进程间的通信
进程间通信(补充材料)

• msgp //用来存放欲接收消息的用户数据结构的地址
• size //指示msgp中数据数组的大小
• type //为0接收该队列的第一个消息;为正,接收类型为 type的第一个消息;为负,接收小于或等于type绝对值 的最低类型的第一个消息
• flag //规定倘若该队列无消息,核心应当做什么事。若设 置 IPC_NOWAIT , 则 立 即 返 回 ; 若 在 flag 中 设 置 MSG_NOERROR,且所接收的消息大学大于size,核心 截断所接收的消息。
1. Linux的共享存储区
• 创建或打开共享存储区(shmget):依据用户给出的整数值key, 创建新区或打开现有区,返回一个共享存储区ID。
• 连接共享存储区(shmat):连接共享存储区到本进程的地址空间, 可以指定虚拟地址或由系统分配,返回共享存储区首地址。父 进程已连接的共享存储区可被fork创建的子进程继承。
• 拆除共享存储区连接(shmdt):拆除共享存储区与本进程地址空 间的连接。
• 共享存储区控制(shmctl):对共享存储区进行控制。如:共享存 储区的删除需要显式调用shmctl(shmid, IPC_RMID, 0);
• 头文件:sys/types.h, /sys/ipc.h, sys/shm.h
• flag // 本 身 由 操 作 允 许 权 和 控 制 命 令 值 相
“或”得到,如:IPC_CREAT|0400表示是否
该队列应被创建,IPC_EXCL|0400表示该队
列的创建应是互斥的。
• msgqid是该系统调用返回的描述符,失败则 返回-1
int msgsnd(int id, struct msgbuf *msgp,
第十章进程间通信

12
消息队列
消息队列克服了早期UNIX IPC的缺点,例 如信号能够传输的信息量有限,而管道/命 名管道只能传输无格式的字节流,并且受 缓冲区大小限制
消息队列是一个消息的链表,消息相当于 记录,具有特定的格式和优先级,对消息 队列有写权限的进程可以按照一定的规则 添加新消息,对消息队列有读权限的进程 可以从消息队列中读消息
当进程不再使用该信号量控制的共享资源 时,该信号量加1,如果有进程在休眠等待 此信号量则唤醒它们
15
信号量
为正确使用信号量,对其的测试及减1操作 应当是原子操作,通常在内核实现
初始值为1的信号量称为双态信号量,它控 制单个资源
与信号量相关的数据结构为semid_ds 创建一个信号量集合 信号量的操作
第十章
进程间通信
LO嵌GO入式 1
进程间通信的概念
进程间通信IPC(InterProcess Communication)是一种进程之间交换信息 的一种技术,IPC表示各种进程通信方式的 统称
IPC的类型有管道、消息队列、信号量、共 享存储、网络等
并不是所有的系统都支持所 有的进程间通 信方式
FIFO又称命名管道。不相关的进程也能通 过命名管道来交换数据
FIFO管道的创建 非阻塞标志对管道的影响 类似普通管道,若写一个尚无进程为读打
开的FIFO,产生信号SIGPIPE。 一个给定的FIFO可以有多个写进程,参数
PIPE_BUF说明了原子写的最大数据量。 若某个FIFO的最后一个写进程关闭了该
10
许可权结构
当创建IPC时,系统为每个IPC设置一个 ipc_perm结构,该结构规定了IPC的许可 权和所有者
进程通信的几种方法

进程通信的几种方法进程通信是指在操作系统中,不同的进程之间进行数据交换和信息传递的过程。
在现代操作系统中,进程通信是非常重要的,因为多个进程之间的协作可以提高系统的性能和效率。
本文将介绍几种常见的进程通信方法。
1.管道通信管道通信是一种单向、半双工的通信方式,通过创建一个管道,将一个进程的输出连接到另一个进程的输入,从而实现数据的传输。
管道通信一般用于具有父子关系的进程之间或者具有共同祖先的进程之间。
2.消息队列通信消息队列通信是一种通过操作系统内核来传递消息的机制。
进程可以将消息发送到消息队列,其他进程则可以从消息队列中接收消息。
消息队列通信具有高效、可靠、灵活等特点,常用于进程之间传递数据量较大的情况。
3.共享内存通信共享内存通信是一种进程间共享内存区域的方式。
