《空间直角坐标系》教学设计课题
空间直角坐标系教学设计

《空间直角坐标系》教学设计(一)教学目标1.知识与技能(1)使学生深刻感受到空间直角坐标系的建立的背景(2)使学生理解掌握空间中点的坐标表示2.过程与方法建立空间直角坐标系的方法与空间点的坐标表示3.情态与价值观通过数轴与数、平面直角坐标系与一对有序实数,引申出建立空间直角坐标系的必要性,培养学生类比和数形结合的思想.(二)教学重点和难点空间直角坐标系中点的坐标表示.(三)教学手段多媒体(四)教学设计教学环节教学内容师生互动设计意图复习引入问题情景1对于直线上的点,我们可以通过数轴来确定点的位置,数轴上的任意一点M都可用对应一个实数x表示;对于平面上的点,我们可以通过平面直角坐标系来确定点的位置,平面上任意一点M都可用对应一对有序实数师:启发学生联想思考,生:感觉可以师:我们不能仅凭感觉,我们要对它的认识从感性化提升到理性化.让学生体会到点与数(有序数组)的对应关系.培养学生类比的思想.(x,y)表示;对于空间中的点,我们也希望建立适当的坐标系来确定点的位置. 因此,如何在空间中建立坐标系,就成为我们需要研究的课题.那么假设我们建立一个空间直角坐标系后,空间中的任意一点是否可用对应的有序实数组(x,y,z)表示出来呢?概念形成问题情景2空间直角坐标系该如何建立呢?O x X一维坐标二维坐标三维坐标(图4.3-1)师:引导学生看图4.3-1,单位正方体OABC–D′A′B′C′,让学生认识该空间直角系O –xyz中,什么是坐标原点,坐标轴以及坐标平面.师:该空间直角坐标系我们称为右手直角坐标系.让学生通过对一维坐标、二维坐标的认识,体会空间直角坐标系的建立过程.问题情景3建立了空间直角坐标系以后,空间中任意一点M如何用坐标表示呢?师:引导学生观察图4.3-2,生:点M对应着唯一确定的有序实数组(x,y,z),x、y、z通过幻灯片展示横坐标、纵坐标、竖坐标产生过程,让横坐标纵坐标竖坐标图4.3-2 分别是P、Q、R在x、y、z轴上的坐标.师:如果给定了有序实数组(x,y,z),它是否对应着空间直角坐标系中的一点呢/生:(思考)是的师:由上我们知道了空间中任意点M的坐标都可以用有序实数组(x,y,z)来表示,该数组叫做点M在此空间直角坐标系中的坐标,记M(x,y,z),x叫做点M的横坐标,y叫做点M的纵坐标,z叫做点M的竖坐标.师:大家观察一下图 4.3-1,你能说出点O,A,B,C的坐标吗?生:回答学生从图4.3-2中由感性向理性过渡.PQ ROxMy zM1POxMyzxM1xROMyzzQOxMy zyM1应用举例例1 如图,在长方体OABC–D′A′B′C′中,|OA| = 3,|OC| = 4,|OD′| = 2.写出D′、C、A′、B′四点的坐标.解:D′在z轴上,且O D′ = 2,它的竖坐标是2;它的横坐标x与纵坐标y都是零,所以点D′的坐标是(0,0,2).点C在y轴上,且O D′ = 4,它的纵坐标是4;它的横坐标x与竖坐标z都是零,所以点C的坐标是(0,4,0).同理,点A′的坐标是(3,0,2).点B′在xOy平面上的射影是B,因此它的横坐标x与纵坐标y同点B的横坐标x与纵坐标y相同.在xOy平面上,点B横坐标x = 3,纵坐标y = 4;点B′在z轴上的射影是D′,它的竖坐标与点D′的竖坐标相同,点D′的竖坐标z = 2.所点B′的坐标是(3,4,2)例2 结晶体的基本单位称为晶胞,图是食盐晶胞的示意图(可看成是八个棱长为12的小正方体堆积成的正方师:让学生思考例1一会,学生作答,师讲评。
《空间直角坐标系》教学设计 (4)

