伺服系统在钢板飞剪机中的应用
飞剪系统介绍

材料在同步时运动的长度: Ssync=2rsin()=77.135mm (1.1)
材料在剪切时运动的长度: Scut=2rsin()=77.135mm (1.2)
设定材料进入同步区的位置为原点,则:
剪切起始位置: xOcut= = 8.567mm (1.3)
三、包米勒旋切、飞剪模块
包米勒用于飞剪的主要功能块如下:
TM_SyncRot_Init:根据控制要求初始化旋切/飞剪功能;
TM_SyncCam_Init:设置同步区的曲线;
TM_MasterEncoder:根据编码器反馈值计算出材料的速度和位置;
TM_SyncRot:根据材料的速度和位置生成当前轴的位置设定值和速度设定值;
[3] 常新宇,王瑞,赵旭.新型钢板切割的飞剪技术开发.机电产品开发与创新.2006,5.
Байду номын сангаас
信息来源: 上海高威科电气技术有限公司() 原文地址:/show_clientele.asp?id=9
剪切结束位置: x1cut =Ssync?x0cut=68.567mm (1.4)
可得关系式: a(x)=arcsin()+ (8.567 ≤ x ≤ 68.567)(1.5)
其中 α(x)-剪切刀在同步区的角度;
x -材料在同步区的位置;
r -剪切刀半径;
速度关系式: = (8.567 ≤ x ≤ 68.567) (1.6)
包米勒伺服系统在飞剪机上的应用
文章录入:GO-WELL 分享 |
摘要:本文介绍了包米勒公司的伺服系统,通过针对飞剪应用开发的功能模块,实现对钢筋进行高速、高精度的定长剪切。本文描述了包米勒飞剪控制的关键技术。
伺服电机控制技术的应用与发展

伺服电机控制技术的应用与发展伺服电机控制技术是一种高精度、高性能的电机控制技术,被广泛应用于各种工业领域,比如机床、印刷设备、食品包装机械、医疗设备等。
随着工业自动化水平的提高和智能制造的发展,伺服电机控制技术在工业生产中的应用越来越广泛,其发展也不断取得重要进展。
一、伺服电机控制技术的应用领域1. 机床领域:在数控机床领域,伺服电机控制技术可实现高速、高精度的定位和运动控制,从而提高加工精度和效率。
2. 包装机械领域:伺服电机控制技术在食品包装机械、药品包装机械等领域得到广泛应用,可实现高速稳定的包装运动,提高生产效率。
3. 机器人领域:机器人系统需要高精度的定位和运动控制,伺服电机控制技术能够满足这一需求,因此在工业机器人、服务机器人等领域得到广泛应用。
4. 医疗设备领域:在医疗设备领域,伺服电机控制技术可用于X射线机、CT机、核磁共振仪等设备,实现高精度的成像和运动控制。
5. 纺织机械领域:在纺织机械领域,伺服电机控制技术可实现高速、高精度的纺纱、织布、染整等流程的运动控制,提高生产效率和产品质量。
1. 多轴联动控制:随着工业生产的复杂性不断增加,多轴联动控制成为一种重要的发展趋势。
伺服电机控制系统可以实现多轴联动控制,从而满足复杂工艺流程和设备运动的需要。
2. 高性能控制算法:针对高速、高精度运动控制的需求,伺服电机控制技术需要不断改进和优化控制算法,以提高控制系统的性能和稳定性。
3. 智能化控制系统:智能制造的发展要求生产设备具有自主识别、自动调整、自适应控制等能力,伺服电机控制系统需要不断发展智能化技术,提高生产设备的智能化水平。
4. 节能环保技术:伺服电机控制技术需要不断改进节能和环保技术,减少能源消耗和环境污染。
伺服电机控制技术在智能制造中发挥着重要作用。
智能制造要求生产设备具有高效、灵活、智能的特点,而伺服电机控制技术恰好具备这些特点,可以满足智能制造的需要。
