数字电压表课程设计报告

合集下载

数字电压表的课程设计

数字电压表的课程设计

数字电压表设计报告一、设计目的作用数字电压表的基本原理,是对直流电压进行模数转换,其结果用数字直接显示出来,按其基本工作原理可分为积分式和比较式两大类。

熟悉集成电路MC14433,MC1413,CD4511和MC1403的使用方法,并掌握其工作原理。

二、设计要求(1).设计数字电压表电路(2).测量范围:直流电压0V-1.999V,0V-19.99V,0V-199.9V,0V-1999V; (3).画出数字电压表电路原理图,写出总结报告。

三、设计的具体实现(一)、系统概述数字电压表是将被测模拟量转换为数字量,并进行实时数字显示的数字系统。

该系统(如图1所示)可由MC14433--321位A/D 转换器、MC1413七路达林顿驱动器阵列、CD4511 BCD 到七段锁存-译码-驱动器、能隙基准电源MC1403和共阴极LED 发光数码管组成。

本系统是321位数字电压表,321位是指十进制数0000~1999,所谓3位是指个位、十位、百位,其数字范围均为0~9。

而所谓半位是指千位数,它不能从0变化到9,而只能由0变到1,即二值状态,所以成为半位。

各部件的功能如下:(1)321A/D 转换器:将输入的模拟信号转换成数字信号。

(2)基准电源:提供精密电压,供A/D 转换器作参考电压。

(3)译码器:将二-十进制(BCD )码转换成七段信号。

(4)驱动器:驱动显示器的a,b,c,d,e,f,g 七个发光段,推动发光数码管(LED )进行显示。

(5)显示器:将译码器输出的七段信号进行数字显示,读出A/D 转换结果。

图 1工作过程如下:321数字电压表通过位选信号DS 1~DS 4进行动态扫描显示,由于MC14433电路的A/D 转换结果是采用BCD 码多路调制方法输出,只要配上一块译码器,就可以将转换结果以数字方式实现四位数字的LED 发光数码管动态扫描显示。

DS 1~DS 4输出多路调制选通脉冲信号,DS 选通脉冲为高电平,则表示对应的数位被选通,此时该位数据在Q 0~Q 3端输出。

数字电压表课程设计实验报告讲解

数字电压表课程设计实验报告讲解

自动化与电气工程学院电子技术课程设计报告题目数字电压表的制作专业班级学号学生姓名指导教师二○一三年七月一、课程设计的目的与意义1.课程设计的主要目的,是通过电子技术综合设计,熟悉一般电子电路综合设计过程、设计要求、完成的工作内容和具体的设计方法。

2.同时了解双积分式A/D转换器ICL7107的性能及其引脚功能,熟悉集成电路ICL7107构成直流数字电压表的使用方法,并掌握其在电路中的工作原理。

3.通过设计也有助于复习和巩固以往的模电、数电内容,达到灵活应用的目的。

在完成设计后还要将设计的电路进行安、调试以加强学生的动手能力。

在此过过程中培养从事设计工作的整体观念。

4.利用双积分式A/D转换器ICL7107设计一数字电压表,量程为-1.99—+1.99,通过七段数码管显示。

二、电路原理图数字电压表原理图三、课程设计的元器件1.课程设计所使用的元器件清单:2.主要元器件介绍(1)芯片ICL7107:ICL7107的工作原理双积分型A/D转换器ICL7107是一种间接A/D转换器。

