富存高地应力.在隧道开挖后,强大的地应力将作用到初期支护上,若初期支护强度和刚度不足将无法抵抗强大的地应力作用,就会产生大变形.②施工工序间距太长.由于施工工序间距太长,未能与时形成封闭的支护体系,致使初期支护在无约束下产生无限制性的变形,最终必然出现大变形.因此,施工工序间距太长,未能与时封闭也是本段发生大变形的直接原因之一.③掌子面刚度不足.在隧道开挖过程中,掌子面前方的变形特性是围岩变形响应的真正原因,又由于本段为四条区域性大断层组成的宽大"挤压构造带〞,岩体的的高地应力强挤压作用非常明显,这就更加剧了掌子面的挤出, 若不采取合适的强化措施保证掌子面的稳定,就会导致前方围岩的变形响应.因此,掌子面刚度不足是隧道洞壁产生大变形的关键原因.中国中铁隧道集团通过对乌鞘岭隧道千枚岩大变形的研究得出以下控制大变形的快速施工指导思想:〔1〕开挖支护、仰拱作业区,上下断面与仰拱的各工序在时间和空间上优化组合,实现稳步有序作业,平行交叉作业.〔2〕分秒必抢,将围岩暴露时间和结构不利受力状态压缩至最短,使初期支护结构与早、快速封闭成环,从而有效控制变形.〔3〕超前支护、钻爆、锚杆、锚索、注浆、立拱等关键工序实行标准化作业.〔4〕石变我变,主动支护,步步为营,稳中求快.。
对软岩变形问题的一些肤浅认识

对这几天对软岩变形论文的收集做了些归纳、总结,希望能提供给你们些许方向。
由于时间仓促,没有做系统的深入研究,对某些论文中的观点未作验证。
一、国内外工程实例1、南昆线家竹箐隧道[1]隧道于1996年建成,全长约4990m,发生大变形段落全长390m,拱顶最大下沉量为160cm,周边最大位移量为240cm,隧底最大隆起量100cm。
围岩为煤系地层,以煤、泥岩、砂质泥岩、和钙质细砂岩为主,最大主应力19.62Mpa,最大水平主应力16.09Mpa,最大垂直主应力8.57Mpa。
采用8m长锚杆加固围岩等措施整治。
2、兰新二线乌鞘岭隧道隧道于2005年建成,全长20050m。
隧道穿越F4~F7等4条区域性大断层组成的宽大挤压构造带,线路长度为7587m,其中岭脊段志留系板岩夹千枚岩和F7断层泥砾带等软弱围岩发生大变形。
岭脊段最大水平收敛达1209mm,最大拱顶下沉367mm,平均累计变形F4、F5、志留系板岩夹千枚岩、F7几个区段分别为90mm~120mm、300mm~400mm、200mm~400mm、150mm~550mm。
最大变形速率F4、F5、志留系板岩夹千枚岩、F7几个区段分别可达73mm/d、143mm/d、165mm/d、167mm/d。
165mm/d;F7断带累计变形150~550mm、最大变形速率167mm/d。
最大水平主应力约22Mpa。
3、奥地利的陶恩隧道[1]隧道于1985年建成,全长6400m,最大位移速度20cm/d,最大变形量120cm,围岩为绿泥石、绢云母千枚岩,地应力16~27Mpa。
采用6~9m长锚杆整治。
4、奥地利的阿尔贝格隧道隧道于1979年建成,全长13980m,最大变形速度11.5 cm/d,最大变形量70cm,围岩为以千枚岩为主,地应力13Mpa。
采用9~12m长锚杆整治。
5、日本的惠那山隧道隧道于1985年建成,全长8635m,边墙最大变形56cm,拱顶最大下沉93cm,围岩为风化花岗岩组成的断层破碎带,地应力为10~11Mpa。
隧道施工监控量测技术1

0.023 -
0.064
1.353 1.539 2.051
左拱脚 左墙腰 左墙脚
0.357 0.455 0.383
70.958 44.033 21.556
3.623 -0.260 2.904
0.074 0.061
-
0.596 0.160 1.449
最大值 最小值
0.599 0.228
