煤炭气化技术的进展(论文)
煤气化技术的研究与进展

《东北电力技术》1996年第12期煤气化技术的研究与进展东北电力学院(132012) 张化巧 姜秀民 张靖波 孙键摘 要 文中回顾了煤气化技术的产生及发展过程,阐述了它的应用前景,详细介绍了煤气化技术的发展现状及存在的问题,同时也包括我国学者在这方面的贡献,指出了目前尚待解决的问题和发展方向,最后说明了我国开发这方面研究工作的重要意议。
关键词 煤气化 煤气化技术 流化床1 煤气化技术的产生及应用1.1 煤气化技术的产生煤气化是用气化剂将煤及其干馏产物中的有机物最大限度地转变为煤气的过程。
早在18世纪末期,人们就由煤中获得了煤气,19世纪初形成煤气生产的产业部门。
煤的制气技术从19世纪中叶得到发展,20世纪20年代,出现了煤的多种气化工艺。
1922年,常压流化床粉煤气化的温克勒炉获德国专利,1926年投产。
后来德国又作了增加二次风等方面的改进,提高反应温度和反应空间,并称之为高温温克勒炉。
1955年,第一台加压固定床鲁奇气化炉在德国投产。
1940年,奥地利建成了第一台焦化与气化相结合的两段炉。
1939~1944年期间,第一台常压气化气流床研制成功。
40年代后期,美国开发出气流床气化的德士古气化炉。
20世纪中期,由于丰富的天然气资源通过公用的管线输送广泛地分配到各处,这样由煤所生产的煤气量逐渐减少,一些已建成的煤气化炉也纷纷停产,煤气化技术的发展受到抑制。
20世纪70年代中期,由于注意到石油和天然气储量的日益减少,人们又对煤的气化产生了强烈的兴趣。
70年代初,美国又开发出U-G AS气化炉。
此外,比较成功的煤气化方法还有西屋法、D ow法,Shell法等。
我国自80年代起开始这一领域的研究工作,发表了许多文献。
中科院煤化所于80年代初开始的灰熔聚法流化床气化的研究,目前已进入半工业化试验阶段。
1.2 气化产物的用途煤气化是将煤中可燃物完全转化为气体产物,这些气体产物的潜在用途是:a. 生产天然气的代用品;b. 用作以后生产乙醇、汽油、塑料等的合成气;c. 用作发电的气体燃料;d. 用作生产工业蒸汽和工业用热的气体燃料。
煤炭气化技术的发展与应用潜力

煤炭气化技术的发展与应用潜力煤炭是我国主要的能源资源之一,然而,传统的燃煤方式不仅对环境造成了严重的污染,还浪费了煤炭资源。
为了解决这一问题,煤炭气化技术应运而生。
煤炭气化技术是将煤炭转化为合成气的一种技术,它具有广泛的应用潜力和巨大的经济效益。
首先,煤炭气化技术可以有效减少煤炭资源的浪费。
煤炭气化技术可以将煤炭中的有机物质转化为合成气,而合成气可以用于发电、炼油和化工等领域。
通过煤炭气化技术,我们可以更加充分地利用煤炭资源,减少煤炭的浪费,提高能源利用效率。
其次,煤炭气化技术可以减少环境污染。
相比于传统的燃煤方式,煤炭气化技术可以将煤炭中的硫、氮等有害物质转化为气体,减少了大气污染的产生。
同时,煤炭气化技术还可以通过合成气中的一系列净化工艺,将合成气中的颗粒物、重金属等有害物质去除,达到净化环境的目的。
因此,煤炭气化技术在改善空气质量、保护环境方面具有重要作用。
此外,煤炭气化技术还可以推动能源结构的转型。
目前,我国能源结构仍然以煤炭为主,而煤炭气化技术可以将煤炭转化为合成气,进而用于发电、炼油和化工等领域,实现能源的多元化利用。
通过推广煤炭气化技术,我们可以减少对传统燃煤发电的依赖,提高能源的清洁利用水平,推动能源结构的转型。