《空间直角坐标系》教学设计目的要求:理解空间直角坐标系、掌握两点间的距离公式重 点:两点间的距离公式难 点:空间直角坐标系的概念教学方法:讲练结合教学时数:2课时教学进程:一、空间直角坐标系在空间内作三条相互垂直且相交的数轴Oz Oy Ox ,,,这三条数轴的长度单位相同.它们的交点O 称为坐标原点. Oz Oy Ox ,,称为x 轴、y 轴和 z 轴.一般地,取从后向前,从左向右,从下向上的方向作为x 轴,y 轴, z 轴的正方向(图6.1). Oz Oy Ox ,,统称为坐标轴.由两个坐标轴所确定的平面,称为坐标平面,简称坐标面. x 轴,y 轴, z 轴可以确定zOx yOz xOy ,,三个坐标面.这三个坐标面可以把空间分成八个部分,每个部分称为一个卦限.其中xOy 坐标面之上,yOz 坐标面之前,xOz 坐标面之右的卦限称为第一卦限.按逆时针方向依次标记xOy 坐标面上的其他三个卦限为第二、第三、第四卦限.在xOy 坐标面下面的四个卦限中,位于第一卦限下面的卦限称为第五卦限,按逆时针方向依次确定其他三个卦限为第六、第七、第八卦限.(图2)图1表示的空间直角坐标系也可以用右手来确定.用右手握住z 轴,当右手的四个手指从x 轴正向以 90的角度转向y 轴的正向时,大拇指的指向就是 z 轴的正向.图1 图2二、空间一点的坐标已知M 为空间一点.过点M 作三个平面分别垂直于x 轴,y 轴和z 轴,它们与x 轴、y 轴、z 轴的交 点分别为P、Q 、R (图3),这三点在x 轴、y 轴、z 轴上的坐标分别为z y x ,,.于是空间的一点M 就唯一确定了一个有序数组z y x ,,.这组数z y x ,,就叫做点M 的坐标,并依次称z y x ,,为点M 的横坐标,纵坐标和竖坐标.坐标为z y x ,,的点M 通常记为),,(z y x M .图3反过来,有一个序数组z y x ,,,我们在x 轴上取坐标为x 的点P ,在y 轴上取坐标为y 的点Q ,在z 轴上取坐标为z 的点R ,然后通过P 、Q 与R 分别作x 轴、y 轴与z 轴的垂直平面.这三个垂直平面的交点M 即为以有序数组z y x ,,为坐标的点(图3).我们通过这样的方法在空间直角坐标系内建立了空间的点M 和有序数组z y x ,,之间的一一对应关系.三、两点间的距离公式设),,(),,,(22221211z y x M z y x M 为空间内的两个点,由图4可知21,M M 两点间的距离为 2221212M M M N NM =+(12M NM ∆是直角三角形),其中222111(M N M P PN M PN =+∆是直角三角形), 而,1212y y Q Q PN -==1212PM P P x x ==-,.122z z NM -=,所以21M M 之间的距离为21221221221)()()(z z y y M M -+-+-=χχ.例1 求之间的距离)3,2,1(),0,1,2(21-P -P .解 22221)03())1(2()2)1((-+--+--=P P 图4 .27=小结本讲内容: 强调空间直角坐标系、两点间的距离公式作业: P184 1(1);(2)。
空间直角坐标系说课稿

空间直角坐标系说课稿空间直角坐标系说课稿1今天我说课的内容是空间直角坐标系,下面我分别从教材分析、教学目标的确定、教学方法的选择和教学过程的设计这四个方面来阐述我对这节课的教学设想。
一、教材分析本节内容选自人民教育出版社出版的普通高中课程标准实验教科书《数学》必修二的第四章第3节,属于解析几何领域的知识,它是平面直角坐标系的进一步推广,是学生思维从一维二维空间到三维空间的过渡。
为以后在选修中利用空间向量解决空间中的平行、垂直以及空间中的夹角与距离问题的打好基础;而且必修二第三、四章是平面解析几何的基础内容,本节“空间直角坐标系”的内容是空间立体几何的基础,与平面几何的内容共同体现了“用代数方法解决几何问题”的解析几何思想。
本小节内容主要包含空间直角坐标系的建立、空间中点与其坐标的一一对应关系、以及如何由空间中点的位置确定点的坐标或由点的坐标确定点的位置等问题。