171.609 21.316
932.45 473.91 716.12 310.51 1209.38 367.03
422.97 211.25 353.54 124.87 831.01 195.60
165.33 122.05 153.21 79.65 167.53 81.61
80.65 38.72 70.24 30.76 87.54 35.90
右线隧道
主带 影响带
324.31 125.12 73.46 343.10 91.87 58.58
25.62 YDK170+495 墙腰 19.55 YDK170+410 墙腰
志留系板岩夹千枚岩
F7 断层
右线隧道 右线隧道 左线隧道
千枚岩为主
板岩为主 进入断层初期 设计施工改进后 进入断层初期 设计施工改进后
规范规定的监控量测项目及量测方法
三、量测方法与结果
(一)地质素描
结合隧道施工、同步进行洞内围岩地质工作: 它是隧道设计和施工过程中不可缺少的一项重要 地质工作,是围岩工程地质特性和支护措施的合 理性的最直观、最简单、最经济的描述和评价。
地质素描的内容
1.岩性; 2.结构构造特征; 3.岩体风化程度; 4.地下水的特征、涌水量化数值; 5.施工情况; 6.不良地质特征; 7.支护情况等。
乌鞘岭隧道F7断层变形控制方法

加 固地 层并起 支 护及 堵 水 作 用 ; 断 面 喷混 凝 土 厚 全 2 c 拱墙 设 ( 2锚杆 , 0m, D 2 锚杆 长 3 5 间距 1 0 . m, . m×
10 梅 花 型 布 置 ; 墙 设 ( .m, 拱 D 筋 网 , 格 间 距 8钢 网 2c c 全断 面 设 1榀 / 格 栅 钢 架 或 I6型 5mX2 m; 5 m 1
2 c 0m; 断面设 3榀/ mi6型钢 钢 架 , 大 0 mX2 c 全 2 1 最
跨 处 设 2 c 厚 喷射 I6型钢钢 架混 凝土 临时仰 拱 , 0m 1
预 留变形 量 1c 二次 衬砌 为 5c 厚 C 5防水钢 0m; 0m、 2
筋 混凝 土 ( 2 。 图 )
图 2 圆 形 衬 砌 断 面 图
() 1 马蹄形 衬 砌断 面支 护参数
图 1 马蹄 形衬 砌 断 面 图
・
2 ・ 5
维普资讯
公路 隧道 马 蹄形衬 砌 断 面初 期 支 护参 数 是 : 部 采 用 长 拱
4 0 的迈 式 R 2 .m 3 N超前 预 注浆 , 向间距 3 c 以 环 0 m,
弱 。施 工难度 极 大 。 通过 F 7断 层 采 用 两 种 断 面 形 式 的衬 砌 , 对 针
该 隧道穿 越地 质 条件 极 其 复杂 ( 区 域 内褶 曲 该
和 断裂构 造均 较 为发 育 、 理 较 发 育 ) 穿 越地 区地 节 、
各 自不 同 的特 点 , 分别采 用 不 同的支 护参数 。
维普资讯
公路 隧道
20 第 1 ( 0 8年 期 总第 6 1期)
乌 鞘 岭 隧道 F 7断层 变 形 控 制 方 法程有 限公司 山西太原 003) 3 0 2
乌鞘岭隧道千枚岩地层变形控制及快速施工技术(马华天 吴永东魏文杰)[1]
![乌鞘岭隧道千枚岩地层变形控制及快速施工技术(马华天 吴永东魏文杰)[1]](https://img.taocdn.com/s3/m/59fcaaedf8c75fbfc77db2e1.png)
乌鞘岭隧道千枚岩地层变形控制及快速施工技术一、工程概况乌鞘岭隧道位于既有兰新线兰武段打柴沟车站和龙沟车站之间,设计为两座单线隧道,隧道长20050m,隧道出口段线路位于半径为1200m的曲线上,右、左缓和曲线伸入隧道分别为68.84m及127.29m,隧道其余地段均位于直线上,线间距40m,两隧道线路纵坡相同,主要为11‰的单面下坡,右线隧道较左线隧道高0.56~0.73m,洞身最大埋深1100m左右。