此外,煤炭气化技术还可以促进经济发展。
煤炭气化技术的应用可以带动相关产业的发展,创造就业机会,促进经济增长。
同时,煤炭气化技术还可以提高能源利用效率,降低能源成本,提高企业竞争力。
因此,煤炭气化技术的发展与应用潜力巨大。
然而,煤炭气化技术也面临一些挑战。
首先,煤炭气化技术的投资成本较高,需要大量的资金支持。
其次,煤炭气化技术的运行过程中会产生大量的二氧化碳,对气候变化产生负面影响。
因此,如何降低煤炭气化技术的投资成本,同时减少二氧化碳排放,是当前亟待解决的问题。
总之,煤炭气化技术的发展与应用潜力巨大。
通过煤炭气化技术,我们可以更加充分地利用煤炭资源,减少煤炭的浪费,提高能源利用效率。
煤的催化气化技术研究进展

气化反应有较高的催化活性。
朱廷钰用氧化铁作催化剂,也取得了很好的实验效果。
Yeboah等对熔融盐催化剂进行了大量研究。
研究结果显示,熔融盐催化剂的催化活性明显高于单组分催化剂,具体为:三元熔融盐催化剂的催化活性高于二元催化剂的催化活性,二元的催化活性高于单组分的催化活性。
笔者认为其原因是三元熔融盐催化剂熔点低,在汽化温度下为液状,而二元混合物催化剂为固态,三元催化剂更容易扩散于反应体系,且活性点更多,因此,其催化活性更好。
上述催化剂虽然表现出很好的催化活性,但都比较昂贵,且其回收和再利用比较麻烦。
近来不少学者积极进行更廉价,甚至可弃催化剂的研究。
福州大学的洪诗捷等用工业废液碱进行福建无烟煤水蒸气催化气化,研究结果显示,废液碱具有很强的催化活性。
谢克昌和Ohtsuka等均报道了用石灰石进行煤水蒸气气化的研究结果。
此外,Brown等尝试使用快速裂解柳枝稷所得的生物灰(主要含钾盐)作催化剂,也取得了很好的效果。
Zhu等将煤和麦秆通过高温热解制的煤焦进行研究,发现在750℃时制的煤焦有更好的反应活性。
生物质作为未来廉价煤气化催化剂的来源,具有良好的应用前景。
凌开成等研究了高灰煤在CO2中的催化气化,认为高灰煤中所含的灰分对煤的气化反应具有一定的自催化作用,故高灰煤适合于用作气化用煤,而且高灰煤中添加适当的催化剂后,其气化活性可以得到进一步的提高。
他们将化肥厂炉渣用于平朔气煤,发现其具有与Na2CO3相似的催化活性,还将硫铁矿用于西曲焦煤中,发现其具有比K2CO3还要显著的催化活性,因此,凌开成等人认为它们在一定范围内是一种比较好的可弃型高灰煤气化催化剂。
2 催化机理的研究作为一种降低汽化温度,提高气化速率,控制煤气成分的有效气化方式——煤炭催化气化,从1867年英国专利首次提出至今,国内曾就不同优质煤种的催化气化进行了广泛的研究,其中对催化气化机理的研究取得了许多重要结果和进展。
赵新煤的催化气化技术研究进展马涛 吕彦力 周丹 郑州轻工业学院机电工程学院 4500021 催化剂的研究煤气化反应的基本原理表明,煤催化气化的目的在于提高C-H2O、C-CO2、C-O2和C-H2等体系的反应速率。
煤炭气化技术的发展与应用前景分析

煤炭气化技术的发展与应用前景分析近年来,随着全球能源需求的不断增长和环境问题的日益突出,煤炭气化技术作为一种清洁高效的能源转化方式备受关注。
本文将从煤炭气化技术的发展历程、应用领域和前景展望三个方面进行分析。
煤炭气化技术是将煤炭转化为合成气的过程,合成气主要由一氧化碳和氢气组成,可作为化工原料、燃料和电力等多种用途。
