2013长江作业本中考数学

合集下载

2013年初中毕业生中考数学试卷及答案

2013年初中毕业生中考数学试卷及答案

2013年初中毕业生中考数学试卷本试卷共5页,分二部分,共25小题,满分150分。

考试用时120分钟。

注意事项:1、答卷前,考生务必在答题卡上用黑色字迹的钢笔或签字笔填写自己的考生号、姓名;同时填写考场试室号、座位号,再用2B铅笔把对应这两号码的标号涂黑。

2、选择题答案用2B铅笔填涂;将答题卡上选择题答题区中对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案;答案不能答在试卷上。

3、非选择题答案必须用黑色字迹的钢笔或签字笔写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案,改动后的答案也不能超出指定的区域;不准使用铅笔、圆珠笔和涂改液。

不按以上要求作答的答案无效。

4、考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回。

第一部分选择题(共30分)一、选择题:1、比0大的数是()A -1 B12C 0D 12、图1所示的几何体的主视图是()(A)(B) (C) (D)正面3、在6×6方格中,将图2—①中的图形N平移后位置如图2—②所示,则图形N的平移方法中,正确的是()A 向下移动1格B 向上移动1格C 向上移动2格D 向下移动2格4、计算:()23m n的结果是( )A 6m nB 62m nC 52m nD 32m n5、为了解中学生获取资讯的主要渠道,设置“A :报纸,B :电视,C :网络,D :身边的人,E :其他”五个选项(五项中必选且只能选一项)的调查问卷,先随机抽取50名中学生进行该问卷调查,根据调查的结果绘制条形图如图3,该调查的方式是( ),图3中的a 的值是( ) A 全面调查,26 B 全面调查,24 C 抽样调查,26 D 全面调查,246、已知两数x,y 之和是10,x 比y 的3倍大2,则下面所列方程组正确的是( )A 1032x y y x +=⎧⎨=+⎩B 1032x y y x +=⎧⎨=-⎩C 1032x y x y +=⎧⎨=+⎩D 1032x y x y +=⎧⎨=-⎩7、实数a 在数轴上的位置如图4所示,则 2.5a -=( )图42.5aA 2.5a -B 2.5a -C 2.5a +D 2.5a -- 8、若代数式1xx -有意义,则实数x 的取值范围是( ) A 1x ≠ B 0x ≥ C 0x > D 01x x ≥≠且9、若5200k +<,则关于x 的一元二次方程240x x k +-=的根的情况是( ) A 没有实数根 B 有两个相等的实数根 C 有两个不相等的实数根 D 无法判断10、如图5,四边形ABCD 是梯形,AD ∥BC ,CA 是BCD ∠的平分线,且,4,6,AB AC AB AD ⊥==则tan B =( )A 23B 22 C114 D 554图5ADBC第二部分 非选择题(共120分)二.填空题(本大题共6小题,每小题3分,满分18分)11.点P 在线段AB 的垂直平分线上,P A =7,则PB =______________ .12.广州某慈善机构全年共募集善款5250000元,将5250000用科学记数法表示为___________ .13.分解因式:=+xy x 2_______________.14.一次函数,1)2(++=x m y 若y 随x 的增大而增大,则m 的取值范围是___________ . 15.如图6,ABC Rt ∆的斜边AB =16, ABC Rt ∆绕点O 顺时针旋转后得到C B A Rt '''∆,则C B A Rt '''∆的斜边B A ''上的中线D C '的长度为_____________ .16.如图7,在平面直角坐标系中,点O 为坐标原点,点P 在第一象限,P Θ与x 轴交于O,A 两点,点A 的坐标为(6,0),P Θ的半径为13,则点P 的坐标为 ____________.三.解答题(本大题共9小题,满分102分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分9分) 解方程:09102=+-x x .18.(本小题满分9分)如图8,四边形ABCD 是菱形,对角线AC 与BD 相交于O,AB =5,AO =4,求BD 的长.CODAB图819.(本小题满分10分)先化简,再求值:yx y y x x ---22,其中.321,321-=+=y xC'图6ACB O A'B'A O 图7yx( 6, 0 )P已知四边形ABCD 是平行四边形(如图9),把△ABD 沿对角线BD 翻折180°得到△A ˊBD.(1) 利用尺规作出△A ˊBD .(要求保留作图痕迹,不写作法);(2)设D A ˊ 与BC 交于点E ,求证:△BA ˊE ≌△DCE .21.(本小题满分12分)在某项针对18~35岁的青年人每天发微博数量的调查中,设一个人的“日均发微博条数”为m ,规定:当m ≥10时为A 级,当5≤m <10时为B 级,当0≤m <5时为C 级.现随机抽取30个符合年龄条件的青年人开展每人“日均发微博条数”的调查,所抽青年人的“日均发微博条数”的数据如下:11 10 6 15 9 16 13 12 0 8 2 8 10 17 6 13 7 5 7 3 12 10 7 11 3 6 8 14 15 12 (1) 求样本数据中为A 级的频率;(2) 试估计1000个18~35岁的青年人中“日均发微博条数”为A 级的人数; (3) 从样本数据为C 级的人中随机抽取2人,用列举法求抽得2个人的“日均发微博条数”都是3的概率.22.(本小题满分12分)如图10, 在东西方向的海岸线MN 上有A 、B 两艘船,均收到已触礁搁浅的船P 的求救信号,已知船P 在船A 的北偏东58°方向,船P 在船B 的北偏西35°方向,AP 的距离为30海里.(1) 求船P 到海岸线MN 的距离(精确到0.1海里);(2) 若船A 、船B 分别以20海里/小时、15海里/小时的速度同时出发,匀速直线前往救援,试通过计算判断哪艘船先到达船P 处.AD图9BCPB A图10北东N M如图11,在平面直角坐标系中,点O 为坐标原点,正方形OABC 的边OA 、OC 分别在x 轴、y 轴上,点B 的坐标为(2,2),反比例函数ky x=(x >0,k ≠0)的图像经过线段BC 的中点D .(1)求k 的值;(2)若点P(x,y)在该反比例函数的图像上运动(不与点D 重合),过点P 作PR ⊥y 轴于点R,作PQ ⊥BC 所在直线于点Q ,记四边形CQPR 的面积为S ,求S 关于x 的解析式并写出x 的取值范围。

九年级数学长江作业本

九年级数学长江作业本

九年级数学长江作业本集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]九年级数学长江作业本一、选择题(本题共32分,每小题4分)下面各题均有四个答案,其中只有一个是符合题意的.1.一元二次方程的二次项系数、一次项系数、常数项分别是()A. B. C. D.2.函数中自变量的取值范围是()A. B. C. D.3.点关于原点对称点的坐标是()A. B. C. D.4.用配方法解方程,下列配方正确的是()A. B. C. D.5.下列等式成立的是()A. B. C. D.6.已知扇形的半径为3,圆心角为,则这个扇形的面积为().7.在△中,,,,于D,以点C为圆心,2.5长为半径画圆,则下列说法正确的是()A.点A在上 B.点A在内C.点D在上 D.点D在内8.如图,AB是直径,弦CD交AB于E,,.设,.下列图象中,能表示y与x的函数关系是的()A. B. C. D.二、填空题(本题共16分,每小题4分)9.若实数、满足,则的值为__________.10.若关于的一元二次方程的一个根为1,则的值为__________.11.小明用一把残缺的量角器测量三角形玻璃中的大小.他将玻璃板按如图所示的方法旋转在量角器上,使点A在圆弧上,AB,AC分别与圆弧交于点D,E,它们对应的刻度分别为,,则的度数为__________.12.按照图示的方式可以将一张正方形纸片拆成一个环保纸袋(如图所示).,则折成后纸袋的边和HI的长分别为__________、_____ _____.三、解答题(本题共30分,每小题5分)13.解方程:.16.已知,如图,的半径为5,AB为直径,CD为弦,于E,若.求CD的长.17.已知,求代数式的值.18.已知,如图,在△中,,点D在AB边上,点E在AC边的延长线上,且,连接DE交BC于F.求证:.四、解答题(本题共20分,每小题5分)19.我国网络零售业正处于一个快速发展的时期.据统计,2010年我国网购交易总额达到5000亿元.若2012年网购总额达12800亿元,求网购交易总额的年平均增长率.20.已知,如图,在平面直角坐标系中,△三个顶点的坐标分别为A(0,0),B(1,0),C(2,2).以A为旋转中心,把△逆时针旋转,得到△.(1)画出△;(2)点的坐标为________;(3 )求点C旋转到所经过的路线长.21.已知,关于x的一元二次方程有实数根.(1)求的取值范围;(2)若,是此方程的两个根,且满足,求m的值.22.已知,如图,在△中,,以DC为直径作半圆,交边AC于点F,点B在CD的延长线上,连接BF,交AD于点E,.(1)求证:BF是的切线;(2)若,,求的半径.五、解答题(本题共22分,第23题7分,第24题8分,第25题7分)23.初三(1)班的同学们在解题过程中,发现了几种利用尺规作一个角的半角的方法.题目:在△中,,求作:.仿照他们的做法,利用尺规作图解决下列问题,要求保留作图痕迹.(1)请在图1和图2中分别出作;(2)当时,在图3中作出,且使点P在直线l上.24.在△中,,,分别为,,所对的边,我们称关于x的一元二次方程为“△的☆方程”.根据规定解答下列问题:(1)“△的☆方程”的根的情况是_____(填序号);①有两个相等的实数根②有两个不相等的实数根③没有实数根(2)如图,AD为的直径,BC为弦,于E,,求“△的☆方程”的解;(3)若是“△的☆方程”的一个根,其中,,均为整数,且,求方程的另一个根.25.在平面直角坐标系x Oy中,直线与直线(a、b为常数,且)交于点P,轴于点M,轴于N,△是以M N为斜边的等腰直角三角形,点P与点E在MN异侧.(1)当,时,点P的坐标为_________,线段的长为________;(2)当四边形PMON的周长为8时,求线段PE的长;(3)直接写出线段PE的长(用含a或b的代数式表示)_______________________.。