隧道左、右线均采用钻爆法施工,右线隧道先期开通。
隧道辅助坑道共计15座,其中斜井13座,竖井1座,横洞1座。
乌鞘岭隧道9#斜井位于岭脊地段,围岩主要以千枚岩为主,所遇绢云母千枚岩为青灰色,局部夹有石英岩,板岩薄层状,层理不明显,节理、裂隙发育--很发育,呈薄层状角砾结构,产状不稳定,围岩破碎,局部结构充填泥质物,面光滑,稳定性差;千枚岩挤压褶皱、扭曲,松软破碎,其中石英岩多呈酥碎沙状,以薄层状散体结构为主,强度低,单轴强度不足1Mpa,易风化,遇水软化,导致千枚岩强度急剧下降,岩质软,开挖后呈泥状,稳定性差,拱部易出现掉块、坍塌现象,特别是在岭脊段高地应力的作用下,千枚岩变形严重,属大变形围岩。
二、千枚岩地层的施工特点1 、地质情况志留系板岩、千枚岩,以千枚岩为主,局部夹有石英脉,板岩薄层状,层理不明显,节理、裂隙发育,呈薄层状角砾结构,产状不稳定,围岩破碎,局部结构面充填泥质物,面光滑、稳定性较差;千枚岩挤压揉皱,松软破碎,其中石英脉多呈酥碎砂状,以散体结构为主。
开挖后呈碎石、角砾状,掌子面无明显渗水,但开挖后有少量渗漏水、滴状及面状洇湿,量小,拱部有掉块、坍塌现象。
围岩整体稳定性较差。
为V级围岩。
9号斜井承担的正洞隧道内出露的千枚岩为黑色至深灰色,千枚状构造,显微鳞片变晶结构,含水量大时呈团块状,含水量少时为鳞片状,片理极其发育,层厚0.01~2mm,岩体破碎,片理面手感光滑,有丝绢光泽。
千枚岩属副变质岩,主要由沉积岩中的页岩经区域变质作用形成,主要矿物成分是绢云母、石英、绿泥石等,基本已全部重结晶,软弱矿物成分较多,因而千枚岩硬度小,单轴抗压强度小于1MPa,易风化。
锚杆支护在整治高地应力软岩隧道大变形的效应分析

发生了较为严重的支护变形 、 支护开裂与破损 、 钢架扭曲, 甚至出现了坍塌事故。
3 高地应 力软岩 隧道大变形 的治理措施
3 1 高地应力软岩隧道大变形的特点 . ( ) 形量 大 , 大变 形可 达数 1 1变 最 0—10c 0 m。
() 2 变形速度高 , 施作初期支护的前期变形速度可达 3 m d 以后可达 2 m d /, c /。 c () 3 变形持续时间长 , 由于软弱围岩具有较高的流变性和低强度 , 开挖后应力重分布持续时间长, 变
作者简介 : 刘泮兴
男 18 年 出生 91
硕士研究生
维普资讯
2 8 3 2 锚杆的支护理论 .
石 家 庄 铁
Байду номын сангаас
道 学 院 学 报
第 1 卷 9
在新奥发施工的隧道工程中 , 锚杆的支护机理可以归纳为以下几点 : ①把岩块 串成整体 , 围岩在锚 把
施工中的乌鞘岭隧道由于初期对高地应力软岩缺乏经验支护较弱施工中均出现了不同程度的围岩大变形问题最大水平收敛达200300mm变形速率最高达73mnrd为了整治隧道大变形施工中使用了大量的长达5m的锚杆支护成梅花型布置间距08m08m有效地抑制塑性区围岩的剪切滑动从而提高塑性区的承载能力并把塑性区围岩同稳定围岩连接起来控制了隧道的变形
孔。②注浆效果的好坏 , 是长锚杆能否发挥作用的关键 , 要保证浆液能完全充填满整个钻孑 , L 就要注意在 注浆期间应采取间歇注浆且尽量不要首先封孔 , 而应在注浆期 间有浆液从孔 口流出时才封孔 , 以保证注 浆效 果 。
1 引 言
高地应力对地下工程的影响是十分显著的, 尤其对穿越大埋深的软岩地下工程 , 如深埋铁路 、 公路隧
乌鞘岭隧道方案设计及科研简况

乌鞘岭隧道方案设计及科研简况铁道第一勘察设计院第一章乌鞘岭隧道方案设计简况一、概述兰新铁路是我国路网主骨架“八纵八横”中陆桥通道的重要组成部分,它纵贯我国东、中、西部地区,是联系东西部的重要纽带,在政治、经济、文化和国际交往等方面具有举足轻重的地位。
