十字板剪切试验报告
十字板剪切实验

高等土力学22页将十字钢板插入土中,施加扭矩达到最大值T max 时,十字板在土中被扭动(如高土图1-29),通过这个扭矩来计算土的抗剪强度,对于野外试验,板高与外径之比一般为H/D=2。
对于各向同性的土:maxf 3T 6=7πD实际上,现场土常常是各向异性的,对于正常固结土,水平面上的抗剪强度一般大于垂直面上的抗剪强度。
用上述公式计算的τf 一般偏大,常经过修正后使用。
适用于软塑到硬塑状态的粘土,对于饱和软粘土,它测得的抗剪强度相当于不排水抗剪强度c u 。
十字板剪切试验是在钻孔中进行的,其目的是测定饱水软粘土的抗剪强度。
十字板剪切试验工程适用条件:(1)沿海软土分布地区但不会有砂层、砾石、贝壳等成分的软粘土。
(2)会有粉砂夹层者,其测定结果往往偏大。
可以获得的物理力学性质参数 软土的不排水抗剪强度(Cu );计算重塑土不排水抗剪强(Cu`),绘制抗剪强度随试验深度的变化曲线;计算出的灵敏度(S ),估计地基容许承载力[R]及确定软土路堤的临界高度或极限高度和变形模量(E0)。
主要试验目的1.测求饱和粘性土的不排水 抗剪强度和灵敏度; 不排水抗剪强度峰2.估算地基土承载力和单桩 十字板剪 值cu(kPa)和残余值 承载力;3.切试验 c’u(kPa) 3 计算边坡稳定性;4.判断软粘性土的应力历史 。
注意事项:1试验过程中,插入不同深度、十字板插入深度不应小于钻孔或套管直径的3-5倍;孔间距大于0.75-1米。
2、十字板插入土后应停留2-3分钟,太短或太长会使强度减小或增大。
3、剪切速度一般为1°-2°/10秒,过快(粘滞性)过慢(固结)会使强度增加。
一般3-10分钟会出现峰值后应继续剪切1分钟。
4、测出峰值后应快速转动6周,测重塑土的不排水抗剪强度。
5、十字板的规格:板高/板宽=2,刃角60°,面积比=13%-14%(越小越好)。
6、由于圆柱侧面和顶面达到剪切破坏不是同时的,因此强度并不是真正的峰值,是一种平均抗剪强度实验3:十字板剪切试验这是一种原位测试土抗剪强度的方法。
10-十字板剪切试验成果图

23.9 000
淤泥质粉
中粗砂④
24.00 25.00
试验人:
检查:
十字板剪切试验成果图
仪器型号 测试孔号 孔口标高
层底 层底 深度 标高 (m) (m)
As—1
ZK6 2.81
十字板规格 75mm*15 01m29m.00m
十字板常数 -3
率 定测 试
试验方法 0.167958kPa
原状土十字板剪切强度(kPa)
10.00 11.00 12.00 13.00 14.00 15.00 16.00
12.50 14.20 4.10 3.76 13.50 15.40 5.30 3.06 14.50 16.20 5.70 3.18 15.50 18.10 4.90 3.53 16.50 17.30 4.30 3.98 17.50 17.10 4.80 3.29
5
10
15
20
25
30
35
测试 深度 (m)
原状 重塑 土强 土强 度度
(kPa) (kPa)
灵 敏 度
1.00
4.50 18.50 7.06 2.62
2.00
3.00 3.70 000 素填土①
4.00
5.00
5.50 17.20 6.72 2.56 6.50 17.80 6.50 2.74 7.50 16.50 5.70 2.89
6.00
8.50 16.00 5.40 2.96
7.00
9.50 15.50 4.20 3.69
8.00
10.3 000
淤泥质粉
9.00 10.00
13.50 11.20 3.20 3.50
12.8 000