2013年武汉市中考数学试卷及答案

2013年武汉市中考数学试卷及答案

2013年武汉市初中毕业生学业考试数 学 试 卷第Ⅰ卷(选择题,共30分)一、选择题(共10小题,每小题3分,共30分) 1.下列各数中,最大的是A .-3B .0C .1D .22.式子1-x 在实数范围内有意义,则x 的取值范围是A .x <1B .x ≥1C .x ≤-1D .x <-13.不等式组⎩⎨⎧≤-≥+0102x x 的解集是A .-2≤x ≤1B .-2<x <1C .x ≤-1D .x ≥24.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同.在看不到球的条件下,随机地从袋子中摸出三个球,下列事件是必然事件的是 A .摸出的三个球中至少有一个球是黑球 B .摸出的三个球中至少有一个球是白球C .摸出的三个球中至少有两个球是黑球D .摸出的三个球中至少有两个球是白球5.若x 1,x 2是一元二次方程0322=--x x 的两个根,则x 1x 2的值是A .-2B .-3C .2D .36.如图,△ABC 中,AB=AC ,∠A=36°,BD 是AC 边上的高,则∠DBC 的度数是A .18°B .24°C .30°D .36°7.如图是由四个大小相同的正方体组合而成的几何体,起主视图是A .B .C .D .8.两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,……,那么六条直线最多有 A .21个交点B .18个交点C .15个交点D .10个交点9.为了解学生课外阅读的喜好,某校从八年级随机抽取部分学生进行问卷调查,调查要求每人只选取一种喜欢的书籍,如果没有喜欢的书籍,则作“其他”类统计.图(1)与图(2)是整理数据后回执的两幅不完整的统计图.以下结论不正确的是A .由这两个统计图可知喜欢“科普常识”的学生有90人B .若该年级共有1200名学生,则由这两个统计图可估计喜爱“科普常识”的学生约有360人C .由这两个统计图不能确定喜欢“小说”的人数D .在扇形统计图中,“漫画”所在扇形的圆心角为72°10.如图,⊙A 与⊙B 外切于点D ,PC 、PD 、PE 分别是圆的切线,C 、D 、E是切点,若∠CED=x °,∠ECD=y °,⊙B 的半径是R ,则弧DE 的长度是 A .90)90(Rx -π B .90)90(Ry -πC .180)180(Rx -πD .180)180(Ry -π第Ⅱ卷(非选择题,共90分)二、填空题(共6小题,每小题3分,共18分) 11.计算cos45°= .12.在2013年的体育中考中,某校6名学生的分数分别是27、28、29、28、26、28.这组数据的众数是 .13.太阳的半径约为696 000千米,用科学记数法表示数696 000为 . 14.设甲、乙两车在同一直线公路上匀速行驶,开始甲车在乙车前面,当乙车追上甲车后,两车停下来,把乙车的货物转给甲车,然后甲车 继续前行,乙车向原地返回.设x 秒后两车的距离为y 米,y 关于x 的 函数关系如图所示,则甲车速度是 米/秒.15.如图,已知四边形ABCD 是平行四边形,BC=2AB ,A 、B 两点的坐标分别是(-1,0),(0,2),C 、D 两点在反比例函数)0(<=x xk y 的图象上,则k 等于 .16.如图,E 、F 是正方形ABCD 的边AD 上两个动点,满足AE=DF .连接CF 交BD 于点G ,连接BE 交AG 于点H .若正方形的边长为2,则线段DH 长度的最小值是 .三、解答题(共9小题,共72分) 17.(本小题满分6分)解方程xx 332=-.18.(本小题满分6分)直线b x y +=2经过点(3,5),求关于x 的不等式b x +2≥0的解集.19.(本小题满分6分)如图,点E 、F 在BC 上,BE=CF ,AB=DC ,∠B=∠C . 求证:∠A=∠D .20.(本小题满分6分)有两把不同的锁和四把不同的钥匙,其中两把钥匙恰好分别能打开这两把锁,其余的钥匙不能打开这两把锁.现在任意取出一把钥匙去打开任意一把锁.(1)请用列表或树状图的方法表示出上述实验所有可能的结果; (2)求一次打开锁的概率.21.(本小题满分7分)如图,平面直角坐标系中,Rt △ABC 的三个顶点分别是A (-3,2),B (0,4),C (0,2).(1)将△ABC 以点C 为旋转中心旋转180°,画出旋转后对应的△A 1B 1C ;平移△ABC ,若点A 的对应点A 2的坐标为 (0,-4),画出平移后对应的△A 2B 2C 2; (2)若将△A 1B 1C 绕某一点旋转可以得到△A 2B 2C 2,请直接写出旋转中心的坐标;(3)在x 轴上有一点P ,使得PA+PB 的值最小,请直接写出点P 的坐标.22.(本小题满分8分)如图,已知△ABC 是⊙O 的内接三角形,AB=AC ,点P 是弧AB 的中点,连接PA ,PB ,PC .(1)如图①,若∠BPC=60°,求证:AC=3AP ; (2)如图②,若sin ∠BPC=2524,求tan ∠PAB 的值.23.(本小题满分10分)科幻小说《实验室的故事》中,有这样一个情节:科学家把一种珍奇的植物分别放在不同温度的环境中,经过一天后,测试出这种植物高度的增长情况(如下表).温度x /°C…… -4 -2 0 2 4 4.5 …… 植物每天高度增长量y /mm……414949412519.75……由这些数据,科学家推测出植物每天高度增长量y 是温度x 的函数,且这种函数是反比例函数、一次函数和二次函数中的一种.(1)请你选择一种适当的函数,求出它的函数关系式,并简要说明不选择另外两种函数的理由; (2)温度为多少时,这种植物每天高度增长量最大?(3)如果实验室温度保持不变,在10天内要使该植物高度增长量的总和超过250mm ,那么实验室的温度x 应该在那个范围内选择?请直接写出结果.24.(本小题满分10分)已知四边形ABCD 中,E 、F 分别是AB 、AD 边上的点,DE 与CF 交于点G . (1)如图①,若四边形ABCD 是矩形,且DE ⊥CF .求证:CDADCF DE =; (2)如图②,若四边形ABCD 是平行四边形,试探究:当∠B 与∠EGC 满足什么关系时,使得CDADCF DE =成立?并证明你的结论;(3)如图③,若BC=BA=6,DA=DC=8,∠BAD=90°,DE ⊥DF .请直接写出CFDE的值.25.(本小题满分12分)如图,点P 是直线l :22--=x y 上的点,过点P 的另一条直线m 交抛物线2x y =于A ,B 两点.(1)若直线m 的解析式为2321+-=x y ,求A ,B 两点的坐标;(2)①若点P 的坐标为(-2,t ),当PA=AB 时,请直接写出点A 的坐标;②试证明:对于直线l 上任意给定的一点P ,在抛物线上都能找到点A ,使得PA=AB 成立; (3)设直线l 交y 轴于点C ,若△AOB 的外心在边AB 上,且∠BPC=∠OCP ,求点P 的坐标.。