兰新线兰(州)武(威)段是兰新铁路的组成部分,在陇海铁路宝(鸡)兰(州)段增建二线后,它是亚欧大陆桥连云港至乌鲁木齐间唯一一段单线铁路。
随着西部大开发战略的实施,西北地区作为我国的能源、原材料基地,陆桥通道的客货运输快速增加,兰新线兰(州)武(威)段对铁路运输的“瓶颈”制约日显突出,因此尽早尽快建成兰武复线,对发展西部经济、实施西部大开发战略、扩大开放、增强路网功能和作用具有十分重要的意义。
兰新铁路兰(州)武(威)段增建第二线线路起于兰州西站,沿黄河二级阶地西行经河口南站跨黄河后溯庄浪河而上,在既有兰武段打柴沟站与龙沟车站之间以特长隧道穿越乌鞘岭后沿龙沟河、古浪河峡谷而下,进入河西走廊与既有线并行引入武威南站,见图1。
二、越岭隧道方案乌鞘岭地区南北两坡区域地形、工程地质和水文地质条件十分复杂,岭南庄浪河河谷区,地形宽阔;岭北为古浪河河谷区地形狭窄,隧道经过乌鞘岭-毛毛山中高山区。
针对越岭隧道的线路方案,在既有铁路、公路越岭垭口附近大范围内,利用不同限制坡度,不同越岭隧道长度结合两端展线工程进行了多个方案比选,由于既有铁路和公路垭口处于安远构造盆地边缘断层交汇区,地质条件差,确定越岭隧道位臵时应尽量远离该垭口,使隧道围岩受构造影响较小,见图2。
2.1限坡选择限制坡度是线路的最主要的技术标准,应根据牵引种类、机车类型、相邻路段标准、通过能力、运营费用及沿线地质地形条件等经经济、技术比较综合确定。
20‰单绕方案:采用13.35km特长隧道穿过乌鞘岭,争取高程显著,适应地形良好,线路顺直,投资少;但该方案保留300m小半径曲线,提速困难;另因坡度大,采用自动闭塞,造成行车组织、运输管理不便,且与前后整体通道协调性差,远期适应需求能力弱。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
700mm。岭脊志留系千枚岩地层区段隧道收敛变形达500~700mm。
第8 页
LOGO
立项背景
因此,开展“乌鞘岭隧道岭脊地段复杂应力条件下的变形控制技术研究” 课题,为该区段处理对策、安全施工及设计提供技术支持具有重要现实意义, 为丰富挤压变形成因、处理对策及复杂应力条件下变形控制技术理论体系具 有深远意义。 乌鞘岭隧道大变形与国内外典型大变形隧道相比,具以下特点:
乌鞘岭隧道地理位置示意图
第4 页
LOGO
项目概况
F6断层 F5断层
高程(m)
3600
F6
LWZ-9
武威端洞口DK183+185
3400 3200 3000 2800 2600 2400
围岩级别 长度(m) 富水性 长度(m)
LWZ-6
LWZ-8
LWZ-4
F7
LWZ-3
LWZ-10
LWZ-5
EW/40°~60°N
Ⅲ~Ⅴ 4130 弱富水段(Ⅱ) 4130
Ⅳ~Ⅵ 3015 弱富水段(Ⅱ)~中等富水段(Ⅰ) 3015
DK175 +000
DK173 +000
DK172 +000 DK171 +540 +380 +250
DK166 +150
DK165 +000
DK179 +000
DK178 +000 DK177 +867
喷 15~20cm, 锚杆长 3~4m,有钢 架
除锚杆加长 除锚杆加长 喷 35cm, U29 到 9~12m, 其 至 9~13m, 其 可缩钢架, 锚 余同前 余同前 杆长 8m
(1)大变形区段最长(7587m)
(2)围岩强度应力比最低(0.031 ~0.063) (3)地质条件最复杂,具复杂和极高地应力条件 (4)隧道贯通工期仅2.5年(右线开通工期3年),要求快速施工。
第9 页
LOGO
国内外现状 1
陶恩(Tauern)隧道