十字板剪切试验方案

十字板剪切试验方案
一、试验目的
十字板剪切试验是为了测定土壤的抗剪强度,评估土壤在承受剪切力作用下的稳定性。
这对于地基设计、边坡稳定分析以及土壤加固等领域具有重要的意义。
二、试验原理
十字板剪切试验基于库仑定理,即剪切力与剪切位移之间的关系。
试验时,将十字板插入土壤中,施加垂直荷载,使十字板与土壤产生相对运动,从而使土壤发生剪切变形。
在试验过程中,测量剪切力和位移数据,计算出土壤的抗剪强度参数。
三、试验设备
1.十字板:通常为钢板制成,形状如十字,插入土壤中以产生剪切力。
2.千斤顶:用于施加垂直荷载,使十字板插入或拔出土壤。
3.位移计:测量十字板的剪切位移。
4.加载装置:包括压力传感器和测力计,用于测量施加在十字板上的力。
5.稳压电源及控制单元:用于提供电源和控制加载速率。
四、试验步骤
1.选择试验场地,清理表面杂物,平整地面。
2.将十字板插入土壤中,确保其稳定不动。
3.将千斤顶置于十字板上方,通过压力传感器和测力计测量施加
的垂直荷载。
4.启动稳压电源及控制单元,以恒定的速率增加垂直荷载,使十字板发生剪切位移。
5.记录试验过程中的剪切力和位移数据。
6.试验结束后,将十字板拔出,清理现场。
7.根据记录的数据,计算土壤的抗剪强度参数。
五、注意事项
1.在试验过程中,应确保十字板垂直,避免倾斜或晃动。
2.施加垂直荷载时应保持匀速,避免突然加速或减速。
3.在试验过程中,应注意观察土体的变形情况,如发现异常应立即停止试验。
八、十字板剪切试验

八、十字板剪切试验1. 试验的目的及意义通过十字板剪切试验,了解电测十字板的构造,掌握试验的操作步骤及技术要求,采用实验数据得到原状土和重塑土的不排水抗剪强度u C 和'u C ,并计算地基土的灵敏度t S 。
2. 试验的适用范围十字板剪切试验只适用于测定饱和软粘性土的抗剪强度,对于具有薄层粉砂、粉土夹层的软粘性土定结果往往偏大,而且成果比较分敢;它对于含有砂层、砾石、贝壳、树根及其他未分解有机质的土层是不适用的。
3. 试验的基本原理在钻孔中某深度的软粘土中插入规定形状和尺寸的十字板头,施加扭转力矩,将土体剪切破坏,测定土体抵抗扭损的最大力矩,根据力矩平衡条件,通过换算得到土体不排水抗剪强度Cu 值(假定φ=0)。
十字板头旋转过程中假设在土体中产生—个高度为H(十字板的高度)、直径为D(十字板头的直径)的圆柱状剪损面,如右图;并假定该剪损面的侧面和上、下底面上土的抗剪强度都相等。
在剪损过程中,土体产生的最大抵抗力矩M 由圆柱侧表面的抵抗力矩M1和圆柱上下面的抵抗力矩M2两部分组成。
即M =M1十M2。
其中:式中,uC —— 十字板抗剪强度;D —— 十字板头直径; H —— 十字板头高度。
4.试验仪器及制样工具十字板剪切试验所需仪器设备包括:十字板头、钻杆、贯入系统以及测力与记录等试验仪器。
实习中采用的设备如下:十字板头:矩形,高度为10公分,直径为5公分,高径比为2。
贯入系统:手摇链条式贯入机。
测力装置:电阻应变式扭力传感器(试验前需率定)。
记录仪:与电阻应变式测力装置配套的记录仪(LMC-D310型)。
5.试验步骤第一部分,准备工作:(1)、安装手摇链条式贯入机。
(2)、将电测式扭力传感器安装在钻杆上,将连接导线依次穿入空心钻杆,钻杆排放整齐备用。
(3)、将带有扭力传感器的转杆安装在贯入机架上,然后将十字板头和扭力传感器相连接,穿过贯入机架的定位孔。
第二部分,试验阶段:(1)、将传压板安装于链条和钻杆上的固定销之间,转动贯入手轮将十字板头徐徐压入土中,贯入深度可通过钻杆的数量和贯入机架上的刻度来计算。
十字板剪切试验.

