新苏科版八年级下册数学 《分式》教案
苏科版八年级下第10章《分式》全章教案(集体备课)

第十章分式一、单元教学目标:知识目标1、了解分式的概念。
2、会利用分式的基本性质进行约分和通分。
3、会进行简单的分式加、减、乘、除运算。
4、会解可化为一元一次方程的分式方程序正确性方程中的分式不超过两个)。
5、能够根据具体问题中的数量关系,列出可化为一元一次方程的分式方程,并能根据具体问题的实际意义,检验结果是否合理。
能力目标:1、经历通过观察、归纳、类比、猜想,获得分式的基本性质、分式乘除运算法则、分式加减运算法则的过程,培养学生的推理能力与恒等变形能力.2、鼓励学生进行探索和交流,培养他们的创新意识和合作精神.3.发展学生的求同求异思维,使他们能在复杂环境中明辨是非.。
4、能列可化为一元一次方程的分式方程解简单的应用题,能解决一些与分式、分式方程有关的实际问题,提高分析问题、解决问题的能力和应用意识情感目标:1. 进一步培养学生的自学能力、思维能力,渗透类比的思想方法.激发学生联系实际问题体验数学知识产生的过程以及热爱数学的情感.2、通过学生在学习中互相帮助、相互合作,并能对不同概念进行区分,培养大家的团队精神,以及认真仔细的学习态度,为学生将来走上社会而做准备,使他们能在工作中保持严谨的态度,正确处理好人际关系,成为各方面的佼佼者.3、发展学生的个性,培养他们学习的养成教育,善于独立思考,敢于克服困难和创新精神二、单元教学重点、难点:1、重点是探索和理解有关的分式概念、分式的基本性质和分式的运算法则;解可化为一元一次方程的分式方程;2、难点是解可化为一元一次方程的分式方程及运用分式方程解简单的应用题。
三、单元教学课时:本章教学时间大约需10课时,具体分配如下第1节分式 1课时第2节分式的基本性质 3课时第3节分式的加减运算 1课时第4节分式的的乘除运算 2课时第5节分式方程 3课时课题:10.1 分式第1课时共1课时一、教学目标:知识目标:1、了解分式的概念,会判断一个代数式是否是分式。
2、能用分式表示简单问题中数量之间的关系,能解释简单分式的实际背景或几何意义。
苏科版八年级下册第十章分式教学设计

kg/ m2.
教师活动 1
问题 1: 2 , 2 是分数,那么 2 , b , m n
35
a a ab
是分数吗?它们与分数有哪些相同点和不
同点?
问题 2:代数式 2 , b , m n 是整式吗?为 a a ab
什么?
学生活动 1
牛刀小试: 1.判断下列是不是分式:
2 , 3x, a , x
y
8 x 1
点。 活动意图说明:第二个活动由章头图第二幅图,设计了一个个问题,让学生初步感受分式这一章我 们将学习哪些内容,怎样学习这些内容,过程中渗透类比和转化的思想方法,类比分数得到分式的 基本性质,运算法则,而分式方程可以转化成整式方程,让学生感受到本章的学习也不难,都是我 们熟悉的,激发学生学习本章的求知欲。
2. 学习者分析
学生在小学已经学习了分数,七年级学习了整式,有了一定的学习分式的基础.
3. 学习目标确定
(1).通过章头图引出本章所学知识,帮助学生初步了解全章的知识生成,整体感知全章知识结构.
(2).引导学生初步学会发现问题和解决问题的基本方法,鼓励学生带着问题有目的地进行自主学习和 合作学习,养成良好的学习习惯、形成良好的学习方法,为科学、高效地学好全章知识夯实基础.
2. 单元(或主题)学习目标与重点难点 教学目标:通过章头图引出本章所学知识,帮助学生初步了解全章的知识生成,整体感知全章知识结 构;引导学生初步学会发现问题和解决问题的基本方法. 重点:初步了解全章的知识生成. 难点:类比、转化思想方法的渗透.