1. 灵活生产:伺服电机控制系统可以实现高精度的运动控制和多轴联动控制,可以满足灵活生产的需求,适应生产线的快速切换和产品的快速更新。
伺服系统在计算机数控机床中的应用

伺服系统在计算机数控机床中的应用计算机数控机床是近年来工业制造领域的重要设备,在提高生产效率和产品质量方面发挥着关键作用。
而伺服系统作为计算机数控机床的核心组成部分之一,更是功不可没。
本文将重点探讨伺服系统在计算机数控机床中的应用,并分析其优势和发展前景。
一、伺服系统基本原理及特点伺服系统是一种控制装置,用于控制伺服电机按照预定的速度和位置运动。
它主要由伺服电机、编码器、控制器和传动装置等组成。
1. 伺服电机:伺服电机是伺服系统的动力源,通过转化电能实现机械运动。
2. 编码器:编码器用于测量伺服电机的实时位置,并将其信号反馈给控制器。
3. 控制器:控制器根据编码器的反馈信号,经过计算控制伺服电机的速度和位置。
4. 传动装置:在计算机数控机床中,传动装置主要包括滚珠丝杠和联轴器等,用于将伺服电机的运动转化为机械工具的运动。
伺服系统具有高精度、高响应速度、高稳定性和高可靠性等特点,能够满足计算机数控机床对于高精度、高速度和高自动化程度的要求。
二、伺服系统在计算机数控机床中的应用伺服系统在计算机数控机床中的应用广泛,主要集中在以下几个方面:1. 位置控制:通过编码器的反馈信号,伺服系统能够实现对机床工具的精确定位控制,确保加工件的精度和一致性。
2. 速度控制:伺服系统可以根据工艺要求,精确地控制机床工具的运动速度,保证加工件的高效率和高质量。
3. 加减速控制:伺服系统具有良好的动态响应性能,可以实现快速的加减速控制,提高机床的生产效率。
4. 转矩控制:伺服系统能够根据负载情况,实时调整伺服电机的转矩输出,保证机床工具在不同负载情况下的稳定性和可靠性。
5. 故障诊断:伺服系统配备了完善的故障检测和诊断功能,能够及时发现和定位故障,提高机床的可维护性和可靠性。
三、伺服系统的优势和发展前景伺服系统在计算机数控机床中的应用具有以下优势:1. 高精度:伺服系统能够实现微小位置调整,提高工件加工的精度和一致性。
2. 高速度:伺服系统具有很高的响应速度,使机床工具能够快速移动和转换加工动作。
伺服系统的应用领域和基本要求

伺服系统的应用领域和基本要求伺服系统是现代工业中广泛应用的一种控制系统。
它通过精确控制电机的位置、速度和力度,实现对机械设备的高精度控制。
伺服系统在许多领域都有重要的应用,下面将介绍一些主要的领域和对伺服系统的基本要求。
应用领域1. 机械制造在机械制造领域,伺服系统被广泛用于控制机床、机械手臂、自动装配线等设备。
它可以实现机械设备的高精度运动和定位,提高生产效率和产品质量。
2. 自动化生产线伺服系统在自动化生产线中起着至关重要的作用。
它可以控制各种传送带、机械臂、搬运设备等,实现产品的自动运输、装配和包装,提高生产效率和自动化程度。
3. 包装与物流伺服系统在包装与物流领域也有重要的应用。
通过精确控制输送带、装箱机、封箱机等设备,可以实现快速而准确的包装和物流操作,提高包装效率和物流效益。
4. 机器人技术伺服系统是机器人技术的核心控制系统之一。
它可以控制机器人的运动和动作,实现多轴、高精度的控制,使机器人能够完成各种复杂的任务,如装配、焊接、喷涂等。
基本要求伺服系统的基本要求主要包括以下几个方面:1. 精度和稳定性伺服系统需要具有高精度和稳定性,以保证对设备的精确控制。
这要求系统在不同负载和工作条件下能够实现精确的位置、速度和力度控制,并保持稳定的运行。