v H
——分别为剪切破坏时圆柱体侧面和
上下面土的抗剪强度,kpa;
H——十字板的高度,m; D——十字板的直径,m; 天然状态的土体是各向异性的,但实用上为了简化计算, 假定土体为各向同性体,即剪切破坏时圆柱体侧面和上
下面土的抗剪强度相等,则有
2M D D2 H 3
• I-II段的界限压力相当于初始水平压力po,II-III段的 界限压力相当于临塑压力pf, III段末尾渐近线的压 力为极限压力Pl。 D
V
C B I A po II pf III
pl
p
P—V曲线
• 试验原理: 设土体剪切破坏时所施加的扭矩为M,则它应该 与剪切破坏圆柱面(包括侧面和上下面)上土 的抗剪强度所产生的抵抗力矩相等,即
D D2 D M DH v 2 H 2 4 3 1 1 2 D H v D 3 H 2 6
式中 M——剪切破坏时的扭矩,kN•m
旁压试验
• 旁压试验是在现场钻孔 中进行的一种水平向荷 载试验。具体试验方法 是将一个圆柱形的旁压 器放到钻孔内设计标高, 加压使得旁压器横向膨 胀,根据试验的读数可 以得到钻孔横向扩张的 体积-压力或应力-应变 关系曲线,据此可用来 估计地基承载力,测定 土的强度参数、变形参 数、基床系数,估算基 础沉降、单桩承载力与 沉降。
• 而十字板剪切试验可以解决这一问题。十
字板剪切试验是一种土的抗剪强度的原位 测试方法,这种试验方法适合于在现场测 定饱和粘性土的原位不排水抗剪强度,特 别适合于均匀饱和软粘土。
试验步骤:
实验时,先把套管打到要 求测试的深度以上75cm, 并将套管内的土清除,然 后通过套管将安装在钻杆 下的十字板压入土中至测 试的深度。由地面上的扭 力装置对钻杆施加扭矩, 使埋在土中的十字板扭转, 直至土体剪切破坏,破坏 面为十字板旋转所形成的 圆柱面。
十字板剪切试验

十字板剪切试验简介十字板剪切试验是一种常用的材料试验方法,主要用于评估材料的剪切性能。
该试验通过施加剪切力,在材料断裂前后测量其剪切应变和剪切应力,从而得出材料的剪切模量、极限剪切强度等参数。
本文将介绍十字板剪切试验的原理、实施步骤和数据分析方法。
原理十字板剪切试验使用一种称为十字板(shear test fixture)的装置来施加剪切力。
该装置通常包括一对夹具,材料被夹在夹具之间,施加的力使材料发生剪切变形。
通过在剪切试验中测量应变和应力,可以推导出材料的力学性能。
实施步骤1.样品准备:首先,准备试样,根据需要的尺寸和形状进行切割或制备。
2.安装样品:将试样夹在十字板装置的夹具之间,确保夹具均匀施加力。
3.施加力:通过机械装置或手动操作,在试样上施加剪切力,并同时记录施加的力大小。
4.测量应变和应力:使用应变计等传感器测量试样的应变,同时测量力的大小以计算应力。
5.记录数据:在试验过程中,要定期记录应变、应力和时间,以便后续分析。
6.分析数据:使用得到的数据,计算剪切模量、极限剪切强度等参数,评估材料的剪切性能。
数据分析方法在十字板剪切试验中,常用的数据分析方法包括:1.计算剪切模量:通过斜率方法或应变能方法计算材料的剪切模量。
2.确定极限剪切强度:在应力-应变曲线上找到最高点,即可确定材料的极限剪切强度。
3.绘制剪切应力-应变曲线:将应力与应变的关系绘制成曲线,直观展示材料的剪切性能。
结论通过十字板剪切试验,可以全面评估材料的剪切性能,为工程设计和材料选择提供重要参考。
本文介绍了十字板剪切试验的原理、实施步骤和数据分析方法,希望可以帮助读者更加深入了解这一常用的材料试验方法。