2013年湖北省武汉市中考数学试卷及答案

2013年湖北省武汉市中考数学试卷及答案

2013年湖北省武汉市中考数学试卷及答案一、选择题(共10小题,每小题3分,满分30分)下列各题中均有四个备选答案中,其中有且只有一个是正确的。

1.(3分)(2013•武汉)下列各数中,最大的是()A.﹣3 B.0C.1D.2考点:有理数大小比较.解析:先在数轴上标出各选项中的数,再根据数轴上表示的数,越在右边的数越大,得出结果.解答:解:表示﹣3、0、1、2的数在数轴上的位置如图所示:,由图示知,这四个数中,最大的是2.故选D.点评:本题考查了有理数大小比较.由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.2.(3分)(2013•武汉)式子在实数范围内有意义,则x的取值范围是()A.x<1 B.x≥1C.x≤﹣1 D.x>1考点:二次根式有意义的条件解析:根据二次根式的性质,被开方数大于等于0,解不等式即可.解答:解:根据题意得:x﹣1≥0,即x≥1时,二次根式有意义.故选B.点评:主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.3.(3分)(2013•武汉)不等式组的解集是()A.﹣2≤x≤1B.﹣2<x<1 C.x≤﹣1 D.x≥2考点:解一元一次不等式组.专题:计算题.解析:分别解出每个不等式的解集,再求其公共部分.解答:解:,由①得,x≥﹣2;由②得,x≤1;故不等式组的解集为﹣2≤x≤1.故选A.点评:本题考查了解一元一次不等式,会找其公共部分是解题的关键.4.(3分)(2013•武汉)袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球,下列事件是必然事件的是()A.摸出的三个球中至少有一个球是黑球B.摸出的三个球中至少有一个球是白球C.摸出的三个球中至少有两个球是黑球D.摸出的三个球中至少有两个球是白球考点:随机事件.解析:必然事件就是一定发生的事件,依据定义即可作出判断.解答:解:A、是必然事件;B、是随机事件,选项错误;C、是随机事件,选项错误;D、是随机事件,选项错误.故选A.点评:解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.(3分)(2013•武汉)若x1,x2是一元二次方程x2﹣2x﹣3=0的两个根,则x1•x2的值是()A.3B.﹣3 C.2D.﹣2考点:根与系数的关系专题:计算题.解析:找出一元二次方程的系数a,b及c的值,利用根与系数的关系即可求出两根之积.解答:解:∵x1,x2是一元二次方程x2﹣2x﹣3=0的两个根,∴x1•x2==﹣3.故选B点评:此题考查了一元二次方程根与系数的关系,一元二次方程ax2+bx+c=0(a≠0),当b2﹣4ac≥0时,设方程的两根分别为x1,x2,则有x1+x2=﹣,x1x2=.6.(3分)(2013•武汉)如图,△ABC中,AB=AC,∠A=36°,BD是AC边上的高,则∠DBC的度数是()A.18°B.24°C.30°D.36°考点:等腰三角形的性质解析:根据已知可求得两底角的度数,再根据三角形内角和定理不难求得∠DBC的度数.解答:解:∵AB=AC,∠A=36°,∴∠ABC=∠ACB=7,2°∵BD是AC边上的高,∴BD⊥AC,∴∠DBC=90°﹣72°=18°.故选A.点评:本题主要考查等腰三角形的性质,解答本题的关键是会综合运用等腰三角形的性质和三角形的内角和定理进行答题,此题难度一般.7.(3分)(2013•武汉)如图是由四个大小相同的正方体组合而成的几何体,其主视图是()A.B.C.D.考点:简单组合体的三视图.解析:根据从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.根据图中正方体摆放的位置判定则可.解答:解:从正面看,下面一行是横放3个正方体,上面一行最右边是一个正方体.故选:C.点评:本题考查了三种视图中的主视图,培养了学生空间想象能力.8.(3分)(2013•武汉)两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,…,A.21个交点B.18个交点C.15个交点D.10个交点考点:规律型:图形的变化类.解析:通过画图和观察图形得到2条直线最多的交点个数为1,3条直线最多的交点个数为1+2=3,4条直线最多的交点个数为1+2+3=6,5条直线最多的交点个数为1+2+3+4=10,…,则n条直线最多的交点个数为1+2+3+4+…+n﹣1,然后把n=6代入计算.解答:解:∵两条直线最多有1个交点,三条直线最多有3个交点,1+2=3,四条直线最多有6个交点,1+2+3=6,∴n条直线最多的交点个数为1+2+3+4+…+n﹣1,∴当n=6时,6条直线最多的交点个数为1+2+3+4+5=15.故选C.点评:本题考查了规律型:图形的变化类:通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.9.(3分)(2013•武汉)为了了解学生课外阅读的喜好,某校从八年级随机抽取部分学生进行问卷调查,调查要求每人只选取一种喜好的书籍,如果没有喜好的书籍,则作“其它”类统计.图(1)与图(2)是整理数据后绘制的两幅不完整的统计图.以下结论不正确的是()A.由这两个统计图可知喜好“科普常识”的学生有90人B.若该年级共有1200名学生,则由这两个统计图可估计喜爱“科普常识”的学生约有360人C.这两个统计图不能确定喜好“小说”的人数D.在扇形统计图中,“漫画”所在扇形的圆心角为72°考点:条形统计图;扇形统计图.专题:压轴题.解析:首先根据“其它”类所占比例以及人数,进而求出总人数,即可得出喜好“科普常识”的学生人数,再利用样本估计总体得出该年级喜爱“科普常识”的学生总数,进而得出喜好“小说”的人数,以及“漫画”所在扇形的圆心角.解答:解:A、∵喜欢“其它”类的人数为:30人,扇形图中所占比例为:10%,∴样本总数为:30÷10%=300(人),∴喜好“科普常识”的学生有:300×30%=90(人),故此选项不符合题意;B、若该年级共有1200名学生,则由这两个统计图可估计喜爱“科普常识”的学生约有:×90=360(人),故此选项不符合题意;C、喜好“小说”的人数为:300﹣90﹣60﹣30=120(人),故此选项错误符合题意;D、“漫画”所在扇形的圆心角为:×360°=72°,故此选项不符合题意.故选:C.点评:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.10.(3分)(2013•武汉)如图,⊙A与⊙B外切于点D,PC,PD,PE分别是圆的切线,C,D,E是切点.若∠CDE=x°,∠ECD=y°,⊙B的半径为R,则的长度是()A.B.C.D.考点:弧长的计算;多边形内角与外角;圆周角定理;切线的性质;切线长定理.专题:压轴题.解析:点C、D、E都在⊙P上,由圆周角定理可得:∠DPE=2y;然后在四边形BDPE中,求出∠B;最后利用弧长公式计算出结果.解答:解:根据题意,由切线长定理可知:PC=PD=PE,即点C、D、E在以P为圆心,PC长为半径的⊙P上,由圆周角定理得:∠DPE=2∠ECD=2y.如图,连接BD、BE,则∠BDP=∠BEP=90°,在四边形BDPE中,∠B+∠BDP+∠DPE+∠BEP=360°,即:∠B+90°+2y+90°=360°,解得:∠B=180°﹣2y.∴的长度是:=.故选B.点评:本题考查圆的相关性质.解题关键是确定点C、D、E在⊙P上,从而由圆周角定理得到∠DPE=2∠ECD=2y.二、填空题(共6小题,每小题3分,满分18分)11.(3分)(2013•武汉)计算:cos45°=.考点:特殊角的三角函数值解析:根据特殊角的三角函数值计算即可.解答:解:根据特殊角的三角函数值可知:cos45°=.故答案为.点评:本题主要考查了特殊角的三角函数值,比较简单,熟练掌握特殊角的三角函数值是解答的关键.12.(3分)(2013•武汉)在2013年的体育中考中,某校6名学生的分数分别是27、28、29、28、26、28,这组数据的众数是28 .考点:众数解析:一组数据中出现次数最多的数据叫做众数,结合所给数据即可得出答案.解答:解:27、28、29、28、26、28中,28出现的次数最多,故这组数据的众数是28.故答案为:28.点评:本题考查了众数的知识,属于基础题,掌握众数的定义是解题的关键.13.(3分)(2013•武汉)太阳的半径约为696 000千米,用科学记数法表示数696 000为 6.96×105.考点:科学记数法—表示较大的数解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:696 000=6.96×105,故答案为:6.96×105.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.(3分)(2013•武汉)设甲、乙两车在同一直线公路上匀速行驶,开始甲车在乙车的前面,当乙车追上甲车后,两车停下来,把乙车的货物转给甲车,然后甲车继续前行,乙车向原地返回.设x秒后两车间的距离为y米,y关于x的函数关系如图所示,则甲车的速度是20 米/秒.考点:一次函数的应用解析:设甲车的速度是x米/秒,乙车的速度为y米/秒,根据函数图象反应的数量关系建立方程组求出其解即可.解答:解:设甲车的速度是x米/秒,乙车的速度为y米/秒,由题意,得,解得:.故答案为20.点评:本题是一道运用函数图象表示出来的行程问题,考查了追击问题的运用,路程=速度×时间的运用,解答时认真解析函数图象的含义是关键,根据条件建立方程组是难点.15.(3分)(2013•武汉)如图,已知四边形ABCD是平行四边形,BC=2AB.A,B两点的坐标分别是(﹣1,0),(0,2),C,D两点在反比例函数y=(k<0)的图象上,则k等于﹣12 .考点:反比例函数综合题.专题:压轴题.解析:设点C坐标为(a,),根据AC与BD的中点坐标相同,可得出点D的坐标,将点D的坐标代入函数解析式可得出k关于a的表达式,再由BC=2AB=2,可求出a的值,继而得出k的值.解答:解:设点C坐标为(a,),(a<0),点D的坐标为(x,y),∵四边形ABCD是平行四边形,∴AC与BD的中点坐标相同,∴(a﹣1,+0)=(x+0,y+2),则x=a﹣1,y=,代入y=,可得:k=2a﹣2a2 ①;在Rt△AOB中,AB==,∴BC=2AB=2,故BC2=(a﹣0)2+(﹣2)2=(2)2,整理得:a4+k2﹣4ka=16a2,将①k=2a﹣2a2,代入后化简可得:a2=4,∵a<0,∴a=﹣2,∴k=﹣4﹣8=﹣12.故答案为:﹣12.点评:本题考查了反比例函数的综合题,涉及了平行四边形的性质、中点的坐标及解方程的知识,解答本题有两个点需要注意:①设出点C坐标,表示出点D坐标,代入反比例函数解析式;②根据BC=2AB=2,得出方程,难度较大,注意仔细运算.16.(3分)(2013•武汉)如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于点G,连接BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是﹣1 .考点:正方形的性质.专题:压轴题.解析:根据正方形的性质可得AB=AD=CD,∠BAD=∠CDA,∠ADG=∠CDG,然后利用“边角边”证明△ABE和△DCF全等,根据全等三角形对应角相等可得∠1=∠2,利用“边角边”证明△ADG和△CDG全等,根据全等三角形对应角相等可得∠2=∠3,从而得到∠1=∠3,然后求出∠AHB=90°,取AB的中点O,连接OH、OD,根据直角三角形斜边上的中线等于斜边的一半可得OH=AB=1,利用勾股定理列式求出OD,然后根据三角形的三边关系可知当O、D、H三点共线时,DH的长度最小.解答:解:在正方形ABCD中,AB=AD=CD,∠BAD=∠CDA,∠ADG=∠CDG,在△ABE和△DCF中,,∴△ABE≌△DCF(SAS),∴∠1=∠2,在△ADG和△CDG中,,∴△ADG≌△CDG(SAS),∴∠2=∠3,∴∠1=∠3,∵∠BAH+∠3=∠BAD=90°,∴∠1+∠BAH=90°,∴∠AHB=180°﹣90°=90°,取AB的中点O,连接OH、OD,则OH=AO=AB=1,在Rt△AOD中,OD===,根据三角形的三边关系,OH+DH>OD,∴当O、D、H三点共线时,DH的长度最小,最小值=OD﹣OH=﹣1.故答案为:﹣1.点评:本题考查了正方形的性质,全等三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半的性质,三角形的三边关系,确定出DH最小时点H的位置是解题关键,也是本题的难点.三、解答题(共9小题,共72分)17.(6分)(2013•武汉)解方程:.考点:解分式方程解析:观察可得最简公分母是x(x﹣3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:方程两边同乘以x(x﹣3),得2x=3(x﹣3).解这个方程,得x=9.检验:将x=9代入x(x﹣3)知,x(x﹣3)≠0.所以x=9是原方程的根.点评:本题考查分式方程的解法,需要注意的是在解分式方程时需对得到的解进行检验.18.(6分)(2013•武汉)直线y=2x+b经过点(3,5),求关于x的不等式2x+b≥0的解集.考点:一次函数与一元一次不等式专题:探究型.解析:先把点(3,5)代入直线y=2x+b,求出b的值,再根据2x+b≥0即可得出x的取值范围.解答:解:∵直线y=2x+b经过点(3,5),∴5=2×3+b,解得b=﹣1,∵2x+b≥0,∴2x﹣1≥0,解得x≥.点评:本题考查的是一次函数与一元一次不等式,先根据题意得出关于x的一元一次不等式是解答此题的关键.19.(6分)(2013•武汉)如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.考点:全等三角形的判定与性质.3718684专题:证明题.解析:可通过证△ABF≌△DCE,来得出∠A=∠D的结论.解答:证明:∵BE=FC,∴BE+EF=CF+EF,即BF=CE;又∵AB=DC,∠B=∠C,∴△ABF≌△DCE;(SAS)∴∠A=∠D.点评:此题考查简单的角相等,可以通过全等三角形来证明,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.20.(7分)(2013•武汉)把两把不同的锁和四把不同的钥匙,其中两把钥匙恰好分别能打开这两把锁,其余的钥匙不能打开这两把锁.现在任意取出一把钥匙去开任意一把锁.(1)请用列表或画树状图的方法表示出上述实验所有可能的结果;(2)求一次打开锁的概率.考点:列表法与树状图法解析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)中的树状图,可求得一次打开锁的情况,再利用概率公式求解即可求得答案.解答:解:(1)分别用A与B表示锁,用A、B、C、D表示钥匙,画树状图得:则可得共有8种等可能的结果;(2)∵一次打开锁的有2种情况,∴一次打开锁的概率为:=.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.21.(7分)(2013•武汉)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2),B(0,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C1;平移△ABC,若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;(2)若将△A1B1C1绕某一点旋转可以得到△A2B2C2;请直接写出旋转中心的坐标;(3)在x轴上有一点P,使得PA+PB的值最小,请直接写出点P的坐标.考点:作图-旋转变换;轴对称-最短路线问题解析:(1)延长AC到A1,使得AC=A1C1,延长BC到B1,使得BC=B1C1,利用点A的对应点A2的坐标为(0,﹣4),得出图象平移单位,即可得出△A2B2C2;(2)根据△△A1B1C1绕某一点旋转可以得到△A2B2C2进而得出,旋转中心即可;(3)根据B点关于x轴对称点为A2,连接AC2,交x轴于点P,再利用相似三角形的性质求出P点坐标即可.解答:解:(1)如图所示:(2)如图所示:旋转中心的坐标为:(,﹣1);(3)∵PO∥AC,∴=,∴=,∴OP=2,∴点P的坐标为(﹣2,0).点评:此题主要考查了图形的平移与旋转和相似三角形的性质等知识,利用轴对称求最小值问题是考题重点,同学们应重点掌握.22.(8分)(2013•武汉)如图,已知△ABC是⊙O的内接三角形,AB=AC,点P是的中点,连接PA,PB,PC.(1)如图①,若∠BPC=60°.求证:AC=AP;(2)如图②,若sin∠BPC=,求tan∠PAB的值.考点:垂径定理;勾股定理;圆周角定理;解直角三角形专题:探究型.解析:(1)根据圆周角定理得∠BPC=∠BAC=60°,可判断△ABC为等边三角形,∠ACB=∠ABC=60°,再利用圆周角定理得到∠APC=∠ABC=60°,而点P是的中点,则∠ACP=∠ACB=30°,于是∠PAC=90°,然后根据30度的正切可计算出AC=AP;(2)过A点作AD⊥BC交BC于D,连结OP交AB于E,根据垂径的推论得到点O在AD上,连结OB,根据圆周角定理得∠BOD=∠BAC,∠BPC=∠BAC,所以sin∠BOD=sin∠BPC==,设OB=25x,则BD=24x,在Rt△OBD中可计算出OD=7x,再在Rt△ABD计算出AB=40x,由于点P是的中点,根据垂径定理的推论OP垂直平分AB,则AE=AB=20x,在Rt△AEO中,根据勾股定理计算出OE=4x,所以PE=(25﹣4)x,最后在Rt△APE中,利用正切的定义求解.解答:解:(1)∵∠BPC=60°,∴∠BAC=60°,∵AB=AC,∴△ABC为等边三角形,∴∠ACB=∠ABC=60°,∴∠APC=∠ABC=60°,而点P是的中点,∴∠ACP=∠ACB=30°,∴∠PAC=90°,∴tan∠PCA==tan30°=,∴AC=PA;(2)过A点作AD⊥BC交BC于D,连结OP交AB于E,如图,∵AB=AC,∴AD平分BC,∴点O在AD上,连结OB,则∠BOD=∠BAC,∵∠BPC=∠BAC,∴sin∠BOD=sin∠BPC==,设OB=25x,则BD=24x,∴OD==7x,在Rt△ABD中,AD=25x+7x=32x,BD=24x,∴AB==40x,∵点P是的中点,∴OP垂直平分AB,∴AE=AB=20x,∠AEP=∠AEO=90°,在Rt△AEO中,OE==15x,∴PE=OP﹣OD=25x﹣15x=10x,在Rt△APE中,tan∠PAE===,即tan∠PAB的值为.点评:本题考查了垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧.也考查了勾股定理、圆周角定理和解直角三角形.23.(10分)(2013•武汉)科幻小说《实验室的故事》中,有这样一个情节:科学家把一种珍奇的植物分别放在不同温度的环境中,经过一天后,测试出这种植物高度的增长情况(如下表):温度x/℃…﹣4 ﹣2 0 2 4 4.5 …植物每天高度增长量y/mm …41 49 49 41 25 19.75 …由这些数据,科学家推测出植物每天高度增长量y是温度x的函数,且这种函数是反比例函数、一次函数和二次函数中的一种.(1)请你选择一种适当的函数,求出它的函数关系式,并简要说明不选择另外两种函数的理由;(2)温度为多少时,这种植物每天高度增长量最大?(3)如果实验室温度保持不变,在10天内要使该植物高度增长量的总和超过250mm,那么实验室的温度x 应该在哪个范围内选择?请直接写出结果.考点:二次函数的应用解析:(1)选择二次函数,设y=ax2+bx+c(a≠0),然后选择x=﹣2、0、2三组数据,利用待定系数法求二次函数解析式即可,再根据反比例函数的自变量x不能为0,一次函数的特点排除另两种函数;(2)把二次函数解析式整理成顶点式形式,再根据二次函数的最值问题解答;(3)求出平均每天的高度增长量为25mm,然后根据y=25求出x的值,再根据二次函数的性质写出x的取值范围.解答:解:(1)选择二次函数,设y=ax2+bx+c(a≠0),∵x=﹣2时,y=49,x=0时,y=49,x=2时,y=41,∴,解得,所以,y关于x的函数关系式为y=﹣x2﹣2x+49;不选另外两个函数的理由:∵点(0,49)不可能在反比例函数图象上,∴y不是x的反比例函数;∵点(﹣4,41),(﹣2,49),(2,41)不在同一直线上,∴y不是x的一次函数;(2)由(1)得,y=﹣x2﹣2x+49=﹣(x+1)2+50,∵a=﹣1<0,∴当x=﹣1时,y有最大值为50,即当温度为﹣1℃时,这种作物每天高度增长量最大;(3)∵10天内要使该植物高度增长量的总和超过250mm,∴平均每天该植物高度增长量超过25mm,当y=25时,﹣x2﹣2x+49=25,整理得,x2+2x﹣24=0,解得x1=﹣6,x2=4,∴在10天内要使该植物高度增长量的总和超过250mm,实验室的温度应保持在﹣6<x<4℃.点评:本题考查了二次函数的应用,主要利用了待定系数法求二次函数解析式,二次函数的最值问题,以及利用二次函数求不等式,仔细解析图表数据并熟练掌握二次函数的性质是解题的关键.24.(10分)(2013•武汉)已知四边形ABCD在,E,F分别是AB,AD边上的点,DE与CF交于点G.(1)如图①,若四边形ABCD是矩形,且DE⊥CF.求证:;(2)如图②,若四边形ABCD是平行四边形.试探究:当∠B与∠EGC满足什么关系时,使得成立?并证明你的结论;(3)如图③,若BA=BC=6,DA=DC=8,∠BAD=90°,DE⊥CF.请直接写出的值.考点:相似形综合题专题:压轴题.解析:(1)根据矩形性质得出∠A=∠FDC=90°,求出∠CFD=∠AED,证出△AED∽△DFC即可;(2)当∠B+∠EGC=180°时,=成立,证△DFG∽△DEA,得出=,证△CGD∽△CDF,得出=,即可得出答案;(3)过C作CN⊥AD于N,CM⊥AB交AB延长线于M,连接BD,设CN=x,△BAD≌△BCD,推出∠BCD=∠A=90°,证△BCM∽△DCN,求出CM=x,在Rt△CMB中,由勾股定理得出BM2+CM2=BC2,代入得出方程(x﹣6)2+(x)2=62,求出CN=,证出△AED∽△NFC,即可得出答案.解答:(1)证明:∵四边形ABCD是矩形,∴∠A=∠FDC=90°,∵CF⊥DE,∴∠DGF=90°,∴∠ADE+∠CFD=90°,∠ADE+∠AED=90°,∴∠CFD=∠AED,∵∠A=∠CDF,∴△AED∽△DFC,∴=;(2)当∠B+∠EGC=180°时,=成立.证明:∵四边形ABCD是平行四边形,∴∠B=∠ADC,AD∥BC,∴∠B+∠A=180°,∵∠B+∠EGC=180°,∴∠A=∠EGC=∠FGD,∵∠FDG=∠EDA,∴△DFG∽△DEA,∴=,∵∠B=∠ADC,∠B+∠EGC=180°,∠EGC+∠DGC=180°,∴∠CGD=∠CDF,∵∠GCD=∠DCF,∴△CGD∽△CDF,∴=,∴=,∴=,即当∠B+∠EGC=180°时,=成立.(3)解:=.理由是:过C作CN⊥AD于N,CM⊥AB交AB延长线于M,连接BD,设CN=x,∵AB⊥AD,∴∠A=∠M=∠CNA=90°,∴四边形AMCN是矩形,∴AM=CN,AN=CM,∵在△BAD和△BCD中∴△BAD≌△BCD(SSS),∴∠BCD=∠A=90°,∴∠ABC+∠ADC=180°,∵∠ABC+∠CBM=180°,∴∠CBM=∠ADC,∵∠CND=∠M=90°,∴△BCM∽△DCN,∴=,∴=,∴CM=x,在Rt△CMB中,CM=x,BM=AM﹣AB=x﹣6,由勾股定理得:BM2+CM2=BC2,∴(x﹣6)2+(x)2=62,x=0(舍去),x=,CN=,∵∠A=∠FGD=90°,∴∠AED+∠AFG=180°,∵∠AFG+∠NFC=180°,∴∠AED=∠CFN,∵∠A=∠CNF=90°,∴△AED∽△NFC,∴===.点评:本题考查了矩形性质和判定,勾股定理,平行四边形的性质和判定,全等三角形的性质和判定,相似三角形的性质和判定的应用,主要考查学生综合运用性质和定理进行推理的能力,题目比较好.25.(12分)(2013•武汉)如图,点P是直线l:y=﹣2x﹣2上的点,过点P的另一条直线m交抛物线y=x2于A、B两点.(1)若直线m的解析式为y=﹣x+,求A,B两点的坐标;(2)①若点P的坐标为(﹣2,t).当PA=AB时,请直接写出点A的坐标;②试证明:对于直线l上任意给定的一点P,在抛物线上能找到点A,使得PA=AB成立.(3)设直线l交y轴于点C,若△AOB的外心在边AB上,且∠BPC=∠OCP,求点P的坐标.考点:二次函数综合题.专题:压轴题.解析:(1)联立抛物线y=x2与直线y=﹣x+的解析式,求出点A、B的坐标.(2)①如答图1所示,求出点P坐标(﹣2,2),设A(m,m2).作辅助线,构造直角梯形PGFB,AE为中位线,求出点B的坐标(用含m的代数式表示),然后代入抛物线的解析式求出m的值;②与①解题思路一致.设P(a,﹣2a﹣2),A(m,m2).作辅助线,构造直角梯形PGFB,AE为中位线,求出点B的坐标(用含a、m的代数式表示),然后代入抛物线的解析式得到关于m的一元二次方程,根据其判别式大于0,可证明题中结论成立.(3)△AOB的外心在边AB上,则AB为△AOB外接圆的直径,∠AOB=90°.设A(m,m2),B(n,n2).作辅助线,证明△AEO∽△OFB,得到mn=﹣1.再联立直线m:y=kx+b与抛物线y=x2的解析式,由根与系数关系得到:mn=﹣b,所以b=1;由此得到OD、CD的长度,从而得到PD的长度;作辅助线,构造Rt△PDG,由勾股定理求出点P的坐标.解答:解:(1)∵点A、B是抛物线y=x2与直线y=﹣x+的交点,∴x2=﹣x+,解得x=1或x=﹣.当x=1时,y=1;当x=﹣时,y=,∴A(1,1),B(﹣,).(2)①∵点P(﹣2,t)在直线y=﹣2x﹣2上,∴t=2,∴P(﹣2,2).设A(m,m2),如答图1所示,分别过点P、A、B作x轴的垂线,垂足分别为点G、E、F.∵PA=AB,∴AE是梯形PGFB的中位线,∴GE=EF,AE=(PG+BF).∵GE=EF=OE+OF,∴OF=GE﹣OE=2﹣2m.∵AE=(PG+BF),∴BF=2AE﹣PG=2m2﹣2.∴B(2﹣2m,2m2﹣2).∵点B在抛物线y=x2上,∴2m2﹣2=(2﹣2m)2解得:m=﹣1或﹣3,当m=﹣1时,m2=1;当m=﹣3时,m2=9∴点A的坐标为(﹣1,1)或(﹣3,9).②设P(a,﹣2a﹣2),A(m,m2).如答图1所示,分别过点P、A、B作x轴的垂线,垂足分别为点G、E、F.与①同理可求得:B(2m﹣a,2m2+2a+2).∵点B在抛物线y=x2上,∴2m2+2a+2=(2m﹣a)2整理得:2m2﹣4am+a2﹣2a﹣2=0.△=16a2﹣8(a2﹣2a﹣2)=8a2+16a+16=8(a+1)2+8>0,∴无论a为何值时,关于m的方程总有两个不相等的实数根.即对于任意给定的点P,抛物线上总能找到两个满足条件的点A,使得PA=AB成立.(3)∵△AOB的外心在边AB上,∴AB为△AOB外接圆的直径,∴∠AOB=90°.设A(m,m2),B(n,n2),如答图2所示,过点A、B分别作x轴的垂线,垂足为E、F,则易证△AEO∽△OFB.∴,即,整理得:mn(mn+1)=0,∵mn≠0,∴mn+1=0,即mn=﹣1.设直线m的解析式为y=kx+b,联立,得:x2﹣kx﹣b=0.∵m,n是方程的两个根,∴mn=﹣b.∴b=1.设直线m与y轴交于点D,则OD=1.易知C(0,﹣2),OC=2,∴CD=OC+OD=3.∵∠BPC=∠OCP,∴PD=CD=3.设P(a,﹣2a﹣2),过点P作PG⊥y轴于点G,则PG=﹣a,GD=OG﹣OD=﹣2a﹣3.在Rt△PDG中,由勾股定理得:PG2+GD2=PD2,即:(﹣a)2+(﹣2a﹣3)2=32,整理得:5a2+12a=0,解得a=0(舍去)或a=﹣,当a=﹣时,﹣2a﹣2=,∴P(﹣,).点评:本题是二次函数综合题型,考查了二次函数与一次函数的图象与性质、梯形及梯形中位线、勾股定理、相似三角形、一元二次方程等知识点,有一定的难度.第(2)问中,注意根的判别式的应用,第(3)问中,注意根与系数关系的应用.。