在本节课中教学重点是三维空间坐标系的建立过程,以及空间中点与其坐标的一一对应关系的理解;教学难点和关键是理解空间直角坐标系的相关概念,以及空间中点与其坐标的一一对应关系。
基于以上对教材的认识,根据数学课程标准的“学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者”这一基本理念,考虑到学生已有的认知结构和心理特征,制定如下的教学目标:二、教学目标的确定知识与技能:(1)理解空间直角坐标系的相关概念,空间中点的坐标及其坐标对应的点;(2)理解空间直角坐标系的建立过程以及空间中点与坐标一一对应的关系。
过程与方法:(1)通过空间直角坐标系的建立,体会由一维空间到二维空间再到三维空间的拓展和推广,培养学生利用类比的数学思想方法探索空间直角坐标系;(2)通过空间点与坐标的对应关系,进一步加强学生对“数形结合”思想方法的认识。
情感态度与价值观:体会到数学的严谨的思维逻辑以及抽象概括力。
三、教学方法的选择本节内容是高中数学中概念原理的教学,根据布鲁纳的发现学习理论,本节课主要采用了启发式、探究式的教学方法,通过激发学生解决问题的欲望,使学生主动参与教学实践活动。
1.3.1 空间直角坐标系教学设计-2023学年高二上学期数学人教A版(2019)选择性必修第一册

1.3.1 空间直角坐标系一、教学目标1、了解掌握空间直角坐标系;2、通过类比的方式快速掌握空间直角坐标系及其应用.二、教学重点、难点重点:空间直角坐标系的理解与掌握. 难点:空间直角坐标系的熟练应用.三、学法与教学用具1、学法:学生在老师的引导下,通过阅读教材,自主学习、思考、交流、讨论和概括,从而完成本节课的教学目标.2、教学用具:多媒体设备等四、教学过程(一)创设情景,揭示课题平面向量与平面直角坐标系的关系OA xi y j =+向量a 的坐标表示为(,)a x y =已知1122(,),(,)A x y B x y ,则2121(,)AB x x y y =--布置学生阅读课本1617P P -,思考空间向量与平面向量的类比关系,观察两种向量的关联与区别.(二)阅读精要,研讨新知【类比转化】通过空间向量与平面向量的类比,快速掌握空间向量在空间直角坐标系中空间向量与空间直角坐标系空间直角坐标系Oxyz ,其中{,,}i j k 为单位正交基底,O 为原点,坐标轴为x 轴、y 轴、z 轴,坐 标平面为Oxy 平面,Oyz 平面,Ozx 平面,且把空间分成八个部分.本书建立的皆为右手直角坐标系.OA xi y j zk =++点(,,)A x y z 中的x 叫做横坐标,y 叫做纵坐标,z 叫做竖坐标.a xi y j zk =++向量a 的坐标表示为(,,)a x y z =【例题研讨】阅读领悟课本18例1(用时约为1分钟,教师作出准确的评析.) 例1如图 1.3-6, 在长方体OABC D A B C ''''-中,3,4,2OA OC OD '=== 以111{,,}342i j k 为单位正交基底,建立如图所示的空间直角坐标系Oxyz . (1)写出,,,D C A B '''四点的坐标;(2)写出向量,,,A B B B A C AC ''''''的坐标.解:(1)因为002OD i j k '=++,所以(0,0,2)D ', 因为040OC i j k =++,所以(0,4,0)C ,点A '在x 轴,y 轴,z 轴上的射影分别为,,A O D ' 且在坐标轴上的坐标分别为3,0,2 所以(3,0,2)A '点B '在x 轴,y 轴,z 轴上的射影分别为,,A C D ' 且在坐标轴上的坐标分别为3,4,2 所以(3,4,2)B '.(2)040(0,4,0)A B OC i j k ''==++=,002(0,0,2)B B OD i j k '=-=+-=-340(3,4,0)A C A D D C i j k ''''''=+=-++=-342(3,4,2)AC AO OC CC i j k ''=++=-++=-. 