第三章6 十字板剪切试验(岩土测试技术)
顶面的抗扭矩为: M3
D 12
3
D13 C H
Cv
D1 D D 3 M M 1 M 2 M 3 DH Cv D C H 2 6 2M C v C H Cu D 2 H D 3 M可以通过电测仪表测出 ,如下 M R
注意事项:
应先将电缆穿过施加扭力装置的中心孔,然后 再穿入探杆; 在扭剪前,应读取初始读数或将仪器调零; 匀速转动手摇柄,摇柄每转一圈,十字板头旋 转一度。 测试重塑土时,用扳手或管钳快速将探杆顺时 针方向旋转 6 圈,使十字板头周围的土充分扰 动后,立即拧紧钻杆夹具
四、测试数据处理
(1) 不用取样,特别是对难以取样的灵敏度高的 粘性土,可以在现场对基本上处于天然应力状 态下的土层进行扭剪。所求软土抗剪强度指标 比其他方法都可靠。 (2) 野外测试设备轻便,操作容易。 (3) 测试速度较快,效率高,成果整理简单。
其缺点是仅适用于江河湖海的沿岸地带的软土, 适应范围有限,对硬塑粘性土和含有砾石杂物 的土不宜采用,否则会损伤十字板头。
第六节 十字板剪切试验
一、定义
十字板剪切试验 (FVST: field vane shear test)是用插入软 粘土中的十字板头, 以一定的速率旋转, 测出土的抵抗力矩, 然后换算成土的抗剪 强度的一种测试方法。
FVST主要用于测定饱水软粘土的不排水抗剪强度。 它具有下列优点:
表格
计算重塑土的抗剪强度Cu/
Cu 10 K Re R e — 重塑土剪坏时表的读数
表格
计算土的灵敏度St
Cu St C
u
表格
十字板剪切试验报告
十字板剪切试验1.1试验的目的及意义(1)测定原应力条件下软粘性土的不排水抗剪强度;(2)评定软粘性土的灵敏度;(3)计算地基的承载力;(4)判断软粘性土的固结历史。
1.2试验的适用范围原位测定饱水软粘土的抗剪强度,所测得的抗剪强度值,相当于试验深度处于天然土层,在原位压力下固结的不排水抗剪强度。
1.3试验的仪器设备本次实验采用的是机械式十字板剪切仪(1)十字板头:矩形,高度为10公分,直径为5公分。
(2)轴杆:使用的轴杆直径为20mm,轴杆与十字板头连接的采用离合器装置,使轴杆和十字板头能够离合,以便分别作十字板总剪应力试验和轴杆摩擦校正试验。
(3)测力装置:采用开口钢环测力装置。
1.4实验原理十字板剪切试验的原理,即在钻孔某深度的软粘土中插入规定形状和尺寸的十字板头,施加扭转力矩,将土体剪切破坏,测定土体抵抗扭损的最大力矩,通过换算得到土体不排水抗剪强度u c 值(假定0≈ϕ)。
十字板头旋转过程中假定在土体产生一个高度为H (十字板头的高度)、直径为D (十字板头的直径)的圆柱状剪损面,并假定该剪损面的侧面和上、下底面上每一点土的抗剪强度都相等。
在剪损过程中土体产生的最大抵抗力矩M 由圆柱侧表面的抵抗力矩1M 和圆柱上、下底面的抵抗力矩2M 两部分组成,即21M M M +=。
其中:21DDH c M u ⨯=π32261232412D c D D c M u u ππ=⨯⨯⨯=)3(2161223H DD c D c D DH c M u u u +=+⨯=πππ式中 —十字板抗剪强度;—u c —十字板头直径;—D —十字板头高度。
—H对于普通十字板仪,上式中的M 值应等于试验测得的总力矩减去轴杆与土体间的摩擦力矩和仪器机械摩阻力矩,即Rf p M f )(-=式中 剪损土体的总作用力;——f p—施力转盘半径。