2013年湖北省武汉市中考数学试题(含答案)

2013年湖北省武汉市中考数学试题(含答案)

2013年武汉市中考数学参考答案二、填空题 11.2212.28 13.51096.6⨯ 14.20 15.-12 16.15- 三、解答题17.(本题满分6分)解:方程两边同乘以()3-x x ,得()332-=x x 解得9=x .经检验, 9=x 是原方程的解. 18.(本题满分6分)解:∵直线b x y +=2经过点(3,5)∴b +⨯=325.∴1-=b .即不等式为12-x ≥0,解得x ≥21. 19.(本题满分6分)证明:∵BE =CF ,∴BE+EF =CF+EF ,即BF =CE . 在△ABF 和△DCE 中,⎪⎩⎪⎨⎧=∠=∠=CE BF C B DC AB∴△ABF ≌△DCE , ∴∠A =∠D . 20.(本题满分7分)解:(1)设两把不同的锁分别为A 、B ,能把两锁打开的钥匙分别为a 、b ,其余两把钥匙分别为m 、n ,根据题意,可以画出如下树形图:由上图可知,上述试验共有8种等可能结果.(列表法参照给分)(2)由(1)可知,任意取出一把钥匙去开任意一把锁共有8种可能的结果,一次打开锁的结果有2种,且所有结果的可能性相等. ∴P (一次打开锁)=4182=.ab m nn m b A Ba21.(本题满分7分)(1)画出△A 1B 1C 如图所示:(2)旋转中心坐标(23,1-);(3)点P 的坐标(-2,0).22.(本题满分8分) (1)证明:∵弧BC =弧BC ,∴∠BAC =∠BPC =又∵AB =AC ,∴△ABC 为等边三角形∴∠ACB =60°,∵点P 是弧AB 的中点,∴∠ACP =30°,又∠APC =∠ABC =60°,∴AC =3AP .(2)解:连接AO 并延长交PC 于F ,过点E 作EG ⊥AC 于G ,连接OC . ∵AB =AC ,∴AF ⊥BC ,BF =CF .∵点P 是弧AB 中点,∴∠ACP =∠PCB ,∴EG =EF . ∵∠BPC =∠FOC ,∴sin ∠FOC =sin ∠BPC=2524. 设FC =24a ,则OC =OA =25a , ∴OF =7a ,AF =32a .在Rt △AFC 中,AC 2=AF 2+FC 2,∴AC =40a .在Rt △AGE 和Rt △AFC 中,sin ∠FAC =ACFCAE EG =, ∴aaEG a EG 402432=-,∴EG =12a . ∴tan ∠PAB =tan ∠PCB=212412==a a CF EF .23.(本题满分10分)解:(1)选择二次函数,设c bx ax y ++=2,得⎪⎩⎪⎨⎧=++=+-=4124492449c b a c b a c ,解得⎪⎩⎪⎨⎧=-=-=4921c b a∴y 关于x 的函数关系式是4922+--=x x y .不选另外两个函数的理由:注意到点(0,49)不可能在任何反比例函数图象上,所以y 不是x 的反比例函数;点(-4,41),(-2,49),(2,41)不在同一直线上,所以y 不是x 的一次函数. (2)由(1),得4922+--=x x y ,∴()5012++-=x y ,∵01<-=a ,∴当1-=x 时,y 有最大值为50. 即当温度为-1℃时,这种植物每天高度增长量最大. (3)46<<-x .第21题图第22(2)题图24.(本题满分10分)(1)证明:∵四边形ABCD 是矩形,∴∠A =∠ADC =90°, ∵DE ⊥CF ,∴∠ADE =∠DCF ,∴△ADE ∽△DCF ,∴DCADCF DE =. (2)当∠B+∠EGC =180°时,DCADCF DE =成立,证明如下: 在AD 的延长线上取点M ,使CM =CF ,则∠CMF =∠CFM . ∵AB ∥CD ,∴∠A =∠CDM , ∵∠B+∠EGC =180°, ∴∠AED =∠FCB ,∴∠CMF =∠AED .∴△ADE ∽△DCM ,∴DCADCM DE =,即DC AD CF DE =. (3)2425=CF DE .25.(本题满分12分)解:(1)依题意,得⎪⎩⎪⎨⎧=+-=.,23212x y x y 解得⎪⎪⎩⎪⎪⎨⎧=-=492311y x ,⎩⎨⎧==1122y x∴A (23-,49),B (1,1). (2)①A 1(-1,1),A 2(-3,9).②过点P 、B 分别作过点A 且平行于x 轴的直线的垂线,垂足分别为G 、H.设P (a ,22--a ),A (m ,2m ),∵PA =PB ,∴△PAG ≌△BAH , ∴AG =AH ,PG =BH ,∴B (a m -2,2222++a m ), 将点B 坐标代入抛物线2x y =,得0224222=--+-a a am m , ∵△=()()081816168228162222>++=++=---a a a a a a∴无论a 为何值时,关于m 的方程总有两个不等的实数解,即对于任意给定的 点P ,抛物线上总能找到两个满足条件的点A .(3)设直线m :()0≠+=k b kx y 交y 轴于D ,设A (m ,2m ),B (n ,2n ).过A 、B 两点分别作AG 、BH 垂直x 轴于G 、H . ∵△AOB 的外心在AB 上,∴∠AOB =90°, 由△AGO ∽△OHB ,得BHOHOG AG =,∴1-=mn . 联立⎩⎨⎧=+=2xy b kx y 得02=--b kx x ,依题意,得m 、n 是方程02=--b kx x 的两MEG F DCBA第24题图②根,∴b mn -=,∴1-=b ,即D (0,1). ∵∠BPC =∠OCP ,∴DP =DC =3.P设P (a ,22--a ),过点P 作PQ ⊥y 轴于Q ,在Rt △PDQ 中,222PD DQ PQ =+,∴()2223122=---+a a .∴01=a (舍去),5122-=a ,∴P (512-,514). ∵PN 平分∠MNQ ,∴PT =NT ,∴()t t t -=+-22212,。