多个进程可以访问同一块内存区域,从而实现数据的共享。
共享内存通信的优点是速度快,因为进程之间不需要进行数据的复制,但是需要进程之间进行同步和互斥操作,以避免数据的冲突。
4.信号量通信信号量通信是一种通过操作系统提供的信号量机制来实现进程间同步和互斥的方式。
进程可以通过信号量来进行互斥操作,以确保共享资源的安全访问。
信号量通信常用于进程之间共享资源的管理和同步。
5.套接字通信套接字通信是一种通过网络进行进程通信的方式,常用于不同主机之间的进程通信。
套接字通信可以通过TCP或UDP协议来实现,具有跨平台、可靠性高等特点。
总结起来,进程通信是操作系统中非常重要的一部分,不同的进程之间可以通过各种方式进行数据的交换和信息的传递。
管道通信、消息队列通信、共享内存通信、信号量通信和套接字通信是常见的几种进程通信方法。
不同的通信方法适用于不同的场景,开发人员需要根据具体需求选择合适的通信方式。
进程通信的正确使用可以提高系统的性能和效率,确保系统的稳定运行。
Python中的进程间通信与同步技巧

Python中的进程间通信与同步技巧在多进程编程中,进程间通信和同步是必不可少的。
Python提供了许多技巧和模块来帮助我们实现进程间的通信和同步操作。
本文将介绍一些常用的Python进程间通信与同步的技巧。
1. 队列(Queue)队列是一种常用的进程间通信方式。
Python中的multiprocessing模块提供了一个Queue类,它可以实现多个进程之间的消息传递。
通过使用put()和get()方法,一个进程可以向队列中添加消息,而另一个进程则可以从队列中获取消息。
队列提供了线程安全的方法,可以防止多个进程同时修改队列。
2. 管道(Pipe)管道是一种双向的进程间通信方式。
与队列不同,管道允许进程之间进行双向的数据传输。
Python的multiprocessing模块提供了Pipe类,它可以用于创建管道,然后通过发送和接收方法进行数据的传输。
3. 共享内存(Shared Memory)共享内存是一种高效的进程间通信方式。
Python的multiprocessing模块提供了Value和Array两个类,它们分别用于在进程之间共享单个值和数组。
通过这些类,我们可以在多个进程之间共享内存,达到共享数据的目的。
4. 信号量(Semaphore)信号量是一种用于进程间同步的机制。
Python的multiprocessing模块提供了BoundedSemaphore和Semaphore两个类来实现信号量。
通过使用这些类,我们可以控制同时进行的进程数量,从而实现进程间的同步操作。
5. 事件(Event)事件是一种用于进程间通信和同步的机制。
Python的multiprocessing模块提供了Event类,它可以用于创建事件对象。
通过设置和清除事件对象的状态,不同进程可以进行等待和通知的操作,实现进程间的同步和通信。
6. 锁(Lock)锁是用于进程间同步的常用机制。
Python的multiprocessing模块提供了Lock 类,它可以用于创建锁对象。
Python中的进程间通信

Python中的进程间通信进程间通信(IPC,Inter-Process Communication)是一种进程之间传递数据和消息的方式。
在操作系统中,进程是程序在运行时分配给它的内存空间和系统资源的实例。
不同的进程可能运行在不同的计算机上或者同一台计算机上的不同CPU中。
进程间通信是实现多个进程相互合作完成任务的必要手段之一。
进程间通信的方式可以分为多种,包括管道、消息队列、共享内存、信号量等。
Python通过提供不同的模块实现了这些方式,使得进程可以在Python中相互通信,完成不同的任务,实现高效的协作。
1.管道(Pipe)管道是在两个进程之间建立的一条通信通道,可以进行双向通信。
通常情况下,一个进程的输出被重定向到管道中,另一个进程则从管道中读取输入。
在Python中可以使用os模块的pipe()方法来建立管道。