3. 单元(或主题)整体教学思路(教学结构图)
分式的概念(1 课时)
活动意图说明:情境应为教学服务,让学生从熟悉情境入手,由分数引入分式,既体现了数学学科 内在的逻辑关系,也是类比这一思想方法的渗透。教师层层设问,引发学生思考,通过比较分式与 分数、整式的不同,感受到分式是现实生活中一种新的数学模型,激发学生学习的兴趣。最后牛刀 小试两道题目巩固概念。
苏科版数学八年级下册10.1《分式》教学设计

苏科版数学八年级下册10.1《分式》教学设计一. 教材分析《分式》是苏科版数学八年级下册第10章的内容,本节课的主要内容是分式的概念、分式的基本性质和分式的运算。
本节课的内容是学生学习更高级数学的基础,对于培养学生的逻辑思维和抽象思维能力具有重要意义。
二. 学情分析学生在学习本节课之前,已经掌握了实数、代数式的相关知识,具备了一定的逻辑思维和抽象思维能力。
但部分学生对于抽象概念的理解和运用还不够熟练,需要通过实例和练习来进一步巩固。
三. 教学目标1.理解分式的概念,掌握分式的基本性质。
2.学会分式的运算,并能灵活运用。
3.培养学生的逻辑思维和抽象思维能力。
四. 教学重难点1.分式的概念和基本性质。
2.分式的运算及其运用。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法,引导学生主动探索、发现和解决问题,提高学生的动手实践能力和团队协作能力。
六. 教学准备1.准备相关的教学案例和练习题。
2.准备教学课件和板书。
七. 教学过程1.导入(5分钟)通过一个实际问题引入分式的概念,如:“某商店进行打折活动,原价100元的商品打八折后,顾客实际支付80元。
请问,顾客实际支付的价格是原价的多少?”让学生思考并解答,从而引出分式的概念。
2.呈现(10分钟)通过PPT呈现分式的定义、基本性质和运算规则,引导学生观察和理解。
同时,给出相应的例子,让学生跟随讲解,逐步掌握分式的基本知识。
3.操练(10分钟)让学生独立完成一些分式的基本运算题目,如分式的加减、乘除等。
教师巡回指导,解答学生遇到的问题,并给予反馈。
4.巩固(10分钟)通过一些综合性的题目,让学生运用所学的分式知识解决问题。
如:“已知a、b、c为实数,且a+b+c=0,求证:a/b+b/c+c/a=0。
”教师引导学生思考和解答,巩固所学知识。
5.拓展(10分钟)引导学生思考分式在实际生活中的应用,如经济、物理、化学等领域。
让学生举例说明,进一步拓宽视野。
江苏省八年级数学下册第十章分式10.1分式教案新版苏科版

有什么疑惑和遗 憾?
(2)如何求分式的值? (3)分式何时有意义?何时无意义?
教
3
学
3 名同学展 过 示。
程计
教学 札记
5
(4) 、当 x 三、交流展示 (一)展示一
时,分式
1 x 有意义。 2x 1
分组展示自主先学中的问题,归纳所学知识。 讲清: 1、如果 A、B 表示两个整式,并且 B 中含有字母, 完成检测题
A 那么代数式 叫做分式(fraction) ,其中 A 是分式 交流问难 B
的分子,B 是分式的分母. 2、赋予 a 与 b 不同的含义, 意义. (二)展示二(例题)
a 可以表示不同的 b-1
教
a 所表示的实际意义. b2 a3 例 2.求分 式 的值: a2 2 (1) a 1 ;(2) a 3 ;(3) a . 3 2x 4 例 3.当 x 取什么值时,分式 x 1
例 1.试解释分式 (1)没有意义 ? (2)有意义? (3)值为零.
a
小丽用 n 元人民币买了 m 袋相同包装的瓜子, 你能写出每袋瓜子 的价格吗? 学 (是(n÷m)元,通常用 元来表示. ) 二、自主先学 1、自学内容:P98--99 2、自学指导: 过 (1)分式的形式。 (2)分式有无意义的情况。 ( 3)分式的值为零的情况。
n m
1
3、自学检测: 程 (1) 、下列各式哪些是分式,哪些是整式?