它通过对输入模拟电压和参考电压分别进行两次积分,将输入电压平均值变换成与之成正比的时间间隔,然后利用脉冲时间间隔,进而得出相应的数字性输出。

它的原理性框图如图所示,它包括积分器、比较器、计数器,控制逻辑和时钟信号源。

积分器是A/D转换器的心脏,在一个测量周期内,积分器先后对输入信号电压和基准电压进行两次积分。

比较器将积分器的输出信号与零电平进行比较,比较的结果作为数字电路的控制信一号。

时钟信号源的标准周期Tc 作为测量时间间隔的标准时间。

它是由内部的两个反向器以及外部的RC组成的。

其振荡周期Tc=2RCIn1.5=2.2RC 。

ICL7106A/D转换器原理图计数器对反向积分过程的时钟脉冲进行计数。

控制逻辑包括分频器、译码器、相位驱动器、控制器和锁存器。

分频器用来对时钟脉冲逐渐分频,得到所需的计数脉冲fc和共阳极LED数码管公共电极所需的方波信号fc。

数字电压表课程设计实验报告

数字电压表课程设计实验报告

自动化与电气工程学院电子技术课程设计报告题目数字电压表的制作专业班级学号学生姓名指导教师二○一三年七月一、课程设计的目的与意义1.课程设计的主要目的,是通过电子技术综合设计,熟悉一般电子电路综合设计过程、设计要求、完成的工作内容和具体的设计方法。

2.同时了解双积分式A/D转换器ICL7107的性能及其引脚功能,熟悉集成电路ICL7107构成直流数字电压表的使用方法,并掌握其在电路中的工作原理。

3.通过设计也有助于复习和巩固以往的模电、数电内容,达到灵活应用的目的。

在完成设计后还要将设计的电路进行安、调试以加强学生的动手能力。

在此过过程中培养从事设计工作的整体观念。

4.利用双积分式A/D转换器ICL7107设计一数字电压表,量程为-1.99—+1.99,通过七段数码管显示。

二、电路原理图数字电压表原理图三、课程设计的元器件1.课程设计所使用的元器件清单:2.主要元器件介绍(1)芯片ICL7107:ICL7107的工作原理双积分型A/D转换器ICL7107是一种间接A/D转换器。

它通过对输入模拟电压和参考电压分别进行两次积分,将输入电压平均值变换成与之成正比的时间间隔,然后利用脉冲时间间隔,进而得出相应的数字性输出。

它的原理性框图如图所示,它包括积分器、比较器、计数器,控制逻辑和时钟信号源。

积分器是A/D转换器的心脏,在一个测量周期内,积分器先后对输入信号电压和基准电压进行两次积分。

比较器将积分器的输出信号与零电平进行比较,比较的结果作为数字电路的控制信一号。

时钟信号源的标准周期Tc 作为测量时间间隔的标准时间。

它是由内部的两个反向器以及外部的RC组成的。

其振荡周期Tc=2RCIn1.5=2.2RC 。

ICL7106A/D转换器原理图计数器对反向积分过程的时钟脉冲进行计数。

控制逻辑包括分频器、译码器、相位驱动器、控制器和锁存器。

分频器用来对时钟脉冲逐渐分频,得到所需的计数脉冲fc和共阳极LED数码管公共电极所需的方波信号fc。

数字电压表课程设计

数字电压表课程设计

数字电压表课程设计报告姓名:刘毛学号:0628401045年级专业:06通信工程指导老师:陈雪勤课程设计数字电压表设计总结报告摘要本课程设计是要求用 MF53-1型直热式负温度系数热敏电阻器和低噪声高精度运算放大器OP07CP 组成的温度测量电路将温度的度数(非电量)转换成电量,即利用温度传感器,将温度变化转换成相应的电信号,再将此电信号(此处为电压信号)作为输入信号,输入利用ICL7135制作的214位数字电压表中。

通过集成化双积分A/D 转换器ICL7135对输入电压信号进行模数转换,将得到的数字信号经过74LS74BCD 码/七段码译码器,转换成控制共阳极LED 数码管发光的信号,再通过数码管7段LED 和部分常用电路部件将输入电压值显示出来。

关键词:MF53-1 OP07CP ICL7135 74LS74 7段LED目录1 设计目的和要求……………………………………………………2 整体电路原理2.1 数字温度计原理框图……………………………………………2.2 数字温度计电路原理图…………………………………………3 硬件设计及原理说明3.1 ICl7135型集成双积分式A/D转换原理与特性…………3.2 七段数码显示管……………………………………………3.3 三极管………………………………………………………3.4 BCD七段显示译码器SN74LS47……………………………3.5 六反相器CD4069………………………………………3.6 精密稳压源MC1403………………………3. 7 低噪声高精度元素放大器OP07CP………………………3. 8 MF53-1型直热式负温度系数热敏电阻器………4.设计安装过程……………………………………………………5 调试过程……………………………………………………6 实现功能……………………………………………………7 设计小结与心得……………………………………………………8 附元器件清单…………1.目的和要求:要求用 MF53-1型直热式负温度系数热敏电阻器和低噪声高精度运算放大器OP07CP 组成的温度测量电路将温度的度数(非电量)转换成电量,即利用温度传感器,将温度变化转换成相应的电信号,再将此电信号(此处为电压信号)作为输入信号,输入利用ICL7135制作的位数字电压表中。