2. 反馈控制伺服系统需要配备合适的反馈控制装置,如编码器、传感器等,以实时检测设备位置、速度和力度,并将信息反馈给控制系统进行调整和纠正。
3. 快速响应能力伺服系统需要具有快速的响应能力,能够在短时间内对控制指令做出反应并进行相应的控制调整。
这对于实现高速运动和复杂动作的设备是非常重要的。
4. 可编程性和灵活性伺服系统需要具备可编程性和灵活性,以便根据不同的应用需求进行设备控制参数的调整和优化。
这可以通过软件编程和参数设置来实现。
5. 安全可靠性伺服系统需要具备安全可靠性,以确保设备在工作过程中不会产生故障或危险情况。
系统需要具备适当的保护装置和故障检测机制,以及可靠的电源供应和防护措施。
伺服系统在医疗器械中的应用

伺服系统在医疗器械中的应用随着科技的发展,医疗器械也逐渐实现自动化和智能化。
伺服系统,作为一种高精度运动控制技术,已经在医疗器械中得到了广泛的应用。
本文将从几个方面介绍伺服系统在医疗器械中的应用。
一、伺服系统概述伺服系统是一种高精度运动控制技术,可以精确控制电机的位置、速度和加速度等运动参数。
伺服系统通常由伺服控制器、电机和传感器等组成。
伺服控制器用于控制电机的运动,传感器用于实时反馈电机的运动状态,从而实现高精度运动控制。
二、1.手术机器人手术机器人是一种可以帮助医生完成手术的机器人。
手术机器人通常配备有伺服系统,可以实现高精度的操作。
伺服系统可以根据医生的指令精确控制手术器械的运动,使手术过程更加精准和安全。
目前,手术机器人已经用于许多领域,如心脏手术、眼科手术和神经外科手术等。
2.医用X光设备医用X光设备是一种可以用于检查人体内部结构的设备。
伺服系统可以控制X光设备的旋转和倾斜,实现对不同角度的拍摄,从而获得更加准确的影像。
此外,伺服系统还可以控制X光设备的移动,使其能够在不同部位进行拍摄,提高了诊断效果。
3.光学检测设备光学检测设备可以用于检测眼球、牙齿和皮肤等部位的疾病。
伺服系统可以控制光学设备的旋转和移动,使其能够在不同角度和位置进行检测。
伺服系统还可以控制光学设备的对焦和光圈大小,提高了检测精度和清晰度。
三、伺服系统在医疗器械中的优势伺服系统在医疗器械中具有多个优势:1.高精度伺服系统可以实现高精度的运动控制,可以控制到毫米或亚毫米级别的位置精度。
2.高速度伺服系统可以实现高速运动控制,可以达到数千转每分钟的转速。
3.稳定性好伺服系统具有良好的稳定性,可以保证长时间稳定运行,降低了维护成本和设备停机时间。
4.可靠性高伺服系统具有高可靠性,可以长时间运行并保持高精度的运动控制,适用于高要求的医疗器械。
四、结论伺服系统作为一种高精度运动控制技术,已经在医疗器械中得到了广泛应用。
伺服系统可以实现高精度、高速度、稳定性好和可靠性高等优点,能够为医疗器械的自动化和智能化提供支持。
伺服电机在工业机械中的应用

伺服电机在工业机械中的应用随着工业自动化的不断发展,伺服电机已经成为了工业机械中不可或缺的重要部件。
伺服电机通过对电流的控制,能够精确地控制机械的运动,从而提升机械的精度和稳定性。
本文将从伺服电机的工作原理、特点以及在工业机械中的应用等方面,进行详细的介绍和分析。
一、伺服电机的工作原理伺服电机作为一种控制系统,主要由电机、传感器、控制器和执行器等部分组成。
整个系统的工作过程如下:传感器检测到机械的位置和速度信息后,通过反馈控制器进行处理,并与期望的位置和速度进行对比。
如果存在误差,控制器会通过输出控制信号来驱动执行器,从而调整机械的位置和速度,使其达到期望状态。
二、伺服电机的特点1.精度高伺服电机通过控制机械运动的位置和速度,能够实现高精度的运动控制,具有很强的抗干扰能力和可靠性。