煤炭气化技术的发展可以追溯到19世纪末,但直到20世纪上半叶才开始得到广泛应用。
随着石油资源的逐渐枯竭和能源结构的转型,煤炭气化技术受到越来越多的关注和重视。
目前,煤炭气化技术的应用领域主要包括化工、燃料和电力。
在化工领域,合成气可用于生产氨、甲醇、合成油和合成烃等化工产品,为化工工业提供了新的原料来源。
在燃料领域,合成气可用于制备液化石油气(LPG)、液化天然气(LNG)和合成燃料等,满足不同能源需求。
在电力领域,煤炭气化技术可以与燃气轮机或燃气锅炉相结合,提供高效清洁的发电方式,减少对煤炭的直接燃烧,降低二氧化碳等排放物的产生。
然而,煤炭气化技术的应用仍面临一些挑战和难题。
首先,煤炭气化过程中会产生大量的二氧化碳,如何有效地捕获和储存二氧化碳成为一个亟待解决的问题。
其次,煤炭气化技术需要大量的能源投入,如何提高能源利用效率和降低成本是一个重要的研究方向。
此外,煤炭气化技术的应用还面临一些技术难题,如气化剂的选择、气化反应的控制和废气处理等。
尽管面临一些挑战,但煤炭气化技术仍具有广阔的发展前景。
首先,煤炭气化技术可以有效利用煤炭资源,提高能源利用效率,减少对石油和天然气等化石能源的依赖。
其次,煤炭气化技术可以降低燃烧过程中产生的污染物排放,减少对环境的影响,符合可持续发展的要求。
此外,煤炭气化技术还可以为煤炭行业提供新的发展机遇,推动煤炭产业的转型升级。
未来,随着科技的不断进步和创新,煤炭气化技术有望实现更大的突破和应用。
一方面,煤炭气化技术可以与其他新能源技术相结合,如太阳能、风能和生物能等,实现能源的多元化和综合利用。
煤炭气化技术研究与应用

煤炭气化技术研究与应用煤炭作为世界上最主要的化石能源之一,在人类经济发展中起到至关重要的作用。
然而,煤炭的传统燃烧方式不仅对环境造成极大的污染,还有限的化石燃料资源也使人们转向寻找更加清洁、高效利用煤炭资源的方法。
煤炭气化技术应运而生,为煤炭的可持续利用提供了新的机会。
本文将通过对煤炭气化技术的研究与应用进行探讨,以展示其在能源转型和环境保护方面的重要性。
煤炭气化是一种将煤炭转化为燃气或化学品的过程。
它通过高温下将煤炭与一定量的氧气或蒸汽反应,生成合成气(合成气主要由一氧化碳和氢气组成)。
合成气可以用作化学原料,用于生产合成油、合成天然气和合成燃料等。
与传统煤炭燃烧方式相比,煤炭气化具有以下几个重要的优点:首先,煤炭气化可以高效利用煤炭资源。
传统的煤炭燃烧方式在燃烧过程中会产生大量废气和固体废弃物,导致煤炭资源的浪费。
通过气化技术,可以将煤炭的能量有效转化为合成气,实现了能源的高效利用。
其次,煤炭气化可以减少环境污染。
煤炭燃烧产生的废气中含有大量的二氧化碳、硫化物和氮氧化物等有害物质,对大气环境和人体健康造成严重影响。
而煤炭气化过程中,废气会经过处理,二氧化碳可以被捕获和储存,减少二氧化碳排放。
此外,气化产生的合成气可以进一步用于替代高碳热能,减少传统燃煤电厂的污染排放。
再次,煤炭气化可以实现能源转型和经济转型。
随着全球对可再生能源的需求增加,煤炭气化技术可以为能源行业提供一种过渡解决方案,使煤炭得到清洁利用。
合成气可以用于生产更清洁的燃料,如合成天然气和合成柴油,以替代传统的石油燃料。
此外,合成气还可以用于化工行业,生产各种化学品,如合成甲醇、合成氨等。
与此同时,煤炭气化技术也存在一些挑战和限制。
首先,煤炭气化过程需要高温、高压和复杂的设备,需要大量的投资。