数字电压表的课程设计

数字电压表的课程设计

数字电压表的课程设计一、课程目标知识目标:1. 理解数字电压表的工作原理,掌握其基本组成部分及功能;2. 学会使用数字电压表进行电压测量,并能正确读取测量数据;3. 了解数字电压表在电子测量领域中的应用。

技能目标:1. 能够正确连接和操作数字电压表,进行电压测量;2. 培养学生观察、分析、解决问题的能力,通过实践操作,提高动手能力;3. 学会对测量数据进行处理,具备初步的数据分析能力。

情感态度价值观目标:1. 培养学生对电子测量的兴趣,激发学习热情;2. 培养学生的合作精神,学会在团队中共同完成任务;3. 增强学生的安全意识,遵守实验室操作规程,爱护实验设备。

分析课程性质、学生特点和教学要求,本课程将目标分解为以下具体学习成果:1. 学生能够明确数字电压表的工作原理,掌握其使用方法;2. 学生能够独立完成电压测量实验,正确读取测量数据,并进行简单的数据处理;3. 学生在课程学习中,表现出积极的合作态度和良好的安全意识,对电子测量产生浓厚兴趣。

二、教学内容根据课程目标,本章节教学内容主要包括以下三个方面:1. 数字电压表基本原理与组成- 电压表的定义及分类- 数字电压表的工作原理- 数字电压表的组成部分及功能2. 数字电压表的使用方法与操作- 数字电压表的选择与连接- 电压测量方法与步骤- 测量数据的读取与处理3. 数字电压表的应用与实践- 数字电压表在电子测量中的应用案例- 实验操作:电压测量实践- 数据分析:处理测量数据,探讨实验现象教学大纲安排如下:1. 引入数字电压表的概念,介绍其工作原理及分类(第1课时)2. 讲解数字电压表的组成部分及功能,进行实物展示(第2课时)3. 指导学生掌握数字电压表的使用方法,进行实践操作(第3-4课时)4. 课堂讨论:数字电压表在电子测量中的应用,分析实验数据(第5课时)教学内容关联教材章节:1. 数字电压表基本原理与组成:教材第X章2. 数字电压表的使用方法与操作:教材第X章3. 数字电压表的应用与实践:教材第X章三、教学方法针对数字电压表的教学内容,选择以下多样化的教学方法,以激发学生的学习兴趣和主动性:1. 讲授法:- 对数字电压表的基本原理、组成部分和功能进行系统讲解,结合教材第X章内容,通过PPT展示,使学生建立完整的理论知识框架。

数字电压表设计报告

数字电压表设计报告

一、课程内容介绍:数字电压表是用来测量信号电压的装置。

它可以测量正弦波、方波、三角波和尖脉冲信号的电压。

在进行模拟、数字电路的设计、安装、调试过程中,经常要用到数字电压表。

本设计是设计一个三位直流数字电压表。

由于其用十进制数显示,测量迅速、精度高、显示直观,一次数字电压表得到广泛的使用。

二、总体设计1、实验目的设计制作一个具有数字显示功能的数字电压表。

该数字电压表能对日常电子线路中的电压进行方便的测量。

2、实验设计要求与内容1) 本设计要求从测试端输入0-51V的电压,经90K和10K电阻分压,送ADC0804输入端,所以实际输入电压是测试端的十分之一。

经89C2051处理,在D3、D2、D1三个七段显示。

2) 本电路ADC0804最大转换值为0FFH(255),对应输入电压是5.1V,对应测试端电压(显示电压)51V。

3) 若测试端输入为4V,实际进入ADC0804为0.4Va) 经A/D转换后为14Hb) 14H经十进制转换后为0020,则令R4=00,R5=20c) 将0020*2=0040,令R4=00,R5=40d) 将数字点设在D2上,D4 D3 D2 D1分别显示为0 0 4 04) 本电路省略D4,只显示D3 D2 D15)总体设计框图:3、实验技术指标1) 被测量信号电压范围:0-51V2) 测量精度:测量显示3为有效数字3) 分辨率:5.1V/2^8注意:在画PCB的时候要注意将晶振,即Y1,C4,C5,一起布置在芯片AT89C2051旁边,还有电容C2,C3也要靠近芯片AT89C2051,这样才能有效显示结果。