—R 代入得:上式右端第一个因子,对一定规格(D 和H 均为十字板几何尺寸)的十字板仪为一常数,称为十字板常数k 即)(H D D Mc u +=322π杆脱离进行测定;与轴试验时通过使十字板仪力和仪器机械阻力,在—轴杆与土体间的摩擦—f )()3(22f p H D D Rc f u -+=π)3(22H DD Rk +=π则有)(f p k c fu -=即为十字板剪切试验换算土的抗剪强度的计算公式。
第六章十字板剪切试验
§6.2 试验的原理与仪器设备
2.轴杆 一般使用的轴杆直径为20mm。对于机械式十字 板仪,按轴杆与十字板头的连接方式,国内广泛使用 离合式,也有采用套筒式的。
离合式连接方式是利用一离合器装置,使轴杆与 十字板头能离合,以便分别作十字板总剪力试验和轴 杆摩擦校正试验。
套筒式轴杆是在轴杆外套上一个带有弹子盘的可 以自由转动的钢管,使轴杆不与土接触,从而避免了 二者的摩擦力。
十字板剪切试验可用于以下目的: (1)测定原位应力条件下软粘性土的不排水抗 剪强度; (2)评定软粘性土的灵敏度; (3)计算地基的承载力; (4)判断软粘性土的固结历史。
§6.1 概述
VST主要用于测定饱水软粘土的不排水抗剪强度。 它具有下列优点:
(1) 不用取样,特别是对难以取样的灵敏度高的粘 性土,可以在现场对基本上处于天然应力状态下的土 层进行扭剪。所求软土抗剪强度指标比其他方法都可 靠。
(2) 野外测试设备轻便,操作容易。 (3) 测试速度较快,效率高,成果整理简单。 其缺点是仅适用于江河湖海的沿岸地带的软土, 适应范围有限,对硬塑粘性土和含有砾石杂物的土不 宜采用,否则会损伤十字板头。
§6.2 试验的原理与 包括十字板头、试验用探杆、贯入 主机和测力与记录装置仪器等。
图中所示为板头侧 面的剪切阻力分布
Cu
Cu
图中所示为在板
头上、下面的剪
切阻力分布。
§6.2 试验的原理与仪器设备
圆柱体侧表面的抵抗矩力为:M1
CuDH
D 2
圆柱体上下底面的抵力抗矩为:M2
2Cu
1 D2
4
2 3
D 2
1 6
CuD3
则有:
M
M1M2
CuDH
十字板剪切试验
5)板开支爪,顺时针转动摇把,使离合
齿吻合,再合上支爪;
6)套上传动部件,装上百分表并调零; 7)十字板头插入试验深度后,至少静止 2~3 min后,就可开始试验; 8)扭转剪切速率采用(10~20)/10s;每
转10测记一次百分表读数;出现峰值或稳定值 后,继续测记1min。 峰值或稳定值的百分表读数,即为原状土 剪切破坏时的εy。
钢环率定系数: C =
P
读数
读数
ε
对重塑土,也是一样的:
Cu' = KC (ε c − ε g )
对电测十字板剪切仪,无摩擦力,且扭 力臂R=1cm,故有:
Cu = K ξε y
'
C = K ξε c
' u '
ξ=
P
ε
K =
'
2 D π D H (1 + ) 3H
2
灵敏度:
St = Cu / C
' u
4、试验步骤
1)开孔,压入Φ127套管至预定试验深度75cm或 套管直径的3~5倍以上处,并固定;清土; 2)连接十字板头、轴杆、钻杆,下入孔底; 3)接导向杆,穿入底座,并固定;接摇把,转 杆,使十字板头离合齿吻合;将十字板头压入至试验深 度; 4)逆时针徐徐转动摇把,上提导杆2~3cm,使离 合齿脱离;合上支爪(阻止钻杆下沉),快速转动摇把 十余圈(减少阻力);
十字板剪切试验
• 试验目的:
了解十字板剪切试验设备及其试验步骤; 初步掌握试验资料的整理及成果的应用.