示例代码:```pythonimport ospipe = os.pipe()pid = os.fork()if pid == 0:#子进程从管道中读取数据os.close(pipe[1])data = os.read(pipe[0], 1024)print(f"子进程读取到的数据:{data}") os._exit(0)else:#父进程向管道中写入数据os.close(pipe[0])os.write(pipe[1], b"Hello, Pipe!")os.wait()```在上面的代码中,我们先调用了pipe()方法创建了一个管道,然后使用fork()方法创建了一个子进程。
子进程从管道中读取数据,父进程则向管道中写入数据,最终等待子进程结束。
2.消息队列(Message Queue)消息队列是一种进程间通信机制,可以在不同的进程之间传递消息。
消息队列通常是先进先出的,每个消息都有一个标识符来标记其类型。
在Python中可以使用sysv_ipc模块来使用消息队列。
实验六 进程间通信

3.2 实验内容(2)
进程的管道通信
编写程序,实现进程的管道通信:父进程使用系统调用pipe() 建立一个管道。创建两个子进程p1和p2,分别向管道个发一 条信息后结束: Child 1 is sending a message to parent. Child 2 is sending a message to parent. 父进程从管道中分别接收两个子进程发来的消息并显示在屏 幕上,然后父进程结束。要求父进程先接受子进程p1发来的 消息,然后再接收子进程p2发来的消息。
实验六 进程间通信
预备知识
Linux进程间通信 进程软中断通信
管道和消息队列
实验指导
软中断通信函数
管道通信的使用
消息队列的应用
实验目的、内容
2.1 软中断通信函数(1)
向一个进程或一组进程发送一个信号: int kill(pid, sig)
pid>0时,核心将信号发送给进程pid
理程序
2.1 软中断通信函数(2)
pid_t wait(int * status)
暂时停止目前进程的执行,直到有信号来或子进程结束
pid_t waitpid(pid_t pid, int * status, int options)
pid的取值 pid=-1时,等待任何一个子进程退出,相当于wait() pid=0时,等待进程组ID与目前进程相同的任何子进程 pid<-1时,等待进程组ID为pid绝对值的任何子进程 options有两个常数参数,可使用或运算,不用时设为0 WNOHANG:即使没有任何子进程退出,它也会立即返回 WUNTRACED:子进程进入暂停执行状态并马上返回,但结束 状态不予以理会
windows进程间通信的几种方法

windows进程间通信的几种方法(实用版4篇)目录(篇1)1.引言2.Windows进程间通信概述3.管道通信4.共享内存通信5.消息队列通信6.套接字通信7.结论正文(篇1)一、引言Windows操作系统以其强大的功能和灵活性,吸引了众多用户。
在Windows平台上,进程间通信(IPC)是实现应用程序之间数据交换和协作的关键。
本文将介绍几种常用的Windows进程间通信方法。
二、Windows进程间通信概述Windows进程间通信是指不同进程之间通过某种机制实现数据交换。
它允许应用程序在不同的线程或进程之间传递信息,从而实现协同工作。
在Windows平台上,有多种进程间通信机制可供选择,包括管道、共享内存、消息队列和套接字等。
三、管道通信1.概述:管道是一种用于不同进程之间数据交换的同步机制。
它提供了一种单向数据流,可实现父子进程之间的通信。
2.创建:使用CreateNamedPipe函数创建命名管道或使用CreatePipe函数创建匿名管道。
3.读取/写入:使用ReadFile和WriteFile函数进行数据的读取和写入。
4.关闭:使用CloseHandle函数关闭管道句柄。
四、共享内存通信1.概述:共享内存允许多个进程访问同一块内存区域,从而实现数据共享和快速数据访问。
2.创建:使用CreateFileMapping函数创建共享内存映射。
3.读取/写入:使用MapViewOfFile函数将共享内存映射到进程的地址空间,并进行数据的读取和写入。
4.同步:使用原子操作或信号量进行数据的同步和互斥访问。
五、消息队列通信1.概述:消息队列允许不同进程之间传递消息,实现异步通信。
它可以实现消息的批量发送和接收,适用于高并发的消息传递场景。
2.创建:使用CreateMailslot函数创建消息队列。