江苏省2013年中考数学试卷及答案

江苏省2013年中考数学试卷及答案

江苏省2013年中考数学试卷说明:1. 本试卷共6页,包含选择题(第1题~第8题,共8题)、非选择题(第9题~第28题,共20题)两部分.本卷满分150分,考试时间为120分钟.考试结束后,请将本试卷和答题卡一并交回.2. 答题前,考生务必将本人的姓名、准考证号填写在答题卡相应的位置上,同时务必在试卷的装订线内将本人的姓名、准考证号、毕业学校填写好,在试卷第一面的右下角填写好座位号.3. 所有的试题都必须在专用的“答题卡”上作答,选择题用2B 铅笔作答、非选择题在指定位置用0.5毫米黑色水笔作答.在试卷或草稿纸上答题无效. 4. 作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号涂在答题卡相应位置.......上) 1.2-的相反数是( ) A .2B .2-C .12D .12-2.计算23()a 的结果是( ) A .5aB .6aC .8aD .23a3.如图,数轴上A B 、两点分别对应实数a b 、, 则下列结论正确的是( ) A .0a b +> B .0ab > C .0a b ->D .||||0a b ->4.下面四个几何体中,左视图是四边形的几何体共有( )A .1个B .2个C .3个D .4个5.如图,在55⨯方格纸中,将图①中的三角形甲平移到图②中所示的位置,与三角形乙拼成一个矩形,那么,下面的平 移方法中,正确的是( )A .先向下平移3格,再向右平移1格B .先向下平移2格,再向右平移1格C .先向下平移2格,再向右平移2格D .先向下平移3格,再向右平移2格(第3题)圆柱 圆锥 球 正方体 (第5题) 图②图①商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是( ) A .平均数 B .众数 C .中位数 D .方差 7.如图,给出下列四组条件:①AB DE BC EF AC DF ===,,; ②AB DE B E BC EF =∠=∠=,,; ③B E BC EF C F ∠=∠=∠=∠,,;④AB DE AC DF B E ==∠=∠,,.其中,能使ABC DEF △≌△的条件共有( )A .1组B .2组C .3组D .4组 8.下面是按一定规律排列的一列数: 第1个数:11122-⎛⎫-+ ⎪⎝⎭; 第2个数:2311(1)(1)1113234⎛⎫⎛⎫---⎛⎫-+++ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭; 第3个数:234511(1)(1)(1)(1)11111423456⎛⎫⎛⎫⎛⎫⎛⎫-----⎛⎫-+++++ ⎪⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭; ……第n 个数:232111(1)(1)(1)111112342n n n -⎛⎫⎛⎫⎛⎫----⎛⎫-++++ ⎪⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭.那么,在第10个数、第11个数、第12个数、第13个数中,最大的数是( )A .第10个数B .第11个数C .第12个数D .第13个数二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 9.计算2(3)-= .10x 的取值范围是 .11.江苏省的面积约为102 600km 2,这个数据用科学记数法可表示为 km 2. 12.反比例函数1y x=-的图象在第 象限. 13.某县2008年农民人均年收入为7 800元,计划到2010年,农民人均年收入达到9 100元.设人均年收入的平均增长率为x ,则可列方程 . 14.若2320a a --=,则2526a a +-= .15.如图,一个圆形转盘被等分成五个扇形区域,上面分别标有数字1、2、3、4、5,转盘指针的位置固定,转动转盘后任其自由停止.转动转A CB DF E (第7题)盘一次,当转盘停止转动时,记指针指向标有偶数所在区域的概率为P (偶数),指针指向标有奇数所在区域的概率为P (奇数),则P (偶数) P (奇数)(填“>”“<”或“=”).16.如图,AB 是O ⊙的直径,弦CD AB ∥.若65ABD ∠=°,则ADC ∠= . 17.已知正六边形的边长为1cm ,分别以它的三个不相邻的顶点为圆心,1cm 长为半径画弧(如图),则所得到的三条弧的长度之和为 cm (结果保留π).18.如图,已知EF 是梯形ABCD 的中位线,DEF △的面积为24cm ,则梯形ABCD 的面积为 cm 2.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤) 19.(本题满分8分)计算: (1)0|2|(1--(2)2121a a a a a -+⎛⎫-÷ ⎪⎝⎭.20.(本题满分8分)某市对九年级学生进行了一次学业水平测试,成绩评定分A 、B 、C 、D 四个等第.为了解这次数学测试成绩情况,相关部门从该市的农村、县镇、城市三类群体的学生中共抽取2 000名学生的数学成绩进行统计分析,相应数据的统计图表如下:(1)请将上面表格中缺少的三个数据补充完整;(2)若该市九年级共有60 000名学生参加测试,试估计该市学生成绩合格以上(含合格)的人数. 21.(本题满分8分)一家医院某天出生了3个婴儿,假设生男生女的机会相同,那么这3个婴儿中,出现1个男婴、2个女婴的概率是多少?22.(本题满分8分)一辆汽车从A 地驶往B 地,前13路段为普通公路,其余路段为高速公路.已知汽车在普通公路上行驶的速度为60km/h ,在高速公路上行驶的速度为100km/h ,A D EB CF (第16题) (第17题) (第18题) 各类学生人数比例统计图(注:等第A 、B 、C 、D 分别代表优秀、良好、合格、不合格) 各类学生成绩人数比例统计表汽车从A 地到B 地一共行驶了2.2h .请你根据以上信息,就该汽车行驶的“路程”或“时间”,提出一个用二元一次方程组.......解决的问题,并写出解答过程. 23.(本题满分10分)如图,在梯形ABCD 中,AD BC AB DE AF DC E F ∥,∥,∥,、两点在边BC 上,且四边形AEFD 是平行四边形. (1)AD 与BC 有何等量关系?请说明理由;(2)当AB DC =时,求证:ABCD是矩形.24.(本题满分10分)如图,已知二次函数221y x x =--的图象的顶点为A .二次函数2y ax bx =+的图象与x 轴交于原点O 及另一点C ,它的顶点B 在函数221y x x =--的图象的对称轴上.(1)求点A 与点C 的坐标;(2)当四边形AOBC 为菱形时,求函数2y ax bx =+的关系式.25.(本题满分10分)如图,在航线l 的两侧分别有观测点A 和B ,点A 到航线l 的距离为2km ,点B 位于点A 北偏东60°方向且与A 相距10km 处.现有一艘轮船从位于点B 南偏西76°方向的C 处,正沿该航线自西向东航行,5min 后该轮船行至点A 的正北方向的D 处.(1)求观测点B 到航线l 的距离;(2)求该轮船航行的速度(结果精确到0.1km/h ).1.73,sin 760.97°≈, cos 760.24°≈,tan 76 4.01°≈)AD C B26.(本题满分10分) (1)观察与发现小明将三角形纸片()ABC AB AC >沿过点A 的直线折叠,使得AC 落在AB 边上,折痕为AD ,展开纸片(如图①);再次折叠该三角形纸片,使点A 和点D 重合,折痕为EF ,展平纸片后得到AEF △(如图②).小明认为AEF △是等腰三角形,你同意吗?请说明理由.(2)实践与运用将矩形纸片ABCD 沿过点B 的直线折叠,使点A 落在BC 边上的点F 处,折痕为BE (如图③);再沿过点E 的直线折叠,使点D 落在BE 上的点D '处,折痕为E G (如图④);再展平纸片(如图⑤).求图⑤中α∠的大小.27.(本题满分12分)某加油站五月份营销一种油品的销售利润y (万元)与销售量x (万升)之间函数关系的图象如图中折线所示,该加油站截止到13日调价时的销售利润为4万元,截止至15日进油时的销售利润为5.5万元.(销售利润=(售价-成本价)×销售量)请你根据图象及加油站五月份该油品的所有销售记录提供的信息,解答下列问题: (1)求销售量x 为多少时,销售利润为4万元; (2)分别求出线段AB 与BC 所对应的函数关系式;(3)我们把销售每升油所获得的利润称为利润率,那么,在O A 、AB 、BC 三段所表示的销售信息中,哪一段的利润率最大?(直接写出答案)28.(本题满分12分)如图,已知射线DE 与x 轴和y 轴分别交于点(30)D ,和点(04)E ,.动点C 从点(50)M ,出发,以1个单位长度/秒的速度沿x 轴向左作匀速运动,与此同时,动A C D 图① A C D 图②F EE D CF B A 图③ E D C A B FG 'D ' A DE C BF α图④ 图⑤ 1日:有库存6万升,成本价4元/升,售价5元/升.13日:售价调整为5.5元/升.15日:进油4万升,成本价4.5元/升.31日:本月共销售10万升. 五月份销售记录(万升)点P 从点D 出发,也以1个单位长度/秒的速度沿射线DE 的方向作匀速运动.设运动时间为t 秒.(1)请用含t 的代数式分别表示出点C 与点P 的坐标; (2)以点C 为圆心、12t 个单位长度为半径的C ⊙与x 轴交于A 、B 两点(点A 在点B 的左侧),连接P A 、PB .①当C ⊙与射线DE 有公共点时,求t 的取值范围; ②当PAB △为等腰三角形时,求t 的值.。

2013年武汉市中考数学试题及答案

2013年武汉市中考数学试题及答案

2013年武汉市初中毕业生学业考试数学试卷亲爱的同学,在你答题前,请认真阅读下面的注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分组成,全卷共6页,三大题,满分120,考试用时120分钟.2.答题前,请将你的姓名、准考证号码填写在“答题卡”相应的位置,并在“答题卡”背面左上角填写姓名和座位号.3.答第Ⅰ卷(选择题)时,选出每小题答案后,用2B铅笔把“答题卡”上对应题目的答案标号涂黑,如需改动用橡皮擦干净后,再选涂其他答案,不得答在......“.试卷..”.上。