2.响应速度快伺服电机响应速度快,能够及时地对机械运动状态进行调整,从而实现快速准确的运动控制。
3.负载能力强伺服电机具有较高的扭矩输出能力,能够应对不同负载情况下的运动控制需求。
4.易于控制伺服电机控制器具有较强的开放性和可编程性,可以通过简单的软件编程实现复杂的运动控制算法,易于控制和调试。
三、伺服电机在工业机械中有广泛的应用,主要包括以下几个方面:1.数控机床数控机床需要对机械的位置和速度进行精确控制,因此,伺服电机作为一种高精度、高响应速度的运动控制方式,已成为数控机床中不可或缺的部件。
2.印刷设备印刷设备需要对色带的张力、印刷轮的运动等进行精确控制,伺服电机能够实现快速准确的控制,从而提高印刷设备的稳定性和印刷质量。
3.食品包装机械食品包装机械需要对袋子的长度、速度等进行精确控制,伺服电机能够实现高精度的运动控制,从而保证包装机械的稳定性和包装质量。
4.材料搬运设备材料搬运设备需要对物料的位置和速度进行精确控制,伺服电机能够实现高速、高精度的运动控制,从而提升材料搬运设备的效率和稳定性。
四、结语作为一种高精度、高响应速度的运动控制方式,伺服电机已经成为了工业机械中不可或缺的部件之一。
回转式飞剪位置伺服控制系统

3 0
2 4
6 0
6 0
黾转 对 板 材 进 行 剪 切 . 二、下 剪 刃 架 由 导 向 杆 导 保 证 剪 刃 方 向 始 终 为 竖
方向。
f , ~ , 3 / 4
3 o o O 3 5 o 0 4 0 o O
4 5 O 0
2 0 1 7 1
Abs t r ac t: The l f y i n g s h e a r i s a l l i m po r t a n t e q ui r I me n t o f t h e ho r i z o n t a l t a n ge n t . Th i s p a pe r d i s c u s s t he c o nt r o l me t ho d o f r ot a r y l f y i n g s h e a r
热
1u
i 1 _ 3
从 电 机 传T a 表 b .
定尺
1 0 0 O 热
1L t
o ቤተ መጻሕፍቲ ባይዱ s h e a r
频率
6 0
y
速度
6 0
( m m) ( 次/ 分钟) ( m / m i n )
l 5 o o 4 0 6 0
, '肚 : 丛
- I ^z
1
’
为了轧 件能 连续 输 送 ,在剪 切 时剪 刃 的水 平 速 度要 求 与 轧件 的传输 速 度一 致 ,传 统飞 剪会 与前端 机 组 使用
一
轮 2 齿 轮 1带动 曲轴旋 专 从 而 带 动 上 、 下 剪 刃
、 ,
2 0 0 O
2 5 0 0
PLC在钢管生产线追剪伺服控制系统中的应用

【120】 第37卷 第2期 2015-02(下)PLC 在钢管生产线追剪伺服控制系统中的应用Application of PLC in the steel pipe production line after shear servo control system雷慧杰1,陈彦涛1,张艳伟2LEI Hui-jie 1, CHEN Yan-tao 1, ZHANG Yan-wei 2(1.安阳工学院 电子信息与电气工程学院,安阳 455000;2.安阳钢铁集团公司,安阳 455000)摘 要:为了提高钢管同步定长切割的精度和系统的稳定性,提出了基于PlC和伺服系统的追剪自动控制方案。