3.发送/接收:使用SendMessage函数发送消息,使用SendMessage 函数的异步版本接收消息。
进程间通信的几种方式

进程间通信的⼏种⽅式典型回答1. 套接字套接字为通信的端点。
通过⽹络通信的每对进程需要使⽤⼀对套接字,即每个进程各有⼀个。
每个套接字由⼀个 IP 地址和⼀个端⼝号组成。
通常,套接字采⽤ CS 架构,服务器通过监听指定的端⼝,来等待特定服务。
服务器在收到请求后,接受来⾃客户端套接字的连接,从⽽完成连接。
2. 管道管道提供了⼀个相对简单的进程间的相互通信,普通管道允许⽗进程和⼦进程之间的通信,⽽命名管道允许不相关进程之间的通信。
知识延伸进程间通信有两种基本模型:共享内存和消息传递。
共享内存模型会建⽴起⼀块供协作进程共享的内存区域,进程通过向此共享区域读出或写⼊数据来交换信息。
消息传递模型通过在协作进程间交换信息来实现通信。
下图给出了两个模型的对⽐:很多系统同时实现了这两种模型。
消息传递对于交换较少数量的数据很有⽤,因为⽆需避免冲突。
对于分布式系统,消息传递也⽐共享内存更易实现。
共享内存可以快于消息传递,这是因为消息传递的实现经常采⽤系统调⽤,因此需要更多的时间以便内核介⼊。
与此相反,共享内存系统仅在建⽴共享内存区域时需要系统调⽤;⼀旦建⽴共享内存,所有访问都可作为常规内存访问,⽆需借助内核。
对具有多个处理核的系统上,消息传递的性能要优于共享内存。
共享内存会有⾼速缓存⼀致性问题,这是由共享数据在多个⾼速缓存之间迁移⽽引起的。
随着系统处理核的⽇益增加,可能导致消息传递作为 IPC 的⾸选机制。
共享内存系统采⽤共享内存的进程间通信,需要通信进程建⽴共享内存区域。
通常,这⼀⽚共享内存区域驻留在创建共享内存段的进程地址空间内。
其它希望使⽤这个共享内存段进⾏通信的进程应将其附加到⾃⼰的地址空间。
回忆⼀下,通常操作系统试图阻⽌⼀个进程访问另⼀个进程的内存。
共享内存需要两个或更多的进程同意取消这⼀限制;这样它们通过在共享区域内读出或写⼊来交换信息。
数据的类型或位置取决于这些进程,⽽不是受控于操作系统。
另外,进程负责确保,它们不向同⼀位置同时写⼊数据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
# 管道( pipe ):管道是一种半双工的通信方式,数据只能单向流动,而且只能在具有亲缘关系的进程间使用。
进程的亲缘关系通常是指父子进程关系。
# 有名管道(named pipe) :有名管道也是半双工的通信方式,但是它允许无亲缘关系进程间的通信。
# 信号量( semophore ) :信号量是一个计数器,可以用来控制多个进程对共享资源的访问。
它常作为一种锁机制,防止某进程正在访问共享资源时,其他进程也访问该资源。
因此,主要作为进程间以及同一进程内不同线程之间的同步手段。
# 消息队列( message queue ) :消息队列是由消息的链表,存放在内核中并由消息队列标识符标识。
消息队列克服了信号传递信息少、管道只能承载无格式字节流以及缓冲区大小受限等缺点。
# 信号( sinal ) :信号是一种比较复杂的通信方式,用于通知接收进程某个事件已经发生。
# 共享内存( shared memory ) :共享内存就是映射一段能被其他进程所访问的内存,这段共享内存由一个进程创建,但多个进程都可以访问。
共享内存是最快的IPC 方式,它是针对其他进程间通信方式运行效率低而专门设计的。
它往往与其他通信机制,如信号两,配合使用,来实现进程间的同步和通信。
# 套接字( socket ) :套接口也是一种进程间通信机制,与其他通信机制不同的是,它可用于不同及其间的进程通信。
windows进程通信的几种方式(转)2008-10-13 16:471 文件映射文件映射(Memory-Mapped Files)能使进程把文件内容当作进程地址区间一块内存那样来对待。
因此,进程不必使用文件I/O操作,只需简单的指针操作就可读取和修改文件的内容。
Win32 API允许多个进程访问同一文件映射对象,各个进程在它自己的地址空间里接收内存的指针。
通过使用这些指针,不同进程就可以读或修改文件的内容,实现了对文件中数据的共享。
应用程序有三种方法来使多个进程共享一个文件映射对象。