专题课件 10.1 分式
1、经历“列分式”的过程,理解分式的意义,会确定分式何时有意义; 教学 目标 2、能分析出一个简单分式有、无意义的条件; 3、经历“分式与分数的比较”过程,体验分式与分数的联系与区别,加深对分式的理解, 了解类比的数学思想. 重点 教法教 具 分式的有关概念. 难点 怎样确定分式何时有意义.
10.1分式-苏科版八年级数学下册教案

10.1 分式-苏科版八年级数学下册教案
一、教学目标
1.能够复述分式的定义及其特点;
2.能够熟练使用分式加减法公式求解相关问题;
3.能够归纳、总结分式的基本运算规律。
二、教学重点
1.分式的概念及其特点;
2.分式的加减法公式。
三、教学难点
分式的乘法和除法。
四、教学过程
4.1 导入与引入(5分钟)
教师通过提问、讲故事等方式,让学生了解到分子、分母的含义,并通过实例引发学生对分式的认识。
4.2 介绍分式的定义及特点(10分钟)
教师介绍分式的定义及其特点,并通过数学公式、图表等方式,让学生深入理解。
4.3 分式的基本运算(40分钟)
4.3.1 分式的加减法(20分钟)
教师介绍分式的加减法公式,并通过示例让学生熟练掌握分式的加减法运算,最后让学生自己举出几个实例进行加减练习。
4.3.2 分式的乘法和除法(20分钟)
教师介绍分式的乘法和除法规律,并通过实例让学生掌握分式的乘法和除法运算。
4.4 讲解分式的简化(10分钟)
教师通过实例讲解分式的简化规律,并让学生自己练习简化分式。
4.5 小结(5分钟)
教师对本课时内容进行小结,并布置课后作业。
五、课后作业
1.完成课堂练习;
2.预习下一节内容:分式的应用。
六、教学反思
本节课的教学重点是基本运算,难点是乘法和除法。
让学生理解分式的概念及其特点,并规范运算,把知识点串起来,便于学生理解。
课后需要多进行练习,多理解思考。
苏科版数学八年级下册《10.1 分式》教学设计3

苏科版数学八年级下册《10.1 分式》教学设计3一. 教材分析本节课的主题是分式,这是苏科版数学八年级下册的教学内容。
分式是初中的重要知识点,也是学生学习高中数学的基础。
分式的引入可以让学生更好地理解有理数的概念,同时也能培养学生的逻辑思维能力。
二. 学情分析学生在学习本节课之前,已经掌握了有理数的概念,对分数有一定的理解。
但学生对分式的理解和运用还比较模糊,需要通过本节课的学习来进一步理解和掌握。
三. 教学目标1.让学生理解分式的概念,掌握分式的基本性质。
2.让学生学会分式的运算,能熟练地进行分式的化简和求值。
3.培养学生的逻辑思维能力,提高学生的数学素养。
四. 教学重难点1.重点:分式的概念,分式的基本性质,分式的运算。
2.难点:分式的化简和求值,分式方程的解法。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探索,发现问题,解决问题。
2.使用多媒体辅助教学,通过动画和实例的展示,让学生更直观地理解分式的概念和运算。
3.采用小组合作学习的方式,让学生在讨论中加深对分式的理解。
六. 教学准备1.多媒体教学设备。
2.分式的PPT课件。
3.分式的相关练习题。
七. 教学过程1.导入(5分钟)通过一个实际问题引入分式的概念,让学生思考分式在实际生活中的应用。
2.呈现(10分钟)通过PPT课件,展示分式的定义和基本性质,让学生理解和掌握分式的概念。