4、设计提示1) 本设计要求从测试端输入0-51V的电压,经90K和10K电阻分压,送ADC0804输入端,所以实际输入电压是测试端的十分之一。

经89C2051处理,在D3、D2、D1三个七段显示器显示。

2)本电路ADC0804最大转换值=0FFH(255),对应输入电压是5.1V,对应测试端电压(显示电压)是51V。

数字电压表实验报告

数字电压表实验报告

简易数字电压表设计报告姓名:***班级:自动化1202学号:****************:***2014年11月26日一.设计题目采用C8051F360单片机最小系统设计一个简易数字电压表,实现对0~3.3V 直流电压的测量。

二.设计原理模拟输入电压通过实验板PR3电位器产生,A/D转换器将模拟电压转换成数字量,并用十进制的形式在LCD上显示。

用一根杜邦实验线将J8口的0~3.3V输出插针与J7口的P2.0插针相连。

注意A/D转换器模拟输入电压的范围取决于其所选择的参考电压,如果A/D 转换器选择内部参考电压源,其模拟电压的范围0~2.4V,如果选择外部电源作为参考电压,则其模拟输入电压范围为0~3.3V。

原理框图如图1所示。

图1 简易数字电压表实验原理框图三.设计方案1.设计流程图如图2所示。

图2 简易数字电压表设计A/D转换和计时流程图2.实验板连接图如图3所示。

图3 简易数字电压表设计实验板接线图3.设计步骤(1)编写C8051F360和LCD初始化程序。

(2)AD转换方式选用逐次逼近型,A/D转换完成后得到10位数据的高低字节分别存放在寄存器ADCOH和ADC0L中,此处选择右对齐,转换时针为2MH Z。

(3)选择内部参考电压2.4V为基准电压(在实际单片机调试中改为3.311V),正端接P2.0,负端接地。

四、测试结果在0V~3.3V中取10组测试数据,每组间隔约为0.3V左右,实验数据如表1所示:显示电压(V)0.206 0.504 0.805 1.054 1.406实际电压(v)0.210 0.510 0.812 1.061 1.414相对误差(%) 1.905 1.176 0.862 0.659 0.565显示电压(V) 2.050 2.383 2.652 2.935 3.246实际电压(v) 2.061 2.391 2.660 2.943 3.253相对误差(%)0.421 0.334 0.301 0.272 0.215表1 简易数字电压表设计实验数据(注:其中显示电压指LCD显示值,实际电压指高精度电压表测量值)五.设计结论1.LCD显示模块的CPLD部分由FPGA充当,芯片本身自带程序,所以这个部分不用再通过quartus软件进行编程。

单片机课程设计报告数字电压表

单片机课程设计报告数字电压表

单片机课程设课题名称:数字电压表课程原理:1、模数转换原理:试验中,我们选用ADC0809作为模数转换的芯片,其为逐次逼近式AD转换式芯片,其工作时需要一个稳定的时钟输入,根据查找资料,得到ADC0809的时钟频率在10KHZ~1200KHZ,我们选择典型值640KHZ。

课题要求测量电压范围是0到5V,又ADC0809的要求:V ref+<=Vcc,V ref->=GND,故我们取V ref+=+5V,V ref-=0V。

由于ADC0809有8个输入通道可供选择,我们选择IN0通道,直接使ADC0809的A、B、C接地便可以了,在当ADC0809启动时ALE引脚电平正跳变时变可以锁存A、B、C 上的地址信息。

ADC0809可以将从IN0得到的模拟数据转换为相应的二进制数,由于ADC0809输出为8位的二进制数,转换时将0到5V分为255等分,所以我们可以得到转换公式为x/255*5化简为:x/51,x为得到的模拟数据量,也就是直接得到的电压量。