(1)继承:第一个进程建立文件映射对象,它的子进程继承该对象的句柄。
(2)命名文件映射:第一个进程在建立文件映射对象时可以给该对象指定一个名字(可与文件名不同)。
第二个进程可通过这个名字打开此文件映射对象。
另外,第一个进程也可以通过一些其它IPC机制(有名管道、邮件槽等)把名字传给第二个进程。
(3)句柄复制:第一个进程建立文件映射对象,然后通过其它IPC机制(有名管道、邮件槽等)把对象句柄传递给第二个进程。
第二个进程复制该句柄就取得对该文件映射对象的访问权限。
文件映射是在多个进程间共享数据的非常有效方法,有较好的安全性。
但文件映射只能用于本地机器的进程之间,不能用于网络中,而开发者还必须控制进程间的同步。
2 共享内存Win32 API中共享内存(Shared Memory)实际就是文件映射的一种特殊情况。
进程在创建文件映射对象时用0xFFFFFFFF来代替文件句柄(HANDLE),就表示了对应的文件映射对象是从操作系统页面文件访问内存,其它进程打开该文件映射对象就可以访问该内存块。
由于共享内存是用文件映射实现的,所以它也有较好的安全性,也只能运行于同一计算机上的进程之间。
3 匿名管道管道(Pipe)是一种具有两个端点的通信通道:有一端句柄的进程可以和有另一端句柄的进程通信。
管道可以是单向-一端是只读的,另一端点是只写的;也可以是双向的一管道的两端点既可读也可写。
匿名管道(Anonymous Pipe)是在父进程和子进程之间,或同一父进程的两个子进程之间传输数据的无名字的单向管道。
通常由父进程创建管道,然后由要通信的子进程继承通道的读端点句柄或写端点句柄,然后实现通信。
父进程还可以建立两个或更多个继承匿名管道读和写句柄的子进程。
这些子进程可以使用管道直接通信,不需要通过父进程。
匿名管道是单机上实现子进程标准I/O重定向的有效方法,它不能在网上使用,也不能用于两个不相关的进程之间。
4 命名管道命名管道(Named Pipe)是服务器进程和一个或多个客户进程之间通信的单向或双向管道。
不同于匿名管道的是命名管道可以在不相关的进程之间和不同计算机之间使用,服务器建立命名管道时给它指定一个名字,任何进程都可以通过该名字打开管道的另一端,根据给定的权限和服务器进程通信。
命名管道提供了相对简单的编程接口,使通过网络传输数据并不比同一计算机上两进程之间通信更困难,不过如果要同时和多个进程通信它就力不从心了。
5 邮件槽邮件槽(Mailslots)提供进程间单向通信能力,任何进程都能建立邮件槽成为邮件槽服务器。
其它进程,称为邮件槽客户,可以通过邮件槽的名字给邮件槽服务器进程发送消息。
进来的消息一直放在邮件槽中,直到服务器进程读取它为止。
一个进程既可以是邮件槽服务器也可以是邮件槽客户,因此可建立多个邮件槽实现进程间的双向通信。
通过邮件槽可以给本地计算机上的邮件槽、其它计算机上的邮件槽或指定网络区域中所有计算机上有同样名字的邮件槽发送消息。
广播通信的消息长度不能超过400字节,非广播消息的长度则受邮件槽服务器指定的最大消息长度的限制。
邮件槽与命名管道相似,不过它传输数据是通过不可靠的数据报(如TCP/IP 协议中的UDP包)完成的,一旦网络发生错误则无法保证消息正确地接收,而命名管道传输数据则是建立在可靠连接基础上的。
不过邮件槽有简化的编程接口和给指定网络区域内的所有计算机广播消息的能力,所以邮件槽不失为应用程序发送和接收消息的另一种选择。
6 剪贴板剪贴板(Clipped Board)实质是Win32 API中一组用来传输数据的函数和消息,为Windows应用程序之间进行数据共享提供了一个中介,Windows已建立的剪切(复制)-粘贴的机制为不同应用程序之间共享不同格式数据提供了一条捷径。
当用户在应用程序中执行剪切或复制操作时,应用程序把选取的数据用一种或多种格式放在剪贴板上。
然后任何其它应用程序都可以从剪贴板上拾取数据,从给定格式中选择适合自己的格式。
剪贴板是一个非常松散的交换媒介,可以支持任何数据格式,每一格式由一无符号整数标识,对标准(预定义)剪贴板格式,该值是Win32 API定义的常量;对非标准格式可以使用Register Clipboard Format函数注册为新的剪贴板格式。
利用剪贴板进行交换的数据只需在数据格式上一致或都可以转化为某种格式就行。