4.答第Ⅱ卷(非选择题)时,答案用0.5毫米黑色笔迹签字笔书写在“答题卡”上,答在..“.试卷..”.上无效...。

5.认真阅读答题卡上的注意事项。

预祝你取得优异的成绩!第Ⅰ卷(选择题共30分)一、选择题:(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个是正确的,请在答题卡上将正确答案的代号涂黑.1.下列各数中最大的是A.-3B.0C.1D.22.式子√x−1在实数范围内有意义,则x的取值范围是A.x<1 B.x≥1C.x≤-1 D.x<-13.不等式组{x+2≥0|的解集是A.-2≤x≤1B.-2<x<1 C.x≤-1 D.X>24.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机的从袋子中摸出三个球,下列事件中是必然事件的是A.摸出的三个球中至少有一个球是黑球B.摸出的三年球中至少有一个球是白球C.摸出的三个球中至少有两个球是黑球D.摸出的三个球中至少有两个球是白球5.若x1、x2是一元二次方程x2−2x+3=0的两个根,则x1x2的值是A.-2 B.-3 C.2 D.36.如图,△ABC中,AB=AC,∠A=36°,BD是AC边上的高,则∠DBC的度数是A.18°B.24°C.30°D.36°7.如图是由四个大小相同的正方体组合而成的几何体,其主视图是8.两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,……,那么六条直线最多有A.21个交点B.18个交点C.15个交点D.10个交点9.为了解学生课外阅读的喜好,某校从八年级随机抽取部分学生进行问卷调查,调查要求每人只选取一种喜欢的书籍,如果没有喜欢的书籍,则作“其他”类统计,图(1)与图(2)是整理数据后绘制的两幅不完整的统计图,以下结论不正确...的是A.由这两个统计图可知喜“科普常识”的学生有90人.B.若该年级共有1200名学生,则由这两个统计图可估计喜爱“科普常识”学生约有360人.C.由这两个统计图不能确定喜欢“小说”的学生人数D.在扇形统计图中,“漫画”所在的扇形的圆心角为72°10.如图,⊙A与⊙B外切于点D,PC、PD、PE分别是圆的切线,C、D、E是切点,若∠CDE=x°,∠ECD=y°,⊙B的半径为R,则弧DE的长度是A.π(90−x)R90B.π(90−y)R90C.π(180−x)R180D.π(180−y)R180第Ⅱ卷(非选择题,共90分)11.计算:cos45°=.12.在2013年体育中考中,某校6名学生的分数分别是27、28、29、28、26、28,这组数据的众数是.13.太阳的半径约为696000千米,用科学计数法表示数696000为.14.设甲、乙两车在同一直线公路上匀速行驶,开始甲车在乙车的前面,当乙车追上甲车后,两车停下来,把乙车的货物转给甲车,然后甲车继续前行,乙车向原地返回,设x秒后两车的距离为y米,y关于x的函数关系如图所示,则甲车的速度是米/秒。