1、概述
该法是用于原位测定饱和软粘土的不 排水强度和残余强度的方法。 优点:更好地反映土的结构、构造; 反映土的天然应力及边界条件; 能反映土的强度随深度而:开口钢环式 轻便式 电测式 组成:十字板头(含上部轴杆连接部件); 钻、导杆(轴杆、钻杆、套管) 施测扭力装置(传动部分:蜗轮、蜗 杆、齿轮导杆、开口钢环、转盘、底盘、固 定套;底座)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
十字板剪切试验
1.1试验的目的及意义
(1)测定原应力条件下软粘性土的不排水抗剪强度;
(2)评定软粘性土的灵敏度;
(3)计算地基的承载力;
(4)判断软粘性土的固结历史。
1.2试验的适用范围
原位测定饱水软粘土的抗剪强度,所测得的抗剪强度值,相当于试验深度处于天然土层,在原位压力下固结的不排水抗剪强度。
1.3试验的仪器设备
本次实验采用的是机械式十字板剪切仪
(1)十字板头:矩形,高度为10公分,直径为5公分。
(2)轴杆:使用的轴杆直径为20mm,轴杆与十字板头连接的采用离合器装置,使轴杆和十字板头能够离合,以便分别作十字板总剪应力试验和轴杆摩擦校正试验。
(3)测力装置:采用开口钢环测力装置。
1.4实验原理
十字板剪切试验的原理,即在钻孔某深度的软粘土中插入规定形状和尺寸的十字板头,施加扭转力矩,将土体剪切破坏,测定土体抵抗扭损的最大力矩,通过换算得到土体不排水抗剪强度u c 值(假定0≈ϕ)。
十字板头旋转过程中假定在土体产生一个高度为H (十字板头的高度)、直径为D (十字板头的直径)的圆柱状剪损面,并假定该剪损面的侧面和上、下底面上每一点土的抗剪强度都相等。
在剪损过程中土体产生的最大抵抗力矩M 由圆柱侧表面的抵抗力矩1M 和圆柱上、下底面的抵抗力矩2M 两部分组成,即21M M M +=。
其中:
2
1D
DH c M u ⨯
=π3
226
1
232412D c D D c M u u ππ=⨯⨯⨯=)3
(2161223H D
D c D c D DH c M u u u +=+⨯
=πππ
式中 —十字板抗剪强度;—u c —十字板头直径;—D —十字板头高度。
—H
对于普通十字板仪,上式中的M 值应等于试验测得的总力矩减去轴杆与土体间的摩擦力矩和仪器机械摩阻力矩,即
R
f p M f )(-=
式中 剪损土体的总作用力;——f p
—施力转盘半径。
—R 代入得:
上式右端第一个因子,对一定规格(D 和H 均为十字板几何尺寸)的十字板仪为一常数,称为十字板常数k 即
)(H D D M
c u +=
3
22π杆脱离进行测定;
与轴
试验时通过使十字板仪力和仪器机械阻力,在—轴杆与土体间的摩擦—f )
()3
(22f p H D D R
c f u -+=
π)
3
(22H D
D R
k +=
π
则有
)
(f p k c f
u -=
即为十字板剪切试验换算土的抗剪强度的计算公式。
1.5执行技术标准
根据《岩土工程勘察规范》(GB50021-2009),十字板剪切试
验应满足以下主要技术要求:
(1)钻孔十字板剪切试验时,十字板头插入孔底以下的深度不应小于3-5倍钻孔直径,以保证十字板头能在未扰动土中进行剪切试验。
(2)十字板头插入土中试验深度后,应至少静止2-3分钟,方可开始剪切试验。
扭剪速率也应该很好控制。
剪切速率过慢,由于排水导致强度增长。
剪切速率过快,对饱和软粘性土由于粘滞效应也使强度增长。
扭剪速率宜采用(1°-2°)/10s ,以此作为统一的标准速率,以便能在不排水条件下进行剪切试验。
测记每扭转1°的扭矩,当扭矩出现峰值或稳定值后,要继续测读1分钟,以便确认峰值或稳定扭矩。
(3)在峰值强度或稳定值测定完毕后,如需要测试扰动土的不
排水抗剪强度,或计算土的灵敏度,则需用管钳夹紧试验探杆顺时针方向连续转动6圈,使十字板头周围土体充分扰动,然后测定重塑土的不排水抗剪强度。
(4)对于机械式十字板剪切仪,应进行轴杆与土体之间摩擦阻力影响的修正,对于电测式十字板剪切仪,不需要进行此项修正。