【小组互动】完成课本18P 练习1、2、3、4,同桌交换检查,老师答疑.【练习答案】(三)探索与发现、思考与感悟1.在空间直角坐标系中,点(2,1,4)P -关于点()2,1,4M --的对称点的坐标是( ) A .(0,0,0) B .214()--,, C .6312()--,, D .2312()-,, 解:设所求对称点为,(),P x y z ',则点M 为线段PP '的中点, 类比直角坐标系中的中点坐标公式可得222112442x yz-+⎧=⎪⎪+⎪=-⎨⎪+⎪=-⎪⎩,解得6,3,12x y z ==-=-,故选C2.已知棱长为3的正四面体A BCD -,O 为A 在底面BCD 上的射影,建立如图所示的空间直角坐标系,点B 的坐标是_________.解:由已知BCD ∆为边长为3的正三角形,则BC 33所以01333233360332B B y x =-==-=-, 所以点B 的坐标为33(0)2-,. 答案:33(0)2--, 3.(多选)在空间直角坐标系中,已知点(,,)P x y z ,那么下列说法正确的是( ) A .点P 关于x 轴对称的点的坐标是1(,,)P x y z -;B .点P 关于yOz 平面对称的点的坐标是2,(,)P x y z --;C .点P 关于xOy 平面对称点的坐标是3(,,)P x y z -;D .点P 关于原点对称点的坐标是4(,,)P x y z ---.解:对于A ,(,,)P x y z 关于x 轴对称的点的坐标是()1,,P x y z --,故A 错误; 对于B ,(,,)P x y z 关于yOz 平面对称的点的坐标是()2,,P x y z -,故B 错误; 对于C ,(,,)P x y z 关于xOy 平面对称的点的坐标是()3,,P x y z -,故C 正确; 对于D ,(,,)P x y z 关于原点对称点的坐标是()4,,P x y z ---,故D 正确. 故选CD(四)归纳小结,回顾重点空间向量与空间直角坐标系空间直角坐标系Oxyz,其中{,,}i j k 为单位正交基底,O 为原点,坐标轴为x 轴、y 轴、z 轴,坐 标平面为Oxy 平面,Oyz 平面,Ozx 平面,且把空间分成八个部分.本书建立的皆为右手直角坐标系.OA xi y j zk =++点(,,)A x y z 中的x 叫做横坐标,y 叫做纵坐标,z 叫做竖坐标.a xi y j zk =++向量a 的坐标表示为(,,)a x y z =(五)作业布置,精炼双基1.完成课本22P 习题1.3 1、2、32.预习1.4 空间向量的应用五、教学反思:(课后补充,教学相长)。
高中数学必修二《空间直角坐标系》优秀教学设计

4.3空间直角坐标系4.3.1空间直角坐标系教材分析本节课内容是数学必修2 第四章圆与方程的最后一节的第一小节。
课本之所以把“空间直角坐标系”的内容放在必修2的最后即第四章的最后,原因有三:一、“空间直角坐标系”的内容为以后选修中用空间向量解决空间中的平行、垂直以及空间中的夹角与距离问题打基础,做好准备;二、必修2第三、四章是平面解析几何的基础内容,本节“空间直角坐标系”的内容是空间解析几何的基础,与平面解析几何的内容共同体现了“用代数方法解决几何问题”的解析几何思想;三、本套教材从整体上体现了“螺旋式上升”的思想,本节内容安排“空间直角坐标系”,为以后的学习作铺垫,正是很好地体现了这一思想。
本小节内容主要包含空间直角坐标系的建立、空间中由点的位置确定点的坐标以及由点的坐标确定点的位置等问题。
结合图形、联系长方体和正方体是学好本小节的关键。
课时分配本小节内容用1课时的时间完成,主要讲解空间直角坐标系的建立以及空间中的点与坐标之间的联系。