但剪贴板只能在基于Windows的程序中使用,不能在网络上使用。
7 动态数据交换动态数据交换(DDE)是使用共享内存在应用程序之间进行数据交换的一种进程间通信形式。
应用程序可以使用DDE进行一次性数据传输,也可以当出现新数据时,通过发送更新值在应用程序间动态交换数据。
DDE和剪贴板一样既支持标准数据格式(如文本、位图等),又可以支持自己定义的数据格式。
但它们的数据传输机制却不同,一个明显区别是剪贴板操作几乎总是用作对用户指定操作的一次性应答-如从菜单中选择Paste命令。
尽管DDE也可以由用户启动,但它继续发挥作用一般不必用户进一步干预。
DDE有三种数据交换方式:(1) 冷链:数据交换是一次性数据传输,与剪贴板同。
(2) 温链:当数据交换时服务器通知客户,然后客户必须请求新的数据。
(3) 热链:当数据交换时服务器自动给客户发送数据。
DDE交换可以发生在单机或网络中不同计算机的应用程序之间。
开发者还可以定义定制的DDE数据格式进行应用程序之间特别目的IPC,它们有更紧密耦合的通信要求。
大多数基于Windows的应用程序都支持DDE。
8 对象连接与嵌入应用程序利用对象连接与嵌入(OLE)技术管理复合文档(由多种数据格式组成的文档),OLE提供使某应用程序更容易调用其它应用程序进行数据编辑的服务。
例如,OLE支持的字处理器可以嵌套电子表格,当用户要编辑电子表格时OLE 库可自动启动电子表格编辑器。
当用户退出电子表格编辑器时,该表格已在原始字处理器文档中得到更新。
在这里电子表格编辑器变成了字处理器的扩展,而如果使用DDE,用户要显式地启动电子表格编辑器。
同DDE技术相同,大多数基于Windows的应用程序都支持OLE技术。
9 动态连接库Win32动态连接库(DLL)中的全局数据可以被调用DLL的所有进程共享,这就又给进程间通信开辟了一条新的途径,当然访问时要注意同步问题。
虽然可以通过DLL进行进程间数据共享,但从数据安全的角度考虑,我们并不提倡这种方法,使用带有访问权限控制的共享内存的方法更好一些。
10 远程过程调用Win32 API提供的远程过程调用(RPC)使应用程序可以使用远程调用函数,这使在网络上用RPC进行进程通信就像函数调用那样简单。
RPC既可以在单机不同进程间使用也可以在网络中使用。
由于Win32 API提供的RPC服从OSF-DCE(Open Software Foundation Distributed Computing Environment)标准。
所以通过Win32 API编写的RPC 应用程序能与其它操作系统上支持DEC的RPC应用程序通信。
使用RPC开发者可以建立高性能、紧密耦合的分布式应用程序。
11 NetBios函数Win32 API提供NetBios函数用于处理低级网络控制,这主要是为IBM NetBios系统编写与Windows的接口。
除非那些有特殊低级网络功能要求的应用程序,其它应用程序最好不要使用NetBios函数来进行进程间通信。
12 SocketsWindows Sockets规范是以U.C.Berkeley大学BSD UNIX中流行的Socket 接口为范例定义的一套Windows下的网络编程接口。
除了Berkeley Socket原有的库函数以外,还扩展了一组针对Windows的函数,使程序员可以充分利用Windows的消息机制进行编程。
现在通过Sockets实现进程通信的网络应用越来越多,这主要的原因是Sockets的跨平台性要比其它IPC机制好得多,另外WinSock 2.0不仅支持TCP/IP 协议,而且还支持其它协议(如IPX)。
Sockets的唯一缺点是它支持的是底层通信操作,这使得在单机的进程间进行简单数据传递不太方便,这时使用下面将介绍的WM_COPYDATA消息将更合适些。
13 WM_COPYDATA消息WM_COPYDATA是一种非常强大却鲜为人知的消息。
当一个应用向另一个应用传送数据时,发送方只需使用调用SendMessage函数,参数是目的窗口的句柄、传递数据的起始地址、WM_COPYDATA消息。
接收方只需像处理其它消息那样处理WM_COPY DATA消息,这样收发双方就实现了数据共享。
WM_COPYDATA是一种非常简单的方法,它在底层实际上是通过文件映射来实现的。