结合系统的工作原理,分析了追剪的运动过程,基于PlC和伺服驱动器对系统进行了硬件设计,搭建了计算启动残长的数学模型,对软件进行了设计。
应用结果表明,该系统切割精度高,工作可靠稳定,提高了企业的生产效益,具有很好的应用前景。
关键词:PlC;追剪;伺服控制系统中图分类号:TP273 文献标识码:B 文章编号:1009-0134(2015)02(下)-0120-03Doi:10.3969/j.issn.1009-0134.2015.02(下).37收稿日期:2014-10-20基金项目:2014年度河南省教育厅科学技术研究重点项目(14A510002);安阳工学院2014年度青年科研基金项目(QJJ2014016)作者简介:雷慧杰(1981 -),女,讲师,硕士,研究方向为电气传动与自动控制。
0 引言安钢某钢管生产线生产的国标无缝钢管规格为Φ60mm~108mm ,壁厚3.0mm~4.0mm ,定尺10m ,允许误差≤5mm ,过去传统机械定尺的飞剪已经不能满足生产的精度要求。
现在冶金企业中各种型材、管材等连续轧制生产线进行物料剪切的重要设备是追剪,追剪控制系统能够将连续延伸的型材、管材在线动态切割成客户要求的长度,定长精度高[1]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
伺服系统在钢板飞剪机中的应用
2008-5-24 19:31:00 来源:网友评论0条点击查看
1飞剪应用介绍
飞剪应用于钢铁加工行业,是指在钢板送料过程中驱动剪切刀运动实现钢材的定长剪切。
因为飞剪运动在剪切过程中不需停止送料,并能在加工过程中自由修改剪断长度和送料速度,所以大大提高钢板剪切的加工效率。
宇奇提供全系列大功率范围的同步/异步伺服电机以及高性能B maXX系列伺服驱动器。
B maXX系列伺服驱动器由驱动级PLC控制,该驱动级PLC通过背板总线与伺服驱动器快速同步存取/访问数据,并支持IEC 61131-3多任务实时操作系统。
Baumueller公司专为飞剪、旋切和追剪等应用开发了系列功能块,方便实现这三类应用。
2 系统结构
下图为包米勒飞剪应用的系统构成。
其送料单元由送料驱动系统控制,负责平稳无打滑的送料;剪切单元由剪切伺服系统控制,它根据设定的切断长度和送料的速度,驱动剪切刀对钢板进行定长剪切。
伺服系统控制参数如切断长度、送料速度等由人机界面输入;材料的速度和位置由编码器反馈到剪切驱动系统。
3 运动方式
剪切单元采用偏心轴方式传动,并采用机械同步定位轴,保证上下两个刀座定向、同速、定位,使剪切刀固定刀座作回转运动。
其中剪切刀速度和送料速度同步的区域称为同步区,同步区内上下刀刃咬合的区域为剪切区域,同步区之外的运动区域称之为补偿区。
包米勒飞剪应用中剪切刀运动轨迹分为同步区和补偿区,其运动方式也分为同步运动和补偿运动。
同步运动为剪切电机在同步区与材料速度和位置实现同步,其间上刀刃和下刀刃咬合,完成对钢板的剪切过程;而离开同步区后,根据切断长度的不同,剪切刀需要加速或者减速来补偿,以适用不同的切断长度,即为补偿运动。
根据切断长度的不同,有三种不同的补偿运动方式:
1. 长料切断
剪断长大于两倍刀刃周长情况下,在剪切周期中刀刃在剪断动作完成后减速并停止在设定点,然后加速进入同步区。
2. 中料切断
剪断长大于刀刃周长但小于两倍刀刃周长情况下,剪断动作完成后减速但不停止在设定点,过设定点加速进入下一次剪切,见左图。
3. 短料切断
剪断长小于刀刃周长情况下,剪断动作一旦完成马上加速到设定点,然后减速进入下一次剪断。
目前已经成功将包米勒伺服控制用于钢板飞剪机械,希望能与您共同分享钢板飞剪成功的经验,协助您开发钢板飞剪机床。