1970~1975年修建于奥地利,为双向行驶之公路隧道(单洞),全 长6400m,埋深600~1000m。新奥法的鼻祖Rabcewicz教授亲自主 持该隧道的设计并参加施工。该隧道施工中在千枚岩和绿泥石地 段发生了大变形,产生了50cm(一般)及120cm(最大)的位移,最大 位移速度达20cm/d,是世界上第一座知名的大变形隧道。由于在 陶恩隧道设计时对挤压性围岩缺乏经验,初期支护较弱(长4m锚杆, 厚25cm喷混凝土,TH36@75钢架)。在洞壁发生大变形后, Rabcewicz采用了长锚杆(6~9m)、可缩钢架以及喷层预留纵缝等 加强措施(这些措施至今仍在沿用),对洞壁已侵入模注混凝土净 空部位进行了危险的扩挖作业,据说工程非常艰难,但最后仍取 得了成功。
第11页
LOGO
国内外现状 3
惠那山(Enasan)隧道
惠那山隧道为双洞隧道,在日本中央公路的两宫线上。Ⅰ号隧道 先修,于 1975 年 8 月建成,全长 8300m ,是双向行驶的公路隧道。 后由于交通量的增加, 1978 年开工修建第二座隧道,即Ⅱ号隧道, 该隧道全长8635m,于1985年建成。这两座隧道平行,通过的地层 是一样的,其中有一个长 400m 的长平泽断层非常软弱,为风化的 变质角页岩(已粘土化),单轴抗压强度仅1.7~4.0MPa,该处埋深 约 400m 。特别使人感兴趣的是,为通过这同一条断层,Ⅰ号隧道 采用刚性支护,而Ⅱ号隧道采用新奥法的柔性支护,从而可进行 效果对比。
DK177 +050
DK176 +000
DK174 +000 +875
DK167 +000
DK164 +000
DK169 +000
DK181 +000
DK180 +000
里
程
DK183 +185
+760 DK170 +280
F7断层
F4断层
乌鞘岭隧道设计为两座单线隧道,单洞长20050m,线间距为40m;最大埋深约 1050m。乌鞘岭隧道岭脊F4~F7之间长约7km ,分布有四条大的区域性断层,为由 四条区域性大断层组成的宽大“挤压构造带”,工程地质及地应力情况非常复杂, 施工中发生不同程度的大变形,尤其是F7 和志留系地段。
第5 页
DK168 +000
LOGO
DK163 +135
兰州端洞口DK163+135
LWZ-1
F5
F4
项目概况
乌鞘岭隧道于2003年3月30日开工建设,2006年3月30日右线隧道
开通运营,2006年8月12日
全线开通运营。
第6 页
LOGO
立项背景
国内外隧道工程中,所遇到的挤压大变形不良地质问题较多,如 奥地利的陶恩隧道、阿尔贝格隧道、日本的惠那山隧道,国内的家竹 菁隧道和大寨岭隧道等,其共同特点是围岩软弱、地应力较高、压强 比高、变形大、变形时间长。国内 外尚未形成挤压大变形机理及复杂 应力变形控制技术的理论体系。
第13页
LOGO
图 2-6
惠那山Ⅰ号隧道刚性支护示意(单位:cm
图 2-6
惠那山Ⅰ号隧道刚性支护示意(单位:cm)
图 2-7
惠那山Ⅱ号隧道初期柔性支护示意
ቤተ መጻሕፍቲ ባይዱ
国内外现状 4
家竹箐隧道
家竹箐隧道是我国南昆铁路上的著名险洞 ( 单线铁路隧道 ) ,以高 瓦斯、高地应力、大涌水而著称。由于煤系地段软弱(Rb=1.7MPa), 且地应力较高 (16.09MPa) ,在 390m 长的地段内产生了大变形,洞 壁位移 60 ~ 80cm( 最大 160cm) ,拱顶下沉接近 100cm 。之所以变形 这么大,与设计阶段对大变形缺乏判断有关,当时国内对高地应 力挤压性围岩尚缺乏认识,以为只是一般的软弱地层,故只采用 了一般标准的初期支护 ( 这一点和陶恩隧道相似 )。施工中的变更 设计是:
煤系地层