教学目标重点:空间直角坐标系,空间中点的坐标及空间坐标对应的点。
难点:右手直角坐标系的理解,空间中的点与坐标的一一对应。
知识点:空间直角坐标系的相关概念,空间中点的坐标以及空间坐标对应的点。
能力点:理解空间直角坐标系的建立过程,以及空间中的点与坐标的一一对应。
教育点:通过空间直角坐标系的建立,体会由二维空间到三维空间的拓展和推广,让学生建立发展的观点;通过空间点与坐标的对应关系,进一步加强学生对“数形结合”思想方法的认识。
自主探究点:如何由空间中点的坐标确定点的位置。
考试点:空间中点的确定及坐标表示。
易错易混点:空间中的点与平面内的点以及它们的坐标之间的联系与区别;空间直角坐标系中x轴上单位长度的选取。
拓展点:不同空间直角坐标系下点的坐标的不同;空间中线段的中点坐标公式。
教具准备多媒体课件和三角板课堂模式师生互动、小组评分以及兵带兵的课堂模式。
一、引入新课由数轴上的点和平面直角坐标系内的点的表示引入空间中点的表示。
《空间直角坐标系》教学设计 (3)

《空间直角坐标系》教学设计一、教学目标:1、知识技能目标:(1)能说出空间直角坐标系的构成,特征。
(2)会自己画出空间直角坐标系。
(3)能够在空间直角坐标系下表示点。
2、过程与方法:尝试自己建立空间直角坐标系,在这一过程中体会空间直角坐标系的特点。
3、情感目标:培养学生严谨的学习态度以及勇于探索的学习精神。
说明:教学目标是在进行了学习者的学习需求分析基础上制定的,分析了学习者的现有状态、想要达到的理想状态、以及当前存在的问题,针对这些制定出学习目标。
教学目标分为认知领域、动作技能领域和情感态度领域三维目标。
在制定具体教学目标时,使用行为动词进行表述,这样才可以使教学目标更具有可操作性。
二、教学任务分析1、学生的起点能力:学生已经掌握平面直角坐标系的知识,又学习了立体几何内容,具备了一定的空间想象能力。
2、学习类型与先决条件:本课属于智力技能中的规则学习,先决条件是规则中的有关要领要先行掌握。
课时安排:1课时说明:任务分析是教学目标设计的一个重要组成部分,它是对学生完成任务所允许的条件进行分析。
因此在进行教学目标设计时,需要见其作为目标设计的一部分。
教学重点和难点重点:空间直角坐标系的建立过程难点:空间任意点的坐标如何表示教学方法:探究式教学手段:实物模型,多媒体教学任务:课前准备:学生根据自己的预习制作空间直角坐标系模型由实际问题引出空间直角坐标系,探索空间直角坐标系的建立方法讨论分析空间任意点的坐标表示说明:教学任务的制定采用了“信息加工分析法”将学习过程看作是信息流的流动过程,所以这种方法强调任务分析过程中的连续性。
三、教学过程说明:根据布鲁纳发现学习的教学理论,学习过程分成以下几步:创设问题情境,使学习者在情境中产生矛盾,提出要解决的问题;学习者利用所提供的材料,对问题提出假设,并检验假设,不同观点可以争论;对争论作出总结,得出结论。
这种发现学习的教学顺序,实际上就是从具体到抽象的教学顺序,它有利于激发学习者的智慧潜能,有利于培养学习者的内在动机,学会发现的技巧。
人教版高一数学必修二《空间直角坐标系》教案及教学反思

人教版高一数学必修二《空间直角坐标系》教案及教学反思一、课程背景本课程是高一数学必修二的一部分,主要讲解空间直角坐标系的基本知识和应用。
学生需要掌握三维空间中点、向量及其坐标表示、平面与直线的方程以及空间图形的分析方法等内容。
二、教学目标知识目标1.掌握三维空间直角坐标系的概念和基本性质;2.掌握点、向量和坐标表示;3.学习平面和直线的方程;4.了解空间图形的分析方法。
能力目标1.能够在三维空间中确定点、向量以及平面和直线的方程;2.能够对空间图形进行分析和判断。
情感目标1.提高学生的数学思维能力;2.培养学生的空间想象能力;3.培养学生的数学兴趣和探究精神。
三、教学重点和难点教学重点1.点、向量和坐标表示的概念和性质;2.平面和直线的方程的求法;3.空间图形的分析方法。