在AD转换完成后,ADC0809将在EOC引脚上产生一个8倍于自身时钟周期的正脉冲,以此来作为转换结束的标志。

然后当OE引脚上产生高电平时,ADC0809将允许转换完的二进制数据输出。

2、数据处理原理:由ADC0809的转换原理可以知道我们从其得到数据还只是二进制数据,我们还需要进一步处理来的到x的十进制数,并且对其进行精度处理,也就是课题要求的的精确到小数点后两位,在这里我们用51单片机对数据进行处理。

我们处理数据的思路是:首先将得到的二进制数直接除以十进制数51,然后取整为x的整数部分,然后就是将得到的余数乘以10,然后再除以51,再取整为x的十分位,最后将得到的余数除以5得到x的百分位。

3、数据显示原理:试验中我们用到四位一体的七段数码管,所以我们只能考扫描显示来完成数码管对x的显示,我们用的是四位数码显示管,但是x只是三位的,故我们将将第四位显示为单位U,通过程序的延时,实现四位数码管的稳定显示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖南科技大学信息与电气工程学院课程设计报告课程单片机原理及应用题目:数字电压表专业:班级:姓名:学号:任务书1数字电压表的概述数字电压表(Digital Voltmeter)简称DVM,它是采用数字化测量技术,把连续的模拟量(直流输入电压)转换成不连续、离散的数字形式并加以显示的仪表。

传统的指针式电压表功能单一、精度低,不能满足数字化时代的需求,采用单片机的数字电压表,由精度高、抗干扰能力强,可扩展性强、集成方便,还可与PC进行实时通信。

目前,由各种单片A/D 转换器构成的数字电压表,已被广泛用于电子及电工测量、工业自动化仪表、自动测试系统等智能化测量领域,示出强大的生命力。

与此同时,由DVM扩展而成的各种通用及专用数字仪器仪表,也把电量及非电量测量技术提高到崭新水平。

重点介绍单片A/D 转换器以及由它们构成的基于单片机的数字电压表的工作原理。

数字电压表的诞生打破了传统电子测量仪器的模式和格局。

它显示清晰直观、读数准确,采用了先进的数显技术,大大地减少了因人为因素所造成的测量误差事件。

数字电压表是把连续的模拟量(直流输入电压)转换成不连续、离散的数字形式,并加以显示的仪表。

数字电压表把电子技术、计算技术、自动化技术的成果与精密电测量技术密切的结合在一起,成为仪器、仪表领域中独立而完整的一个分支,数字电压表标志着电子仪器领域的一场革命,也开创了现代电子测量技术的先河。

本设计采用了以单片机为开发平台,控制系采用AT89C52单片机,A/D转换采用ADC0809。

系统除能确保实现要求的功能外,还可以方便进行8路其它A/D转换量的测量、远程测量结果传送等扩展功能。

简易数字电压测量电路由A/D转换、数据处理、显示控制等组成。

模拟式电压表具有电路简单、成本低、测量方便等特点,但测量精度较差,特别是受表头精度的限制,即使采用级的高灵敏度表头,读测时的分辨力也只能达到半格。

再者,模拟式电压表的输入阻抗不高,测高内阻源时精度明显下降。

数字电压表作为数字技术的成功应用,发展相当快。

数字电压表(Digital VoIt Me-ter,DVM),以其功能齐全、精度高、灵敏度高、显示直观等突出优点深受用户欢迎。

特别是以A/D转换器为代表的集成电路为支柱,使DVM向着多功能化、小型化、智能化方向发展。

DVM应用单片机控制,组成智能仪表;与计算机接口,组成自动测试系统。

目前,DVM多组成多功能式的,因此又称数字多用表(Digital Multi Meter,DMM)。

DVM是将模拟电压变换为数字显示的测量仪器,这就要求将模拟量变成数字量。

这实质上是个量化过程,即将连续的无穷多个模拟量用有限个数字表示的过程,完成这种变换的核心部件是A/D转换器,最后用电子计数器计数显示,因此DVM的基本组成是A/D转换器和电子计数器。

DVM最基本功能是测直流电压,考虑到仪器的多功能化,可将其他物理量,如电阻、电容、交流电压、电流等,都变成直流电压,因此,还应有一个测量功能选择变换器,它包含在输入电路中。