3.操练(10分钟)让学生进行分式的化简和求值的练习,巩固对分式的理解。
4.巩固(5分钟)通过一些相关的练习题,让学生进一步巩固对分式的理解和运用。
5.拓展(5分钟)引导学生思考分式在实际生活中的应用,让学生体会数学的价值。
6.小结(5分钟)对本节课的内容进行总结,让学生加深对分式的理解。
7.家庭作业(5分钟)布置一些相关的练习题,让学生在家里进行巩固和提高。
8.板书(5分钟)板书本节课的主要内容和重点,方便学生复习和记忆。
以上是本人对苏科版数学八年级下册《10.1 分式》教学设计的阐述,希望能对您的教学有所帮助。
苏科版数学八年级下册教学设计10.1 分式

苏科版数学八年级下册教学设计10.1 分式一. 教材分析《苏科版数学八年级下册》第十章第一节“分式”是初中学段数学的重要内容,也是代数学习的关键部分。
本节内容主要介绍分式的概念、分式的基本性质以及分式的运算。
通过本节的学习,学生能理解分式的实际意义,掌握分式的基本性质和运算方法,为后续的数学学习打下基础。
二. 学情分析八年级的学生已经学习了有理数、方程等基础知识,具备一定的逻辑思维和运算能力。
但学生在学习分式时,可能会对分式的抽象概念和运算规则产生困惑。
因此,在教学过程中,需要关注学生的学习困惑,引导学生理解分式的实际意义,并通过例题和练习帮助学生掌握分式的运算方法。
三. 教学目标1.理解分式的概念,掌握分式的基本性质。
2.学会分式的运算方法,能够熟练进行分式的化简、运算。
3.培养学生的逻辑思维和运算能力,提高学生解决实际问题的能力。
四. 教学重难点1.重点:分式的概念、分式的基本性质和运算方法。
2.难点:分式的运算规则和应用。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过问题探究分式的概念和性质。
2.使用案例教学法,通过具体的例题和练习,让学生掌握分式的运算方法。
3.利用小组合作学习,让学生在讨论和交流中提高对分式的理解和应用能力。
六. 教学准备1.准备PPT,展示分式的概念、性质和运算方法。
2.准备相关例题和练习题,用于巩固学生的学习效果。
3.准备小组讨论的学习材料,引导学生进行合作学习。
七. 教学过程1.导入(5分钟)通过提出实际问题,引发学生对分式的思考,如“小明买了2本书,小华买了3本书,小明比小华少买了几本书?”引导学生理解分式的实际意义。
2.呈现(10分钟)教师通过PPT呈现分式的概念和基本性质,让学生初步了解分式。
如分式的定义、分式的基本性质等。
3.操练(15分钟)学生独立完成PPT上的例题,教师进行讲解和指导。
如分式的化简、分式的运算等。
4.巩固(10分钟)学生分组讨论,合作完成教师准备的练习题,教师巡回指导,解答学生的疑问。
八年级数学下册 10.1 分式教案 (新版)苏科版-(新版)苏科版初中八年级下册数学教案

上述式子有什么共同的特点?
二.新授
分式的概念:一般地,形如 的式子叫做分式,其中A和B均为整式,B中含有字母.
下列各式哪些是分式,哪些是整式?
① ;② ;③ ;④ ;⑤ ;⑥ ;⑦ ;⑧ ;⑨ .错误!未指定书签。
教
学
过
程
教 学 内 容
个案调整
教师主导活动
学生主体活动
三、例题精选:
所表示的实际意义.
个案调整
教师主导活动
学生主体活动
一、探索活动:
列出下列式子:
(1)一块长方形玻璃板的面积为2m2,如果宽为 m,那么长是m.