这对于一些发展中国家来说可能是一个限制因素,阻碍其推广和应用。
其次,气化过程中会产生大量的废弃物,如气化渣、焦炭等,对环境造成二次污染。
为了解决这个问题,研究者需要在气化技术中加入废弃物处理和利用的方法,实现资源的最大化利用。
【技术】煤炭气化论文

【关键字】技术浅析煤炭气化技术发展及应用马江(中国矿业大学化工学院江苏徐州221008)摘要:由于煤气化在高效、清洁利用煤炭能源方面有重要作用,国外近20年来煤气化能力得到了强劲的发展,我国煤气化在化工原料气、工业以至民用燃料气等方面也一直占有重要地位。
但我国的洁净煤技术总体上还处于起步阶段,煤炭气化工艺的发展还要经历长期的发展过程。
关键词:煤炭、能源、气化技术、气化、应用、发展引言煤炭气化是指在特定的设备内,在一定温度与压力下,煤中的有机质与气化剂发生化学反应将与有机质转化为含CO、H2、CH4等可燃气体和N2、C02等非可燃气体的过程。
气化炉、气化剂与供给热量是煤炭气化的必备条件。
煤气化的产品可作为工业煤气、民用煤气、化工合成和燃料油合成原料气,也可应用于联合循环发电燃气、冶金还原气、煤炭液化气源、燃料电池气源和煤炭气化制氢等。
煤炭气化主要有地面煤气化技术和地下煤气化技术。
2l世纪是能源结构多元化时代,煤炭在能源消费结构中的主导地位不会改变。
专家估计未来二三十年煤炭需求量将会增加。
煤是我国最丰富、最便宜的能源,长期以来保证了我国国民经济的发展、社会的进步和人民生活水平的提高。
但是,煤是植物残体经上亿年的地球化学作用生成的有机矿物,除含碳、氢、氧、氮、硫等母体元素外,还含有硅、铝、铁、钙镁、砷、汞、氯等外部浸染、混杂的矿物质,直接燃烧不仅效率低下而且污染严重,尤其是硫的污染危害非常大。
因此,通过煤气化和液化技术进行洁净化处理非常重要。
1 地面煤气化技术地面煤气化技术有固定床、流化床与气流床三种主要形式。
气化工艺开发集中于提高气化压力、提高气化炉容量、扩大煤种适应性、环境友好、提高碳转化率和提高气化效率和液态排渣等。
主要应用于化工合成、城市煤气生产及联合循环发电。
从当前国外煤气化技术发展趋势看,大型化、加压、适应多种粉煤、低污染、易净化是煤气化的发展方向。
国外新开发的气化炉都采用加压气化工艺,这可提高气化强度,增加单炉的产量,节约压缩能耗,减少带出物损失。
煤气化工艺技术论文

煤气化工艺技术论文煤气化是一种将固体煤转化为可燃性气体燃料的化学过程。
煤气化技术被广泛应用于能源开发和化工领域,可以用于替代传统的燃煤发电和炼油工艺,实现清洁能源的生产和利用。
煤气化工艺技术主要有两种:一种是直接煤气化技术,另一种是间接煤气化技术。
直接煤气化技术是指将煤直接暴露于高温和高压的气氛中,通过化学反应生成煤气。
直接煤气化技术具有高效、节能的特点,但是由于操作条件相对较苛刻,工艺较为复杂,设备投资费用高,因此应用相对较少。
间接煤气化技术是指先将煤通过焦化、气化等预处理工艺转化为焦炭,再将焦炭气化生成煤气。
间接煤气化技术相对直接煤气化技术来说,设备投资较少,操作简单,但是能源利用率较低。
根据实际需求和经济效益,选择合适的煤气化技术是非常重要的。
随着社会对能源和环境问题的日益关注,煤气化技术得到了广泛的应用和发展。
煤气化技术可以有效地降低环境污染物排放,提高能源利用率,实现清洁能源的生产和利用。
在煤气化过程中,煤中的有机物质被分解为低分子量气体,其中含有大量的一氧化碳和氢气。