2013年江苏省南通市中考数学试卷及答案解析

2013年江苏省南通市中考数学试卷及答案解析

2013年江苏省南通市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)下列各数中,小于﹣3的数是()A.2B.1C.﹣2D.﹣42.(3分)某市2013年参加中考的考生人数约为85000人,将85000用科学记数法表示为()A.8.5×104B.8.5×105C.0.85×104D.0.85×105 3.(3分)下列计算,正确的是()A.x4﹣x3=x B.x6÷x3=x2C.x•x3=x4D.(xy3)2=xy6 4.(3分)如图所示的几何图形中,既是轴对称图形又是中心对称图形的个数是()A.4B.3C.2D.15.(3分)有3cm,6cm,8cm,9cm的四条线段,任选其中的三条线段组成一个三角形,则最多能组成三角形的个数为()A.1B.2C.3D.4中,自变量x的取值范围是()6.(3分)函数y=√x−1A.x>1B.x≥1C.x>﹣2D.x≥﹣2̂是()7.(3分)如图,用尺规作出∠OBF=∠AOB,作图痕迹MNA.以点B为圆心,OD为半径的弧B.以点B为圆心,DC为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DC为半径的弧8.(3分)用如图所示的扇形纸片制作一个圆锥的侧面,要求圆锥的高是4cm,底面周长是6πcm,则扇形的半径为()A.3cm B.5cm C.6cm D.8cm9.(3分)小李与小陆从A地出发,骑自行车沿同一条路行驶到B地,他们离出发地的距离S(单位:km)和行驶时间t(单位:h)之间的函数关系的图象如图所示,根据图中提供的信息,有下列说法:(1)他们都行驶了20km;(2)小陆全程共用了1.5h;(3)小李与小陆相遇后,小李的速度小于小陆的速度;(4)小李在途中停留了0.5h.其中正确的有()A.4个B.3个C.2个D.1个10.(3分)如图.Rt△ABC内接于⊙O,BC为直径,AB=4,AC=3,D是AB̂的中点,CD与AB的交点为E,则CEDE等于()A.4B.3.5C.3D.2.8二、填空题(本大题共8小题,每小题3分,共24分.不需要写出解答过程,请把答案直接填写在答题卡相应位置上)11.(3分)若反比例函数y=kx的图象经过点A(1,2),则k=.12.(3分)如图,直线AB,CD相交于点O,OE⊥AB,∠BOD=20°,则∠COE等于度.13.(3分)一个几何体的主视图、俯视图和左视图都是大小相同的圆,则这个几何体是.14.(3分)如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=2,AC=3,则sin B 的值是.15.(3分)已知一组数据5,8,10,x,9的众数是8,那么这组数据的方差是.16.(3分)如图,经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),则不等式4x+2<kx+b<0的解集为.17.(3分)如图,在▱ABCD中,AB=6cm,AD=9cm,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=4√2cm,则EF+CF的长为cm.18.(3分)已知x=2m+n+2和x=m+2n时,多项式x2+4x+6的值相等,且m﹣n+2≠0,则当x=3(m+n+1)时,多项式x2+4x+6的值等于.三、解答题(本大题共10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(11分)(1)计算:√6÷√2÷(π−5.3)0−|−3|;(2)先化简,再求代数式的值:(1−1m+2)÷m 2+2m+1m 2−4,其中m =1.20.(9分)在平面直角坐标系xOy 中,已知A (﹣1,5),B (4,2),C (﹣1,0)三点. (1)点A 关于原点O 的对称点A ′的坐标为 ,点B 关于x 轴的对称点B ′的坐标为 ,点C 关于y 轴的对称点C 的坐标为 . (2)求(1)中的△A ′B ′C ′的面积.21.(8分)某水果批发市场将一批苹果分为A ,B ,C ,D 四个等级,统计后将结果制成条形图,已知A 等级苹果的重量占这批苹果总重量的30%. 回答下列问题:(1)这批苹果总重量为 kg ; (2)请将条形图补充完整;(3)若用扇形图表示统计结果,则C 等级苹果所对应扇形的圆心角为 度.22.(10分)在不透明的袋子中有四张标着数字1,2,3,4的卡片,小明、小华两人按照各自的规则玩抽卡片游戏. 小明画出树状图如图所示:小华列出表格如下: 第一次 第二次 12341(1,1)(2,1)(3,1)(4,1)2(1,2)(2,2)①(4,2)3(1,3)(2,3)(3,3)(4,3)4(1,4)(2,4)(3,4)(4,4)回答下列问题:(1)根据小明画出的树形图分析,他的游戏规则是,随机抽出一张卡片后(填“放回”或“不放回”),再随机抽出一张卡片;(2)根据小华的游戏规则,表格中①表示的有序数对为;(3)规定两次抽到的数字之和为奇数的获胜,你认为谁获胜的可能性大?为什么?23.(8分)若关于x的不等式组{x2+x+13>03x+5a+4>4(x+1)+3a恰有三个整数解,求实数a的取值范围.24.(8分)如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE.求证:四边形BCDE是矩形.25.(8分)如图,△ABC内接于⊙O,AB是⊙O的直径,∠BAC=2∠B,⊙O的切线AP 与OC的延长线相交于点P,若P A=6√3cm,求AC的长.26.(8分)某公司营销A、B两种产品,根据市场调研,发现如下信息:信息1:销售A种产品所获利润y(万元)与销售产品x(吨)之间存在二次函数关系y =ax2+bx.在x=1时,y=1.4;当x=3时,y=3.6.信息2:销售B种产品所获利润y(万元)与销售产品x(吨)之间存在正比例函数关系y=0.3x.根据以上信息,解答下列问题;(1)求二次函数解析式;(2)该公司准备购进A、B两种产品共10吨,请设计一个营销方案,使销售A、B两种产品获得的利润之和最大,最大利润是多少?27.(13分)如图,在Rt△ABC中,∠ACB=90°,AC=√3,BC=3,△DEF是边长为a (a为小于3的常数)的等边三角形,将△DEF沿AC方向平移,使点D在线段AC上,DE∥AB,设△DEF与△ABC重叠部分的周长为T.(1)求证:点E到AC的距离为一个常数;(2)若AD=14,当a=2时,求T的值;(3)若点D运动到AC的中点处,请用含a的代数式表示T.28.(13分)如图,直线y=kx+b(b>0)与抛物线y=18x2相交于点A(x1,y1),B(x2,y2)两点,与x轴正半轴相交于点D,与y轴相交于点C,设△OCD的面积为S,且kS+32=0.(1)求b的值;(2)求证:点(y1,y2)在反比例函数y=64x的图象上;(3)求证:x1•OB+y2•OA=0.2013年江苏省南通市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)下列各数中,小于﹣3的数是()A.2B.1C.﹣2D.﹣4【解答】解:A、2>﹣3,故本选项错误;B、1>﹣3,故本选项错误;C、∵|﹣2|=2,|﹣3|=3,∴﹣2>﹣3,故本选项错误;D、∵|﹣4|=4,|﹣3|=3,∴﹣4<﹣3,故本选项正确;故选:D.2.(3分)某市2013年参加中考的考生人数约为85000人,将85000用科学记数法表示为()A.8.5×104B.8.5×105C.0.85×104D.0.85×105【解答】解:85 000=8.5×104.故选:A.3.(3分)下列计算,正确的是()A.x4﹣x3=x B.x6÷x3=x2C.x•x3=x4D.(xy3)2=xy6【解答】解:A、本选项不能合并,错误;B、x6÷x3=x3,本选项错误;C、x•x3=x4,本选项正确;D、(xy3)2=x2y6,本选项错误.故选:C.4.(3分)如图所示的几何图形中,既是轴对称图形又是中心对称图形的个数是()A.4B.3C.2D.1【解答】解:第一个图形是轴对称图形,不是中心对称图形;第二个图形是轴对称图形,不是中心对称图形;第三个图形是轴对称图形,也是中心对称图形;第四个图形是轴对称图形,不是中心对称图形;第五个图形是轴对称图形,也是中心对称图形;综上所述,第三个和第五个图形既是中心对称图形又是轴对称图形,共2个.故选:C.5.(3分)有3cm,6cm,8cm,9cm的四条线段,任选其中的三条线段组成一个三角形,则最多能组成三角形的个数为()A.1B.2C.3D.4【解答】解:四条线段的所有组合:3,6,8和3,6,9和6,8,9和3,8,9;只有3,6,8和6,8,9;3,8,9能组成三角形.故选:C.6.(3分)函数y=x+2√x−1中,自变量x的取值范围是()A.x>1B.x≥1C.x>﹣2D.x≥﹣2【解答】解:根据题意得:x﹣1>0,解得:x>1.故选:A.7.(3分)如图,用尺规作出∠OBF=∠AOB,作图痕迹MN̂是()A.以点B为圆心,OD为半径的弧B.以点B为圆心,DC为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DC为半径的弧【解答】解:作∠OBF=∠AOB的作法,由图可知,①以点O为圆心,以任意长为半径画圆,分别交射线OA、OB于点C,D;②以点B为圆心,以OC为半径画圆,分别交射线BO于点E;③以点E为圆心,以CD为半径画弧MN,交前弧于点F,作射线BF即可得出∠OBF,则∠OBF=∠AOB.故选:D.8.(3分)用如图所示的扇形纸片制作一个圆锥的侧面,要求圆锥的高是4cm,底面周长是6πcm,则扇形的半径为()A.3cm B.5cm C.6cm D.8cm【解答】解:∵底面周长是6πcm,∴底面的半径为3cm,∵圆锥的高为4cm,∴圆锥的母线长为:√32+42=5(cm)∴扇形的半径为5cm,故选:B.9.(3分)小李与小陆从A地出发,骑自行车沿同一条路行驶到B地,他们离出发地的距离S(单位:km)和行驶时间t(单位:h)之间的函数关系的图象如图所示,根据图中提供的信息,有下列说法:(1)他们都行驶了20km;(2)小陆全程共用了1.5h;(3)小李与小陆相遇后,小李的速度小于小陆的速度;(4)小李在途中停留了0.5h.其中正确的有()A.4个B.3个C.2个D.1个【解答】解:(1)根据图象的纵坐标可得:他们都行驶了20km,故原说法正确;(2)根据图象可得:小陆全程共用了:2﹣0.5=1.5h,故原说法正确;(3)根据图象可得:小李与小陆相遇后,他们距离目的地有相同的路程,但是小陆用1个小时到B地,小李用1.5个小时到B地,所以小李的速度小于小陆的速度,故原说法正确;(4)根据图象可得:表示小李的S﹣t图象从0.5时开始到1时结束,时间在增多,而路程没有变化,说明此时在停留,停留了1﹣0.5=0.5小时,故原说法正确.故选:A.10.(3分)如图.Rt△ABC内接于⊙O,BC为直径,AB=4,AC=3,D是AB̂的中点,CD与AB的交点为E,则CEDE等于()A.4B.3.5C.3D.2.8【解答】解:连接DO,交AB于点F,∵D是AB̂的中点,∴DO⊥AB,AF=BF,∵AB=4,∴AF=BF=2,∴FO是△ABC的中位线,AC∥DO,∵BC为直径,AB=4,AC=3,∴BC=5,FO=12AC=1.5,∴DO=2.5,∴DF=2.5﹣1.5=1,∵AC∥DO,∴△DEF∽△CEA,∴CEDE =ACFD,∴CEDE =31=3.故选:C.二、填空题(本大题共8小题,每小题3分,共24分.不需要写出解答过程,请把答案直接填写在答题卡相应位置上)11.(3分)若反比例函数y=kx的图象经过点A(1,2),则k=2.【解答】解:∵反比例函数y=kx的图象经过点A(1,2),∴k=1×2=2,故答案为:2.12.(3分)如图,直线AB,CD相交于点O,OE⊥AB,∠BOD=20°,则∠COE等于70度.【解答】解:∵∠BOD=20°,∴∠AOC=∠BOD=20°,∵OE⊥AB,∴∠AOE=90°,∴∠COE=90°﹣20°=70°,故答案为:70.13.(3分)一个几何体的主视图、俯视图和左视图都是大小相同的圆,则这个几何体是球体.【解答】解:球的主视图、左视图、俯视图都是圆,故答案为:球体.14.(3分)如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=2,AC=3,则sin B的值是34.【解答】解:∵Rt △ABC 中,CD 是斜边AB 上的中线,CD =2, ∴AB =2CD =4, 则sin B =ACAB =34. 故答案为:34.15.(3分)已知一组数据5,8,10,x ,9的众数是8,那么这组数据的方差是 2.8 . 【解答】解:∵一组数据5,8,10,x ,9的众数是8, ∴x 是8,∴这组数据的平均数是(5+8+10+8+9)÷5=8, ∴这组数据的方差是:15[(5﹣8)2+(8﹣8)2+(10﹣8)2+(8﹣8)2+(9﹣8)2]=2.8.故答案为:2.8.16.(3分)如图,经过点B (﹣2,0)的直线y =kx +b 与直线y =4x +2相交于点A (﹣1,﹣2),则不等式4x +2<kx +b <0的解集为 ﹣2<x <﹣1 .【解答】解:∵经过点B (﹣2,0)的直线y =kx +b 与直线y =4x +2相交于点A (﹣1,﹣2),∴直线y =kx +b 与直线y =4x +2的交点A 的坐标为(﹣1,﹣2),直线y =kx +b 与x 轴的交点坐标为B (﹣2,0), 又∵当x <﹣1时,4x +2<kx +b , 当x >﹣2时,kx +b <0,∴不等式4x +2<kx +b <0的解集为﹣2<x <﹣1.故答案为:﹣2<x<﹣1.17.(3分)如图,在▱ABCD中,AB=6cm,AD=9cm,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=4√2cm,则EF+CF的长为5cm.【解答】解:∵AE平分∠BAD,∴∠DAE=∠BAE;又∵AD∥BC,∴∠BEA=∠DAE=∠BAE,∴AB=BE=6cm,∴EC=9﹣6=3(cm),∵BG⊥AE,垂足为G,∴AE=2AG.在Rt△ABG中,∵∠AGB=90°,AB=6cm,BG=4√2cm,∴AG=√AB2−BG2=2(cm),∴AE=2AG=4cm;∵EC∥AD,∴EFAE+EF =ECAD=FCFC+CD=39=13,∴EFEF+4=13,FCFC+6=13,解得:EF=2(cm),FC=3(cm),∴EF+CF的长为5cm.故答案为:5.18.(3分)已知x=2m+n+2和x=m+2n时,多项式x2+4x+6的值相等,且m﹣n+2≠0,则当x=3(m+n+1)时,多项式x2+4x+6的值等于3.【解答】解:∵x =2m +n +2和x =m +2n 时,多项式x 2+4x +6的值相等, ∴二次函数y =x 2+4x +6的对称轴为直线x =2m+n+2+m+2n 2=3m+3n+22, 又∵二次函数y =x 2+4x +6的对称轴为直线x =﹣2, ∴3m+3n+22=−2,∴3m +3n +2=﹣4,m +n =﹣2,∴当x =3(m +n +1)=3(﹣2+1)=﹣3时, x 2+4x +6=(﹣3)2+4×(﹣3)+6=3. 故答案为:3.三、解答题(本大题共10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(11分)(1)计算:√6÷√2÷(π−5.3)0−|−3|;(2)先化简,再求代数式的值:(1−1m+2)÷m 2+2m+1m 2−4,其中m =1.【解答】解:(1)√6÷√2÷(π−5.3)0−|−3| =√6÷√2÷1﹣3 =√3−3;(2)(1−1m+2)÷m 2+2m+1m 2−4=m+2−1m+2•(m+2)(m−2)(m+1)2=m−2m+1,当m =1时,原式=−12.20.(9分)在平面直角坐标系xOy 中,已知A (﹣1,5),B (4,2),C (﹣1,0)三点. (1)点A 关于原点O 的对称点A ′的坐标为 (1,﹣5) ,点B 关于x 轴的对称点B ′的坐标为 (4,﹣2) ,点C 关于y 轴的对称点C 的坐标为 (1,0) . (2)求(1)中的△A ′B ′C ′的面积. 【解答】解:(1)∵A (﹣1,5),∴点A 关于原点O 的对称点A ′的坐标为(1,﹣5). ∵B (4,2),∴点B关于x轴的对称点B′的坐标为(4,﹣2).∵C(﹣1,0),∴点C关于y轴的对称点C′的坐标为(1,0).故答案为:(1,﹣5),(4,﹣2),(1,0).(2)如图,∵A′(1,﹣5),B′(4,﹣2),C′(1,0).∴A′C′=|﹣5﹣0|=5,B′D=|4﹣1|=3,∴S△A′B′C′=12A′C′•B′D=12×5×3=7.5,即(1)中的△A′B′C′的面积是7.5.21.(8分)某水果批发市场将一批苹果分为A,B,C,D四个等级,统计后将结果制成条形图,已知A等级苹果的重量占这批苹果总重量的30%.回答下列问题:(1)这批苹果总重量为4000kg;(2)请将条形图补充完整;(3)若用扇形图表示统计结果,则C等级苹果所对应扇形的圆心角为90度.【解答】解:(1)1200÷30%=4000(kg).故这批苹果总重量为4000kg;(2)4000﹣1200﹣1600﹣200=1000(kg ), 将条形图补充为:(3)10004000×360°=90°.故C 等级苹果所对应扇形的圆心角为90度. 故答案为:4000,90.22.(10分)在不透明的袋子中有四张标着数字1,2,3,4的卡片,小明、小华两人按照各自的规则玩抽卡片游戏. 小明画出树状图如图所示:小华列出表格如下: 第一次 第二次 12341 (1,1) (2,1) (3,1) (4,1)2 (1,2) (2,2) ① (4,2)3 (1,3) (2,3) (3,3) (4,3) 4(1,4)(2,4)(3,4)(4,4)回答下列问题:(1)根据小明画出的树形图分析,他的游戏规则是,随机抽出一张卡片后 不放回(填“放回”或“不放回”),再随机抽出一张卡片;(2)根据小华的游戏规则,表格中①表示的有序数对为 (3,2) ;(3)规定两次抽到的数字之和为奇数的获胜,你认为谁获胜的可能性大?为什么? 【解答】解:(1)观察树状图知:第一次摸出的数字没有在第二次中出现, ∴小明的试验是一个不放回试验,(2)观察表格发现其横坐标表示第一次,纵坐标表示第二次,(3)理由如下:∵根据小明的游戏规则,共有12种等可能的结果,数字之和为奇数的有8种, ∴概率为:812=23;∵根据小华的游戏规则,共有16种等可能的结果,数字之和为奇数的有8种, ∴概率为:816=12,∵23>12∴小明获胜的可能性大. 故答案为:不放回;(3,2).23.(8分)若关于x 的不等式组{x 2+x+13>03x +5a +4>4(x +1)+3a恰有三个整数解,求实数a 的取值范围. 【解答】解:解x2+x+13>0,得x >−25;解3x +5a +4>4(x +1)+3a ,得x <2a , ∴不等式组的解集为−25<x <2a .∵关于x 的不等式组{x 2+x+13>03x +5a +4>4(x +1)+3a恰有三个整数解,∴2<2a ≤3, 解得1<a ≤32.24.(8分)如图,AB =AC ,AD =AE ,DE =BC ,且∠BAD =∠CAE . 求证:四边形BCDE 是矩形.【解答】证明:∵∠BAD =∠CAE , ∴∠BAD ﹣∠BAC =∠CAE ﹣∠BAC , ∴∠BAE =∠CAD , ∵在△BAE 和△CAD 中 {AE =AD∠BAE =∠CAD AB =AC∴△BAE ≌△CAD (SAS ), ∴∠BEA =∠CDA ,BE =CD , ∵DE =CB ,∴四边形BCDE 是平行四边形, ∴BE ∥CD , ∵AE =AD , ∴∠AED =∠ADE , ∵∠BEA =∠CDA , ∴∠BED =∠CDE , ∵BE ∥CD ,∴∠CDE +∠BED =180°, ∴∠BED =∠CDE =90°, ∴四边形BCDE 是矩形.25.(8分)如图,△ABC 内接于⊙O ,AB 是⊙O 的直径,∠BAC =2∠B ,⊙O 的切线AP 与OC 的延长线相交于点P ,若P A =6√3cm ,求AC 的长.【解答】解:∵AB 是⊙O 直径, ∴∠ACB =90°, ∵∠BAC =2∠B ,∴∠B =30°,∠BAC =60°, ∵OA =OC ,∴△AOC 是等边三角形, ∴∠AOC =60°,AC =OA , ∵P A 是⊙O 切线, ∴∠OAP =90°,在Rt △OAP 中,P A =6√3cm ,∠AOP =60°, ∴OA =PAtan60°=√3cm√3=6cm , ∴AC =OA =6cm .26.(8分)某公司营销A 、B 两种产品,根据市场调研,发现如下信息:信息1:销售A 种产品所获利润y (万元)与销售产品x (吨)之间存在二次函数关系y =ax 2+bx .在x =1时,y =1.4;当x =3时,y =3.6.信息2:销售B 种产品所获利润y (万元)与销售产品x (吨)之间存在正比例函数关系y =0.3x .根据以上信息,解答下列问题; (1)求二次函数解析式;(2)该公司准备购进A 、B 两种产品共10吨,请设计一个营销方案,使销售A 、B 两种产品获得的利润之和最大,最大利润是多少?【解答】解:(1)∵当x =1时,y =1.4;当x =3时,y =3.6, ∴{a +b =1.49a +3b =3.6, 解得{a =−0.1b =1.5,所以,二次函数解析式为y =﹣0.1x 2+1.5x ;(2)设购进A 产品m 吨,购进B 产品(10﹣m )吨,销售A 、B 两种产品获得的利润之和为W 元,则W =﹣0.1m 2+1.5m +0.3(10﹣m )=﹣0.1m 2+1.2m +3=﹣0.1(m ﹣6)2+6.6,∵﹣0.1<0,∴当m =6时,W 有最大值6.6,∴购进A 产品6吨,购进B 产品4吨,销售A 、B 两种产品获得的利润之和最大,最大利润是6.6万元.27.(13分)如图,在Rt △ABC 中,∠ACB =90°,AC =√3,BC =3,△DEF 是边长为a (a 为小于3的常数)的等边三角形,将△DEF 沿AC 方向平移,使点D 在线段AC 上,DE ∥AB ,设△DEF 与△ABC 重叠部分的周长为T . (1)求证:点E 到AC 的距离为一个常数; (2)若AD =14,当a =2时,求T 的值;(3)若点D 运动到AC 的中点处,请用含a 的代数式表示T .【解答】解:(1)由题意得:tan A =BCAC =√3=√3, ∴∠A =60°. ∵DE ∥AB ,∴∠CDE =∠A =60°.如答图1所示,过点E 作EH ⊥AC 于点H ,则EH =DE •sin ∠CDE =a •√32=√32a . ∴点E 到AC 的距离为一个常数.(2)若AD=14,当a=2时,如答图2所示.设AB与DF、EF分别交于点M、N.∵△DEF为等边三角形,∴∠MDE=60°,由(1)知∠CDE=60°,∴∠ADM=180°﹣∠MDE﹣∠CDE=60°,又∵∠A=60°,∴△ADM为等边三角形,∴DM=AD=1 4.过点M作MG∥AC,交DE于点G,则∠DMG=∠ADM=60°,∴△DMG为等边三角形,∴DG=MG=DM=1 4.∴GE=DE﹣DG=2−14=74.∵∠MGD=∠E=60°,∴MG∥NE,又∵DE∥AB,∴四边形MGEN为平行四边形.∴NE=MG=14,MN=GE=74.∴T=DE+DM+MN+NE=2+14+74+14=174.(3)若点D运动到AC的中点处,分情况讨论如下:①若0<a≤√32,△DEF在△ABC内部,如答图3所示:∴T =3a ;②若√32<a ≤√3,点E 在△ABC 内部,点F 在△ABC 外部,在如答图4所示:设AB 与DF 、EF 分别交于点M 、N ,过点M 作MG ∥AC 交DE 于点G .与(2)同理,可知△ADM 、△DMG 均为等边三角形,四边形MGEN 为平行四边形. ∴DM =DG =NE =AD =√32,MN =GE =DE ﹣DG =a −√32,∴T =DE +DM +MN +NE =a +√32+(a −√32)+√32=2a +√32;③若√3<a <3,点E 、F 均在△ABC 外部,如答图5所示:设AB 与DF 、EF 分别交于点M 、N ,BC 与DE 、EF 分别交于点P 、Q .在Rt △PCD 中,CD =√32,∠CDP =60°,∠DPC =30°,∴PC =CD •tan60°=√32×√3=32.∵∠EPQ =∠DPC =30°,∠E =60°,∴∠PQE =90°.由(1)知,点E 到AC 的距离为√32a ,∴PQ =√32a −32.∴QE =PQ •tan30°=(√32a −32)×√33=12a −√32,PE =2QE =a −√3. 由②可知,四边形MDEN 的周长为2a +√32.∴T =四边形MDEN 的周长﹣PE ﹣QE +PQ =(2a +√32)﹣(a −√3)﹣(12a −√32)+(√32a −32)=√3+12a +2√3−32. 综上所述,若点D 运动到AC 的中点处,T 的关系式为:T ={ 3a(0<a ≤√32)2a +√32(√32<a ≤√3)√3+12a +2√3−32(√3<a <3). 28.(13分)如图,直线y =kx +b (b >0)与抛物线y =18x 2相交于点A (x 1,y 1),B (x 2,y 2)两点,与x 轴正半轴相交于点D ,与y 轴相交于点C ,设△OCD 的面积为S ,且kS +32=0.(1)求b 的值;(2)求证:点(y 1,y 2)在反比例函数y =64x 的图象上;(3)求证:x 1•OB +y 2•OA =0.【解答】(1)解:∵直线y =kx +b (b >0)与x 轴正半轴相交于点D ,与y 轴相交于点C , ∴令x =0,得y =b ;令y =0,x =−b k ,∴△OCD 的面积S =12(−b k )•b =−b 22k . ∵kS +32=0,∴k (−b 22k )+32=0, 解得b =±8,∵b>0,∴b=8;(2)证明:由(1)知,直线的解析式为y=kx+8,即x=y−8 k,将x=y−8k代入y=18x2,得y=18(y−8k)2,整理,得y2﹣(16+8k2)y+64=0.∵直线y=kx+8与抛物线y=18x2相交于点A(x1,y1),B(x2,y2)两点,∴y1,y2是方程y2﹣(16+8k2)y+64=0的两个根,∴y1•y2=64,∴点(y1,y2)在反比例函数y=64x的图象上;(3)方法一:证明:由勾股定理,得OA2=x12+y12,OB2=x22+y22,AB2=(x1﹣x2)2+(y1﹣y2)2,由(2)得y1•y2=64,同理,将y=kx+8代入y=18x 2,得kx+8=18x2,即x2﹣8kx﹣64=0,∴x1•x2=﹣64,∴AB2=x12+x22+y12+y22−2x1•x2﹣2y1•y2=x12+x22+y12+y22,又∵OA2+OB2=x12+y12+x22+y22,∴OA2+OB2=AB2,∴△OAB是直角三角形,∠AOB=90°.如图,过点A作AE⊥x轴于点E,过点B作BF⊥x轴于点F.∵∠AOB=90°,∴∠AOE=90°﹣∠BOF=∠OBF,又∵∠AEO=∠OFB=90°,∴△AEO∽△OFB,∴OA BO =OE BF ,∵OE =﹣x 1,BF =y 2,∴OA BO =−x 1y 2,∴x 1•OB +y 2•OA =0.方法二:分别过A ,B 两点作x 轴垂线,垂足分别为E 、F ,{y =kx +8y =18x2⇒x 2﹣8kx ﹣64=0, ∴x 1=4k ﹣4√k 2+4,x 2=4k +√k 2+4,y 1=4k 2+8﹣4k √k 2+4,y 2=4k 2+8+√k 2+4,∴A (4k ﹣4√k 2+4,4k 2+8﹣4k √k 2+4),B (4k +√k 2+4,4k 2+8+√k 2+4),KOA ×KOB =2√24k−4√k +4×2√24k+4√k +4=4−4=−1< ∴OA ⊥OB ,∠AOE +∠BOF =90°,AE ⊥x 轴,∠AOE +∠OAE =90°, ∴∠BOF =∠OAE ,∵BF ⊥x 轴,∴∠AEO =∠BFO =90°,∴△AEO ∽△BFO ,∴OAOB =OEBF ,∵OE =﹣x 1,BF =y 2,∴x 1•OB +y 2•OA =0.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013长江作业本中考数学
一、选择题(每小题3分,共30分)
1. 椐上海世博会官方网站统计,截止2010年9月21日,上海世博会累计参观人数达到53917700人,将这个数用科学记数法表示为()
A.53.9177×106 B. 5.39177×106 C. 5.39177×107 D. 0. 539177×108
2. 下列函数中是反比例函数的是()
A. y=-2x
B. y = +1
C. y=x-3. D y=
3. 一个不透明的盒子中装有2个白球,5个红球和8个黄球,这些球除颜色外,没有任何其它区别,现从这个盒子中随机摸出一个球,摸到红球的概率为( )
A. B. C. D.
4. 如图,在半径为5的⊙O中,如果弦AB的长为8,那么它的弦心距OC等于()
A. 2
B. 3
C. 4
D. 6
5. 下列函数:①;②;③;④.当时,y随x的增大而减小的函数有()
A.1 个B.2 个C.3 个D.4 个
6. 已知函数的图象与x轴有交点,则k的取值范围是()
A. B. C. 且 D. 且
7. 已知一个矩形的面积为24cm2,其长为ycm,宽为xcm,则y与x之间的函数关系的图象大致是()
A B C D
8. 烟花厂为热烈庆祝“十一国庆”,特别设计制作一种新型礼炮,这种礼炮的升空高度与飞行时间的关系式是,礼炮点火升空后会在最高点处引爆,则这种礼炮能上升的最大高度为()
A.91米B.90米C.81米D.80米
9. 如图,梯形ABCD中,AB∥DC,AB⊥BC,AB=2cm,CD=4cm.以BC上一点O为圆心的圆经过A、D两点,且∠AOD=90°,则圆心O到弦AD的距离是……()
A. cm
B. cm
C. cm
D. cm
10. 如图为抛物线的图像,A、B、C 为抛物线与坐标轴的交点,且OA=OC=1,则下列关系中正确的是()
A.a+b=-1 B.a-b=-1 C.b<2a D.ac<0
第10题图
二、填空题(每小题4分,共24分)
11. 要使式子有意义,则a的取值范围为____________.
12. 抛物线y=x2-2x-3的顶点坐标是
13. 如图, 如果函数y=-x与y= 的图像交于A、B两点, 过点A作AC垂直于y轴, 垂足为点C, 则△BOC的面积为_________.
14. 已知⊙O中,弦AB的长等于半径,P为弦AB所对的弧上一动点,则∠APB的度数为。