教学难点1.向量和坐标表示的转换;2.平面和直线的方程的求解;3.空间图形的分析和判断。
四、教学过程1. 导入环节本节课主要讲解空间直角坐标系的基本知识和应用。
教师可以通过提问学生空间直角坐标系的概念和应用,引导学生进入学习状态。
2. 知识讲解(1)点、向量和坐标表示在三维空间中,点和向量是基本的空间对象。
点代表一个位置,向量代表从一个位置移动到另一个位置的方向和长度。
点和向量都可以使用坐标进行表示。
在空间直角坐标系中,我们通常用三个互相垂直的坐标轴来表示一个点或一个向量。
这三个坐标轴分别为x轴、y轴和z轴,三个坐标轴上的数值分别为x、y和z。
因此,一个点或向量可以表示为一个三元组(x,y,z)。
(2)平面和直线的方程在三维空间中,平面和直线有各自的方程。
平面的方程一般有三种,分别为点法式、一般式和截距式。
1.点法式:平面上任意一点M(x0,y0,z0)到法向量$\\bold{n}(A,B,C)$ 的距离等于常数d。
平面的标准式为Ax+By+Cz+D=0,其中A,B,C分别为法向量$\\bold{n}$ 的三个元素,D=−d。
2.一般式:平面的一般式为Ax+By+Cz+D=0,其中A,B,C,D为常数,A,B,C不全为零。
空间直角坐标系教案

【课题】4.3.1空间直角坐标系【教材】人教A版普通高中数学必修二第134页至136页.【课时安排】1个课时.【教学对象】高二〔上〕学生.【授课教师】***一.教材分析:本节内容主要引入空间直角坐标系的根本概念,是在学生已学过的二维平面直角坐标系的根底上进展推广,为以后学习用空间向量解决空间中的平行、垂直以及空间中的夹角与距离问题、研究空间几何对象等内容打下良好的根底。
空间直角坐标系的知识是空间解析几何的根底,与平面解析几何的内容共同表达了"用代数方法解决几何问题〞的解析几何思想;通过空间直角坐标系内任一点与有序数组的对应关系,实现了形向数的转化,将数与形严密结合,提供一个度量几何对象的方法。
其对于沟通高中各局部知识,完善学生的认知构造,起到了很重要的作用。
二.教学目标:✧知识与技能(1)能说出空间直角坐标系的构成与特征;(2)掌握空间点的坐标确实定方法和过程;(3)能初步建立空间直角坐标系。
✧过程与方法(1)结合具体问题引入,诱导学生自主探究;. z.(2)类比学习,循序渐进。
情感态度价值观(1)通过实际问题的引入和解决,让学生体会数学的实践性和应用性,感受数学刻画生活的作用,进而拓展自己的思维空间。
(2)通过用类比的数学思想方法探究新知识,使学生感受新旧知识的联系,并加深领会研究事物从低维到高维的方法与过程。
(3)通过对空间坐标系的接触学习,进一步培养学生的空间想象能力。
三.教学重点与难点:教学重点:空间直角坐标系相关概念的理解;空间中点的坐标表示。
教学难点:右手直角坐标系的理解,空间中点与坐标的一一对应。
四.教学方法:启发式教学、引导探究五.教学根本流程:↓. z.六.教学情境设计:. z.〔二〕引导探究,动手实践约6分钟思考:借助于平面直角坐标系,我们就可以用坐标来表示平面上任意一点的位置,则能不能仿照直角坐标系的方式来表示空间上任意一点的位置呢?不妨动手试一试……思路点拨:通过在地面上建立直角坐标系*Oy,则地面上任一点的位置可以用一对有序实数对〔*,y〕确定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《空间直角坐标系》教学设计
(一)教学目标
1知识与技能
(1)使学生深刻感受到空间直角坐标系的建立的背景
(2)使学生理解掌握空间中点的坐标表示
2.过程与方法
建立空间直角坐标系的方法与空间点的坐标表示
3.情态与价值观
通过数轴与数、平面直角坐标系与一对有序实数,引申出建立空间直角坐标系的必要性,培养学生类比和数形结合的思想.