(2)小丽用 元人民币买了 袋瓜子,那么每袋瓜子的价格是元
(3)正 边形的每个内角为度.
(4)两块面积分别为 公顷、 公顷的棉田,产棉花分别为 2) ;(3) .
取什么值时,分式
(1)没有意义?(2)有意义?(3)值为零.
四、课堂练习:
1.下列各式: 、 、 、 、 、 中,分式有( )
A.1个 B.2个 C.3个
当 取何值时,分式 的值为零?
五.课堂小结:
板书设计
(用案人完成)
作业布置
教学札记
分式
教学目标
1.了解分式的概念,会判断一个代数式是否是分式;
简单问题中数量之间的关系,能解释简单分式的实际背景或几何意义;
3.能分析出一个简单分式有、无意义的条件;
4.会根据已知条件求分式的值.
重点
理解分式的概念,掌握分式有、无意义的条件.
难点
掌握分式的值为0的条件.
教法及教具
教
学
过
程
教 学 内 容
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)当 时, .
2.当 取什么值时,分式 (1)没有意义?(2)有意义?
解:由2x-3=0,得x=
当x= 时,分式 无意义;
当x≠ 时,分式 有意、2、3题.
2.下列各式: 、 、 、 、 、 中,分式有( )
A.1个B.2个C.3个D.4个
思考:1.这些式子与分数有什么相同和不同之处?
2.上述式子有什么共同的特点?
学生回答.
教师引入分式的概念:
一般地,形如 的式子叫做分式,其中A和B均为整式,B中含有字母.
下列各式哪些是分式,哪些是整式?
① ;② ;③ ;④ ;⑤ ;⑥ ;⑦ ;⑧ ;⑨ .
学生回答:分式有②⑤⑥⑧.
三、例题精选:
1.求分式 的值:(1) ;(2) .
(2)快速列车从北京到上海需要多长时间?
(3)已知从北京到上海快速列车比货运列车少用12h,你能列出一个方程吗?
二、探索活动:
列出下列式子:
(1)一块长方形玻璃板的面积为2m2,如果宽为 m,那么长是 m.
(2)小丽用 元人民币买了 袋瓜子,那么每袋瓜子的价格是 元.
(3)两块面积分别为 公顷、 公顷的棉田,产棉花分别为 ㎏、 ㎏.这两块棉田平均每公顷产棉花 ㎏.
3.分式的值是否为零的识别方法:当分式的分子是零而分母不等于零时,分式的值等于零.
4.对整式、分式的正确区别:分式的分子和分母都是整式,分子可以含有字母,也可以不含有字母,而分母中必须含有字母,这是分式与整式的根本区别
板书设计
教学反思
正确理解分式的意义,分式是否有意义的条件及分式的值为零的条件
教具准备
小黑板、课件等
教师教学过程
教师复备内容
一、创设情境:
京沪铁路是我国东部沿海地区纵贯南北的交通大动脉,全长1462km,是我国最繁忙的铁路干线之一.
如果货运列车的速度为akm/h,快速列车的速度为货运列车2倍,那么:
(1)货运列车从北京到上海需要多长时间?
3. 为何值时,分式 的值为负数?
4.当 取何值时,分式 的值为零?
五、迁移创新:
当 为何整数时,分式 的值是整数?
六、课堂小结:
1.分式的概念:一般地,形如 的式子叫做分式,其中A和B均为整式,B中含有字母.
2.分式是否有意义的识别方法:当分式的分母为零时,分式无意义;当分式的分母不等于零时,分式有意义.
10.1分式
教学
目标
知识目标
了解分式的概念,会判断一个代数式是否是分式;
能力目标
能用分式表示简单问题中数量之间的关系,能解释简单分式的实际背景或几何意义,能分析出一个简单分式有、无意义的条件;
情感目标
会根据已知条件求分式的值
教学重点
正确理解分式的意义,分式是否有意义的条件及分式的值为零的条件
教学难点