这些气体可以被用作炼焦、合成油、合成天然气和发电等方面。
同时,煤气化技术还可以生产工业原料,如甲醇、氯化氢等。
这些产品不仅可以替代传统能源,还可以降低对化石燃料的依赖,实现能源结构的多样化。
然而,煤气化过程中还存在一些问题和挑战需要解决。
首先,煤气化过程需要高温和高压的条件,这对设备和设施的稳定性和安全性要求较高。
其次,煤气化过程中会产生大量的副产品和废弃物,对环境造成潜在的污染。
此外,煤气化过程中的化学反应速度较慢,对反应速度的控制和优化是一个复杂的问题。
为了解决这些问题,需要不断进行科学研究和技术创新。
煤气化技术的研究重点包括改进煤的气化性能、设计和开发高效的催化剂、提高反应速率和产气效率等方面。
同时,需要加强环境保护和废弃物处理技术的研究,减少煤气化过程对环境的影响。
此外,还需要加强煤气化工艺的自动化和智能化水平,提高运行效率和安全性。
煤炭气化技术的发展与应用前景展望

煤炭气化技术的发展与应用前景展望随着全球能源需求的不断增长和环境保护意识的提高,寻找替代传统能源的技术和资源已成为当务之急。
在这一背景下,煤炭气化技术作为一种高效、清洁的能源转化方式,引起了广泛关注。
本文将探讨煤炭气化技术的发展历程、应用领域以及未来的前景展望。
煤炭气化技术是将煤炭转化为合成气(一种由一氧化碳和氢气组成的气体)的过程。
这种技术最早在19世纪末开始发展,并在20世纪初实现了工业化应用。
然而,由于当时的技术限制和能源市场的变化,煤炭气化技术并没有得到广泛应用。
随着科技的进步和环境问题的日益突出,煤炭气化技术再次受到重视。
与传统的煤炭燃烧相比,煤炭气化技术具有诸多优势。
首先,煤炭气化可以将煤炭中的有害物质如硫、氮等进行有效去除,减少了大气污染物的排放。
其次,煤炭气化产生的合成气可用作燃料,取代传统的煤炭燃烧,减少了温室气体的排放,对缓解气候变化具有积极意义。
此外,煤炭气化还可以生产化学品和液体燃料,提高能源利用效率。
煤炭气化技术的应用领域广泛,涵盖了能源、化工、冶金等多个领域。
在能源领域,煤炭气化可以用于发电、供热和城市燃气等方面。
煤炭气化发电可以提高煤炭利用效率,减少能源消耗和环境污染。
在化工领域,煤炭气化可以生产合成氨、甲醇、乙二醇等化学品,满足工业生产的需求。
此外,煤炭气化还可以用于冶金行业,生产高纯度的一氧化碳和氢气,用于金属冶炼和合金制备。
然而,煤炭气化技术在实际应用中仍面临一些挑战。
首先,煤炭气化过程需要大量的能源投入,导致能源消耗增加。
其次,煤炭气化废水和废气的处理成本较高,需要进一步研究和改进。
此外,煤炭气化技术的推广和应用还面临技术标准和政策法规等方面的制约。
未来,煤炭气化技术的发展前景仍然广阔。
随着科技的不断进步,煤炭气化技术将更加高效、环保和经济。
煤炭气化技术与可再生能源如风能、太阳能等的结合,可以实现能源的互补和平衡,提供可持续的能源供应。
此外,煤炭气化技术的应用还可以促进区域经济发展和能源结构优化,提高能源安全和国家竞争力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
煤炭气化技术的进展《摘要》:煤炭气化技术是我国煤炭高效洁净利用的关键技术,本文主要阐述了煤炭气化技术的基本原理、过程和发展概况,以及在总结我国多年来研究开发煤气化工艺技术的基础上,对该技术的发展趋势以及发展煤炭气化的必要性进行了相关介绍。