(二)教学重点和难点
空间直角坐标系中点的坐标表示.
(三)教学手段多媒体
(四)教学设计
问题情景3
建立了空间直角坐标系以后,空间中任意一点M如何用坐标表示呢?
横坐标
竖坐标
应用举例
R
图4.3-
2
例1如图,在长方体OABC -DAB'C'
中,|OA| = 3, |OC| = 4, |0D| = 2.写
出
D、C、A、B四点的坐标.
八-- V
解:D在z轴上,且O D ' = 2,
的竖坐标是2;它的横坐标x与纵坐标
y都是零,所以点D的坐标是(0, 0,
点C在y轴上,且O D ' = 4,它的
纵坐标是4;它的横坐标x与竖坐标z
都是零,所以点C的坐标是(0,4,0).
同理,点A的坐标是(3, 0, 2).
点B在xOy平面上的射影是B,
因此它的横坐标x与纵坐标y同点B的
师:大家观察一下
图4.3-1,你能说出点
O,A ,B,C的坐标吗?
生:回答
师:让学生思考例学生在教
1 一会,学生作答,师师的指导
讲评。
下完成,加
师:对于例二的讲深对点的
解,主要是引导学生先坐标的理
要学会建立合适的空解,例2更
间直角坐标系,然后才能体现出
涉及到点的坐标的求建立一个
法。
合适的空
生:思考例一、例间直角系
二的一些特点。
总结如的重要性
何求出空间中的点坐
标的方法。
横坐标x与纵坐标y相同.在xOy平面上,点B横坐标x = 3,纵坐标y二4; 点B在z轴上的射影是D;它的竖坐标与点D的竖坐标相同,点D'
的竖坐标z = 2.
所点B的坐标是(3, 4, 2)
例2结晶体的基本单位称为晶胞,图是食盐晶胞的示意图(可看成是八个棱长为1的
小正方体堆积成的正方
2
体),其中色点代表钠原子,黑点代表氯原子.如图,建立空间直角坐标系0 -xyz 后,试写出全部钠原子所在位置
解:把图中的钠原子分成下、中、上三层来
写它们所在位置的坐标.
下层的原子全部在xOy平面上,
它们所在位置的竖坐标全是0,所以
一、教材分析
本节是在学习完直线与圆的位置关系后,又一重要的知识点,它是平面直角坐标系的进一步推广,是学生思维从二维到三维的过渡,与前面立体几何的内容前后呼应,更是后面运用空间向量解决立体几何问题的基础。
二、学情分析
由于高一学生在前面已经学习平面直角坐标系,研究了直线与圆的有关问题,思维停留在二维平面上。
因此,如何引导,启发学生思维的转变,成为本课时的一个重点和难点。
类比和数形
结合成了本节课的主要思想方法。
三、教学与学法分析
1.本节教学应突出学生的主体地位,通过学生的自主学习和合作探究,让学生亲自实
践,获得感性认识,为后继学习奠定基础。
2.采用启发式教学方法,通过激发学生学习的求知欲望,使学生主动参与教学实践活动中去,
让学生在整个学习过程中有自我展示的机会,增强学生的自信心。
3.注重数学思想方法的应用
4.借助多媒体教学.
5.从学生已有的知识和生活经验出发,让学生经历知识的形成过程。
通过阅读教材,
并结合空间坐标系模型,解决相关问题。
四、教学反思
本节课主要采用了问题探究,启发式教学,积极倡导学生主动参与教学实践活动,运用类比的教学手段引导学生从一维到二维,二维到三维空间的过渡,创设情境,让数学走进生活,让学生感受情境,从感性认识上升到理性认识,在整个教学过程中,以学生为主体,张扬学生的个性,注重基础知识的掌握。