15. 根据下列5个图形及相应点的个数的变化规律,试猜测第n个图中有个点.
16. (1) 如图,将抛物线y1=2x2向右平移2个单位,得到抛物线y2的图象,则y2= ;
(2) P是抛物线y2对称轴上的一个动点,直线x=t平行于y轴,分别与直线y=3x、抛物线y2交于点A、B.若△ABP是以点A或点B为直角顶点的等腰直角三角形,求满足条件的t的值,则t=.
三、解答题(共8小题,66分)
17. (本题满分6分)
解不等式组:,并将它的解集在数轴上表示出来。

18. (本题满分6分)已知,与成正比例,与成反比例,并且当时,;当时,,求关于的函数关系式.
19. (本题满分6分)一个反比例函数在第二象限的图象如图所示,点A是图象上任意一点,AM ⊥x轴,垂足为M,O是原点.如果△AOM的面积为3,求出这个反比例函数的解析式.
20. (本题满分8分)如图,已知E、F是□ABCD对角线AC上的两点,且BE⊥AC,DF⊥AC.
(1)求证:△ABE≌△CDF;
(2)请写出图中除△ABE≌△CDF外其余两对全等三角形(不再添加辅助线).
21. (本题满分8分) 如图所示,OA、OB、OC都是圆O的半径,∠AOB=2∠BOC.求证:∠ACB=2∠BAC.
22. (本题满分10分)某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.
(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)
(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?
23. (本题满分10分) 如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A,C分别在坐标轴上,顶点B的坐标为(4,2).过点D(0,3)和E(6,0)的直线分别与AB,BC交于点M,N.
(1)求直线DE的解析式和点M的坐标;
(2)若反比例函数(x>0)的图象经过点M,求该反比例函数的解析式,并通过计算判断点N是否在该函数的图象上;
24. (本题满分12分) 如图,在平面直角坐标系xoy中,矩形ABCD的边AB在x轴上,且AB=3,BC= ,直线y= 经过点C,交y轴于点G,且∠AGO=30°。

(1)点C、D的坐标
(2)求顶点在直线y= 上且经过点C、D的抛物线的解析式;
(3)将(2)中的抛物线沿直线y= 平移,平移后的抛物线交y轴于点F,顶点为点E。

平移后是否存在这样的抛物线,使△EFG为等腰三角形?若存在,请求出此时抛物线的解析式;若
不存在,请说明理由。

九年级数学参考答案
1~10:CDBBB BDABB
11. a≥-2 12. 91,-4) 13. 2 14. 30°或150°(写一个得2分)
15. n-n+1(或n(n-1)+1) 16. ①2x2-8x+8(或2(x-2)2)②5,1,5+132,5-132
17. -4≤x<-1(4分) 数轴上表示得2分18. y=x+6x 19. y=-6x
20. (1)证明过程略(2)△AFD≌△CEB,△ACD≌△CAB(每空2分)
21. 证明:∵∠ACB=12 ∠AOB ∠BAC=12 ∠BOC
又∵∠AOB=2∠BOC ∴∠ACB=2∠BAC
22. (1) (3分)
(2) 解得(2分)又因为要使百姓得实惠,所以应舍去,所以每台冰箱应降价200元(1分)
(3)当x=150时(2分) 最高利润ymax=5000元(2分)
23. (1) (2分) M(2,2)(2分)
(2) (2分) N(4,1)(2分) 点N在函数的图像上(2分)
24. (1)C(4,23 )(2分) D(1,23 )(2分)
(2)顶点(52 ,32 )(2分) 解析式(2分)
(3)EF=EG
GF=EG
GF=EF (一个得2分,二个得3分,三个得4分)。

相关文档
最新文档