《关键词》:煤炭气化;工业应用;发展现状;发展趋势;Abstract: Coal gasification technology is the key technology of efficient and clean use of coal in our country, this paper describes the basic principle, process and development of coal gasification technology, and based on the summary of our country for many years research and development of coal gasification technology, the necessity of the development trend of the technology and development of coal gasification was introduced.Key words : Coal gasification; Industrial application; Development Status; development trend;引言煤炭气化是指以煤或以煤焦为原料,以氧气(空气,富氧或纯氧)、水蒸气或氢气等作气化剂,在一定温度和压力下通过化学反应将固体煤或煤焦中的可燃部分转化为气体燃料的热化学过程。
本文就煤炭气化技术及发展趋势作简要介绍。
煤炭在我国能源生产与消费结构中一直占主导地位。
煤炭的开发和加工利用已经成为我国环境污染物排放的主要来源。
因此,发展洁净煤技术、提高煤炭利用率是我国能源发展战略的必然选择。
作为洁净、高效利用煤炭的先进技术之一的煤炭气化技术是我国能源领域重点发展对象,是煤炭化工合成、煤炭直接/间接液化、IGCC技术、燃料电池等高新洁净煤利用技术的先导性技术和核心技术。
煤炭气化技术分为地面气化和地下气化2种。
笔者根据自己掌握的煤化工基础理论,结合多年积累的煤气化工作实践经验,着重从工程应用角度对煤气化的发展道路作初步探讨,并提出参考性意见。
1 煤的气化原理及气化工艺1.1 煤炭气化的基本原理及过程在气化炉内,煤炭经历了干燥、干馏、气化和燃烧等几个过程。
干燥:原料煤进人气化炉后受热,大约在200~C煤孔中吸附态或吸藏的气体及水分首先被脱除。
干馏:干馏是脱除挥发分过程,当干燥煤的温度进一步提高,煤中的挥发物从煤中逸出。
气化过程的基本反应:经干馏后得到的半焦与气流中的H2O,CO:,H2:等反应,生成可燃性气体等产物,其主要反应有碳与水蒸气的反应,碳与二氧化碳的反应,甲烷生成反应,变换反应。
燃烧:经气化后残留的半焦与气化剂中的氧进行燃烧。
由于碳与水蒸气、二氧化碳之间的反应都是强烈的吸热反应,因此气化炉内要保持高温才能维持吸热反应的进行。
煤中硫、氮的反应:除了以上反应外,气化过程同时还有s、N等杂原子发生的反应,其反应会引起腐蚀和环境污染,因此须经净化工艺将其脱除。
1.2 煤炭气化工艺煤炭气化工艺按照不同的分类标准有多种分类方法,本文只介绍其中两类。
按煤炭是否需要开采分类:按该标准分为地面气化和地下气化,①地面气化。
煤的地面气化是指原料煤炭预先开采出来,在地面气化炉内进行气化反应生成煤气的过程,目前开发应用的绝大多数属于地面气化;②地下气化。