DVM对直流电压直接测量时的测量精度最高,其他物理量在变换成直流电压时,受功能选择变换器精度的限制,测量精度有所下降。

2、工作原理系统采用12M晶振产生脉冲做8031的内部时钟信号,通过软件设置单片机的内部定时器T0产生中断信号。

利用中断设置单片机的口取反产生脉冲做8031的时钟信号。

通过键盘选择八路通道中的一路,将该路电压送入ADC0809相应通道,单片机软件设置ADC0809开始A/D转换,转换结束ADC0809的EOC端口产生高电平,同时将ADC0809的EO端口置为高电平,单片机将转换后结果存到片内RAM。

系统调出显示子程序,将保存结果转化为分别保存在片内RAM;系统调出显示子程序,将转化后数据查表,输出到LED显示电路,将相应电压显示出来,程序进入下一个循环。

3、系统结构框图4、8031的结构及其功能在本次课题设计中我们选择了8031芯片。

8031和8051是最常见的mcs51系列单片机,是inter公司早期的成熟的单片机产品,应用范围涉及到各行各业,下面介绍一下它的引脚图等资料。

<8031管脚图>8031内部结构及其功能概述8031引脚功能(1)主电源引脚Vss和Vcc① Vss接地② Vcc正常操作时为+5伏电源(2)外接晶振引脚XTAL1和XTAL2① XTAL1内部振荡电路反相放大器的输入端,是外接晶体的一个引脚。

当采用外部振荡器时,此引脚接地。

② XTAL2内部振荡电路反相放大器的输出端。

是外接晶体的另一端。

当采用外部振荡器时,此引脚接外部振荡源。

(3)控制或与其它电源复用引脚RST/VPD,ALE/ ,和 /Vpp① RST/VPD 当振荡器运行时,在此引脚上出现两个机器周期的高电平(由低到高跳变),将使单片机复位在Vcc掉电期间,此引脚可接上备用电源,由VPD向内部提供备用电源,以保持内部RAM中的数据。

② ALE/ 正常操作时为ALE功能(允许地址锁存)提供把地址的低字节锁存到外部锁存器,ALE 引脚以不变的频率(振荡器频率的)周期性地发出正脉冲信号。

因此,它可用作对外输出的时钟,或用于定时目的。

但要注意,每当访问外部数据存储器时,将跳过一个ALE脉冲,ALE 端可以驱动(吸收或输出电流)八个LSTTL电路。

对于EPROM型单片机,在EPROM 编程期间,此引脚接收编程脉冲(功能)③外部程序存储器读选通信号输出端,在从外部程序存储取指令(或数据)期间,在每个机器周期内两次有效。

同样可以驱动八LSTTL输入。

④ /Vpp 、 /Vpp为内部程序存储器和外部程序存储器选择端。

当 /Vpp为高电平时,访问内部程序存储器,当 /Vpp 为低电平时,则访问外部程序存储器。

对于EPROM型单片机,在EPROM编程期间,此引脚上加21伏EPROM编程电源(Vpp)。

8031引脚功能:Vcc:+5V电源电压。

Vss:电路接地端。

~:通道0,它是8位漏极开路的双向I/O通道,当扩展外部存贮器时,这也是低八位地址和数据总线,在编程校验期间,它输入和输出字节代码,通道0吸收/发出二个TTL负载。

~:通道1是8位拟双向I/O通道,在编程和校验时,它发出低8位地址。

通道1吸收/发出一个TTL负载。

~:通道2是8位拟双向I/O通道,当访问外部存贮器时,用作高8位地址总线。

通道2能吸收/发出一个TTL负载。

~:通道3准双向I/O通道。

通道3能吸收/发出一个TTL负载,P3通道的每一根线还有☆另一种功能::RXD,串行输入口。

:TXD,串行输出口。

:INT0,外部中断0输入口。

:INT1,外部中断1输入口。

:T0,定时器/计数器0外部事件脉冲输入端。

:T1,定时器/计数器1外部事件脉冲输入端:WR,外部数据存贮器写脉冲。

:RD,外部数据存贮器读脉冲。

RST/VpD:引脚9,复位输入信号,振荡器工作时,该引脚上2个机器周期的高电平可以实现复位操作,在掉电情况下(Vcc降到操作允许限度以下),后备电源加到此引脚,将只给片内 RAM供电。