1.7 30 0.5 8.57( σ x)16.09( σ y) 1.88 0.1~0.2 喷 12cm,模 注混凝土 18cm,锚杆 长 3m,有钢 架
喷 25cm, 喷 25cm, 喷 20~25cm, TH36 钢架 MU-29 可缩 可缩钢架, 锚 @75, 锚杆长 钢架@100, 杆长 6m 4m 锚杆长 6m 喷 25cm, TH21 钢架 @100,锚杆 长 6~9m 一般 5~10cm/d, 最大 20cm/d
第15页
LOGO
国内外现状 4
家竹箐隧道
(1)改善洞形,加大边墙曲率; (2)将预留变形量加大为45cm(拱)及25cm(墙); (3)系统锚杆加长为8m(后期经应力量测,隧底锚杆减为4~7m); (4)喷混凝土加厚(初喷20cm,复喷15cm),设三道纵缝; (5)钢架改为U29可缩式; (6)双层模注混凝土衬砌,其中外层为55cm钢纤维配筋混凝土(主 要受力结构) ,内层为25cm钢纤维混凝土(安全储备) ,两层之间 为HDPE瓦斯隔离层。
第16页
LOGO
国内外现状 5
木栅隧道
木栅隧道位于台湾北部第二高速公路上,隧道穿越台北市南 郊的木栅山区,全长1875m,为三车道公路隧道(断面150m2)。该 隧道在通过潭湾大断层时,发生了大变形,拱顶下沉150cm以上, 边墙内挤70cm。 潭湾断层带宽75m,与隧道斜交,大变形地段长205m。由于初 期仅采用常规的锚喷支护,故产生了严重的大变形。该隧道变形 整治有一个特色,即应用了长大预应力锚索(图2-8)。锚索长15~ 17m,预拉力50t,但隧底采用长为9m之一般锚杆。通过锚索孔及 锚杆孔向地层注浆加固围岩,而强大的锚索及锚杆使隧道趋于稳 定。
Q4
设计路肩线
N70°W/70°S N85°W/80°N N85°W/70°S
al3
Ⅲ~Ⅵ 5318 贫水段(Ⅲ) 6135
V 817
Ⅳ~Ⅴ 150 3175 弱富水段(Ⅱ) (Ⅲ) 150 3175
Ⅲ~Ⅴ 2183 中等富水段(Ⅰ) (Ⅱ)(Ⅲ) 2183 160130
Ⅳ~Ⅴ 1260 (Ⅱ) (Ⅲ) 490 460
第7 页
LOGO
立项背景
从2004年4月,施工进入于F7活动性断层带、岭脊志留系地层等地段,均发生 了不同程度的大变形,有的初期支护侵入二次衬砌限界,有的喷混凝土破损开裂挤入、 钢架扭曲变形、甚至发生坍塌等,安全风险倍增, 施工严重受阻。 F7断层最大拱顶下沉和水平收敛分别达1209mm和1053mm,一般300~
第17页
LOGO
国内外现状 5
木栅隧道
图2-8
台湾木栅隧道预应力锚索示意
第18页
LOGO
表 2-2
项目 国别 隧道长度(m) 开挖断面(m 2) 陶恩 Tauern 奥地利 Austria 6400 90~105 (宽 11.8×高 10.75) 公路隧道 1970~1975 500~1000
国内外典型挤压性围岩隧道
公路隧道 1996
1974~1979 1978~1985 平均 350,最 400~450 大 740 千枚岩、 片麻 风化花岗岩 绿泥石、 绢云 岩、 局部为含 组成的断层 母、千枚岩 糜棱岩的片 破碎带, 局部 岩、绿泥岩 为粘土 0.4~1.6 20~22 — 16~27 近似 1 0.05~0.06 1.2~2.9 28 0.15 13 — 0.1~0.2 1.7~4.0 35 0.5 10~11 近似 1 0.1~0.33
阿尔贝格 Arlberg 奥地利 13980 90~103 (宽 10.8×高 11.20) 公路隧道
150
用途 施工年份 埋深 围岩(大变形 地段) 抗压强度 Rb (MPa) 内摩擦角φ ( °) 粘聚力/MPa 原始地应力 (MPa) 侧压力系数 强度应力比 原设 计 初期 支护 改变 设计