煤炭地下气化是通过在地下煤层中直接构筑“气化炉”,通入气化剂,有控制地使煤炭在地下进行气化反应,使煤炭在原地自然状态下转化为可燃气体并输送到地面的过程。
地下气化的基本特征:①煤层不发生移动,但气化过程中各气化反应区的位置和燃空区状态时刻都在变化;②地下气化进行到一定程度后,对于较薄煤层,气化剂只能在与煤壁接触的单一表面上反应,另外三个表面为顶板,底板及反应完的灰渣和顶板塌陷物,因此没有地面气化炉金属外壳似的密闭层,气体会在空间中扩散;③由于气化反应过程和加热过程的不均匀性及加热过程范围扩大,反应过程产生的热量不仅随气流带向出口方向,同时也通过热辐射、对流、传导等过程将热量传至煤层纵向的深部,并沿煤层深度形成温度梯度,煤层温度不同,其所发生的反应也不同。
因此在煤层纵深方向上可分为:燃控带,焦化带,干流带,干燥带,煤层自燃带。
与地面气化相比,地下气化最大的技术瓶颈是不可视和不可控,因受煤层赋存条件复杂、测温技术难以实现、气化过程稳定性较差、气化强度低等多种因素的影响,目前地下气化还处于示范开发阶段。
按煤和气化剂在气化炉中的流体力学状态分类:气化方法可分为三大类,①固定床气化法。
固体气化原料在高温下与气化剂发生氧化还原反应,产生以H 、CO和CH 为有效气体的煤气,气化炉内原料床层相对稳定或随着原料的消耗缓慢向下移动。
固体原料由气化炉顶加入,灰渣从气化炉底排除,气化剂由炉底通过炉栅送人炉内,生成的煤气由炉顶导出;②流化床气化法。
采用0~10 mm的小颗粒煤作为气化原料,气化剂为蒸气/空气或蒸气/氧气,气化剂自下而上经过床层。
依据原料的力度分布和湿度,控制气化剂的流速,使床内原料煤全部处于流化状态,在剧烈搅动和回混中,煤粒和气化剂充分接触,进行化学反应和热量传递。
利用碳燃烧放出的热量,使煤粒干燥干馏和气化。
流化床气化炉内,主要进行的是碳的燃烧反应,二氧化碳的还原反应,水蒸气分解反应,水煤气变换反应。
通过上述化学反应生成的煤气夹带大量细小微粒(其中70%为灰渣和部分未反应完全的碳粒)由炉顶离开气化炉,部分密度较重的渣粒由炉底排出;③气流床气化法。
气化剂(氧气和水蒸气)夹带着煤粉或煤浆,通过特殊喷嘴送人炉膛内,在高温辐射作用下,氧煤混合物瞬间被点燃,并迅速燃烧,燃烧使煤粒干馏并且使干馏产物分解,同时煤焦被气化,生成CO和H 等组成的煤气和熔渣的气化过程。
气流床气化的显著优点是煤种适应性强,原料煤的粘结性,机械强度,热稳定性等对气流床气化过程几乎没有影响。
它还具有气化温度高,强度大,煤气不含焦油等优点。
但由于气流床气化要求使用尽可能细的煤粉(70%到80%煤粒<200网目),故需要庞大的制粉设备,同时为回收煤气中的余热及灰尘也需要复杂的余热回收及除尘设备,因此设备投资较高 J。
2.煤炭气化技术主要应用于下列领域2.1 化工合成原料气。
随着原料气合成化工和碳一化学技术的发展,以煤气化制取合成气,进而直接合成各种化学产品的路线已经成为现代煤化工的基础,主要产品有合成氨、尿素、F-T 合成燃料、甲醇、二甲醚等。
化工合成气主要对煤气中的CO、H2等成分有要求。
目前国内生产化工合成原料气所采用的煤气化技术,以国产的常压固定床水煤气发生炉为主,同时引进了部分先进的气化炉,如Lurgi 加压固定床气化炉、Texaco 加压气流床气化炉、Shell加压气流床气化炉等。
中国合成氨产量的60%以上、甲醇产量的50%以上来自煤炭气化合成工艺。