ALE/PROG:引脚30,地址锁存有效信号,其主要作用是提供一个适当的定时信号,在它的下降沿用于外部程序存储器或外部数据存贮器的低8位地址锁存,使总线P0输出/输入口分时用作地址总线(低8位)和数据总线,此信号每个机器出现2次,只是在访问外部数据存储器期间才不输出ALE。

所以,在任何不使用外部数据存贮器的系统中,ALE以1/6振荡频率的固定速率输出,因而它能用作外部时钟或定时,8751内的EPROM编程时,此端输编程脉冲信号。

PSEN:引脚29,程序选通有效信号,当从外部程序存贮器读取指令时产生,低电平时,指令寄存器的内容读到数据总线上。

EA/VPP:引脚31,当保持TTL高电平时,如果指令计数器小于4096,8051执行内部ROM的指令,8751执行内部EPROM的指令,当使TTL为低电平时,从外部程序存贮器取出所有指令,在8751内的EPROM编程时,此端为21V编程电源输入端。

XTAL1:引脚18,内部振荡器外接晶振的一个输入端,HMOS芯片使用外部振荡源时,此端必须接地。

XTAL2:引脚19,内部振荡器外接晶振的另一个输入端,HMOS芯片使用外部振荡器时,此端用于输入外部振荡信号。

5、显示器本次设计中有显示模块,常用的显示器件比较多,有数码管,LED点阵,1602液晶,12864液晶等。

数码管是最常用的一种显示器件,它是由几个发光二极管组成的8字段显示器件,其特点是价格非常的便宜,使用也非常的方便,显示效果非常的清楚。

小电流下可以驱动每光,发光响应时间极短,体积小,重量轻,抗冲击性能好,寿命长。

但数码管只能是显示0——9的数据。

不能够显示字符。

这也是数码管的不足之处。

经过性能的比较和根据本设计的要求以及价格的考虑,选择数码管显示器。

单位数码管如图所示。

6、模数(A/D)芯片ADC0809A/D转换器是模拟量输入通道中的一个环节,单片机通过A/D转换器把输入模拟量变成数字量再处理。

此次设计的是利用逐次逼近式ADC0809进行模数转换。

ADC0809是8位逐次逼近型A/D转换器,它是由一个8路的模拟开关、一个地址锁存译码器、一个A/D 转换器和一个三态输出锁存器组成。

多路开关可选通8个模拟通道,允许8 路模拟量分时输入,共用A/D 转换器进行转换。

些A/D转换器是的特点是8位精度,属于并行口,如果输入的模拟量变化大快,必须在输入之前增加采样电路。

综合上述,逐次逼近型A/D转换既兼顾了转换速度,又具有一定的精度,这里选用的是逐次逼近型的A/D转换芯片ADC0809。

图 ADC0809内部结构图 ADC0809引脚图7、8279接口芯片8279的功能及工作原理8279是Intel公司生产的通用可编程键盘和显示器I/O接口部件。

利用8279,可实现对键盘/显示器的自动扫描,并识别键盘上闭合键的键号,不仅可以大大节省CPU对键盘/显示器的操作时间,从而减轻CPU的负担,而且显示稳定,程序简单,不会出现误动作,由于这些优点,8279芯片日益被设计者所采用。

8279的引脚及内部结构(1) I/O控制和数据缓冲器双向的三态数据缓冲器将内部总线和外部总线DBo —DB7,用于传送CPU和8279之间的命令,数据和状态。

SC为片选信号。

当SC为低电平时,CPU才选中8279读写。

A。

用以区分信息的特性。

当A。

为1时,CPU写入8279的信息为命令,CPU从 8279读出的信息为8279的状态。

当A。

为0时,I/O信息都为数据。

图1 8279的引脚图(2) 控制逻辑控制与定时寄存器用以寄存键盘及显示器的工作方式,锁存操作命令,通过译码产生相应的控制信号,使8279的各个部件完成一定的控制功能。

相关文档
最新文档