1.6试验的操作步骤和注意事项
在试验前,应对机械式十字板剪切仪的开口钢环测力计进行标定。
当用机械式十字板剪切仪于现场测定饱和软粘性土的不排水抗剪强度和残余强度等的基本方法和要求如下:
(1)将十字板头、离合器、导轮、试验钻杆等逐节拧紧接好下入孔内至十字板与孔底接触。
各杆件要直,各接头必须拧紧,以减少不必要的扭力损耗。
(2)接导管,安装底座,并使其固定在套管。
然后将十字板徐徐压入土中至预定试验深度,并应静止2-3分钟。
(3)用摇把套在导杆上向右转动,使十字板离合齿啮合。
(4)安装传动部件,转动底盘使固定套锁定在底座上,再微动手柄使特制键落入键槽内,记录好角位移的初始读数,装上百分表并调至零位。
(5)按顺时针方向徐徐转动扭力装置上的旋转手柄,转速约为1°/10s。
十字板头每转1°测记钢环变形读数一次,直至读数不再增大或开始减小时,即表示土体已被剪损,记录下此时百分表的最大读数yε。
(6)拔下连接导管和测力装置的特制键,套上摇把,连续转动导杆、轴杆和十字板头6转,使土完全扰动,再按照步骤5以同样的剪切速率进行试验,记录下此时百分表的最大读数cε。
(7)拔下控制轴杆与十字板头连接的特制键,将十字板轴杆向上提3-5cm,使连接轴杆与十字板头的离合器处于离开状态,然后扔按照步骤5,记录此时百分表的最大读数gε。
1.7试验数据
9 37
0.529 0.336
147
分钟 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
钢环应变 2 4 5 5.5 6.5 8 9 9
9.
5 11 12 12.5 12.5 13
13.5 13
.5 螺旋干 摩擦阻力
0.03 0.06 0.07 0.08 0.09 0.11 0.13 0.13 0.14 0.16 0.17 0.18 0.18 0.19 0.19 0.
19
其中 1螺旋干摩擦阻力等于钢环应变乘以0.0143
2修正剪力()等于钢环应变乘以0.0143(刚环系数)再
减去0.19305(最大摩擦阻力)
3内聚力等于修正剪力乘以0.0436(十字板常数)再乘以
10(常数c)
1.8试验数据处理
(1)、原状土不排水抗剪强度u C
根据应变仪记录的应变量,计算强度。
计算公式为:
=R ⋅f f C
P =R ⋅f f C
()=-u f c k p f
其中,
-2
436.54m =0.0143kgf/mm ,=K C K ——板头常数-2m C ——钢环系数kgf/mm
y
R ——钢环应变量mm
计算结果如附表所示。
(2)、重塑土不排水抗剪强度'u C
与原状土强度计算方法相同,计算结果见附表。
(3)、地基土的灵敏度t S
'u
t u C S C =
ZK1灵敏度:
334==1.85'181=
u t u C S C
ZK2灵敏度:
259
==1.69'153=
u t u C S C
3.9试验成果的工程应用
(1)确定地基土强度的变化
在快速堆载条件下,由于土中孔隙水压力升高,软弱地基的强度会降低,但经过一定的时间的排水,强度又会恢复,并且随土的固结而逐渐增长。
若采用十字板剪力仪测定这种变化,可以方便的控制施工加荷速率提供依据。
(2)检验地基处理效果
在对软土地基进行预加固处理时,可用十字板剪切试验探测加固过程中强度变化,用于控制施工速率和检验加固效果。
(3)测定饱和粘土的灵敏度
在十字板试验中可以很方便的测定出来。
在测定原状土的天然强度之后,将十字板旋转6阁,然后重复进行试验,又测得扰动土的强度,二者的比值即为灵敏度St ,实验测得试验土的灵敏度为1.95,该土是低灵敏度土,受到扰动土的强度变化较低。
(4)计算复合地基承载力
3[1(1)]spk c c u f m n c =+-
式中
spk f ——复合地基承载力的标准值;
c n ——桩土应力比,无实测资料时,可取
2~4,原状土强度高时
取低值,反之取高值;
c m ——面积置换率;
u c ——现场十字板剪切试验的不排水强度。
这要结合具体的工程实际进行计算。