2.2 工业燃气。
采用常压固定床气化炉和流化床气化炉,均可制得热值为4.59-5.64MJ/m3(1100-1350kcal/m3)的煤气,用于钢铁、机械、卫生、建材、轻纺、食品等部门,用以加热各种炉、窑,或直接加热产品。
目前,用于生产工业燃料气的煤气化技术主要是常压固定床混合煤气发生炉,全国约有)4000台常压固定床气化炉在运行。
2.3 民用煤气。
一般热值在12.54-14.63MJ/m3(3000-3500kcal/m3),要求CO小于10%,除焦炉煤气外,用直接气化也可得到,采用鲁奇炉较为使用。
与直接燃煤相比,民用煤气不仅可以明显提高用煤效率和减轻环境污染,而且能够极大地方便人民生活,具有良好的社会效益与环境效益。
出于安全、环抱及经济等因素的考虑,要求民用煤气中的H2、CH4及其他烃类可燃气体含量应尽量高,以提高煤气的热值;要求有毒成分CO的含量应尽量低。
2000年,中国统计665个城市的燃气普及率已达84.2%,用气人口总数达1.76亿,其中应用液化石油气(LPG)的占66.5%,使用天然气的占14.6%,使用人工煤气(包括焦炉煤气和各种气化炉煤气)的占22.4%。
2.4 冶金还原气。
煤气中的CO和H2具有很强的还原作用。
在冶金工业中,利用还原气可直接将铁矿石还原成海绵铁;在有色金属工业中,镍、铜、钨、镁等金属氧化物也可用还原气来冶炼。
因此,冶金还原气对煤气中的CO含量要求,在中国冶金和有色金属行业得到大量应用。
2.5 联合循环发电燃气。
整体煤气化联合循环发电(简称IGCC)是先将煤气化,产生的煤气经净化后驱动燃气轮机发电,再利用烟气余热产生高压过热蒸汽驱动整齐轮机发电。
用于IGCC的煤气,对热值要求不高,但对煤气净化度,如粉尘及硫化物含量的要求很高。
与IGCC配套的煤气化一般采用固定床加压气化(鲁奇炉)、气流床(德士古、Shell气化炉)气化、流化床气化等,煤气热值9.20-10.45MJ/m3(2200-2500kcal/m3)左右。
2.6 燃料油合成原料气和煤炭液化气源。
目前煤炭直接液化和间接液化,都离不开先进的煤炭气化。
煤炭气化为直接液化工业高压加氢液化提供氢源;在间接化工艺中,煤气经过变换调节成合适的H2/CO比例送往合成工段,用于合成液体燃料和化工产品。
煤炭液化可选的煤炭气化工艺包括固定床加压Lurgi气化、加压流化床气化和加压气流床的气化工艺。
目前,国内正在考虑建设一批新型化工项目,以煤气化技术作为“龙头”,生产的煤气用于合成二甲醚、合成汽油与柴油等液体燃料以及合成其他多种化工产品,或用于煤炭直接液化制氢。
2.7 煤炭气化制氢。
氢气广泛用于电子、冶金、玻璃生产、化工合成、航空航天及氢能电池等领域,用氢气作为燃料,热值高,燃烧后的产物是水,污染物排放是零。
从长远来看,氢气是很好的能源载体,可作为分布式热、电、冷联供的燃料,实现污染物和温室气体的近零排放。
目前世界上96%的氢气来源于化石燃料转化,煤炭气化制氢起着很重要的作用。
煤炭气化制氢一般是将煤炭转化成CO和H2,苫后通过变换反应将CO转换成H2,将富氢气体经过低温分离或变压吸附及膜分离技术,即可获得氢气。
3.煤炭气化技术的发展趋势煤炭气化技术众多,而原料煤供应及煤质也千差万别,没有一种气化技术是万能的,能完全满足市场需求。
目前,煤炭气化技术正向着大型化、加压、煤种适应范围宽、提高可靠性和可用率、气化效率高、环境友好等趋势发展。