第三章-无失真信源编码(1)
信息论与编码理论习题答案

信息论与编码理论习题答案LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】第二章 信息量和熵八元编码系统,码长为3,第一个符号用于同步,每秒1000个码字,求它的信息速率。
解:同步信息均相同,不含信息,因此 每个码字的信息量为 2⨯8log =2⨯3=6 bit因此,信息速率为 6⨯1000=6000 bit/s掷一对无偏骰子,告诉你得到的总的点数为:(a) 7; (b) 12。
问各得到多少信息量。
解:(1) 可能的组合为 {1,6},{2,5},{3,4},{4,3},{5,2},{6,1})(a p =366=61得到的信息量 =)(1loga p =6log = bit (2) 可能的唯一,为 {6,6})(b p =361得到的信息量=)(1logb p =36log = bit 经过充分洗牌后的一副扑克(52张),问:(a) 任何一种特定的排列所给出的信息量是多少?(b) 若从中抽取13张牌,所给出的点数都不相同时得到多少信息量?解:(a) )(a p =!521信息量=)(1loga p =!52log = bit (b) ⎩⎨⎧⋯⋯⋯⋯花色任选种点数任意排列13413!13)(b p =1352134!13A ⨯=1352134C 信息量=1313524log log -C = bit 随机掷3颗骰子,X 表示第一颗骰子的结果,Y 表示第一和第二颗骰子的点数之和,Z 表示3颗骰子的点数之和,试求)|(Y Z H 、)|(Y X H 、),|(Y X Z H 、)|,(Y Z X H 、)|(X Z H 。
解:令第一第二第三颗骰子的结果分别为321,,x x x ,1x ,2x ,3x 相互独立,则1x X =,21x x Y +=,321x x x Z ++=)|(Y Z H =)(3x H =log 6= bit )|(X Z H =)(32x x H +=)(Y H=2⨯(361log 36+362log 18+363log 12+364log 9+365log 536)+366log 6= bit )|(Y X H =)(X H -);(Y X I =)(X H -[)(Y H -)|(X Y H ]而)|(X Y H =)(X H ,所以)|(Y X H = 2)(X H -)(Y H = bit或)|(Y X H =)(XY H -)(Y H =)(X H +)|(X Y H -)(Y H 而)|(X Y H =)(X H ,所以)|(Y X H =2)(X H -)(Y H = bit),|(Y X Z H =)|(Y Z H =)(X H = bit )|,(Y Z X H =)|(Y X H +)|(XY Z H =+= bit设一个系统传送10个数字,0,1,…,9。
信息论常用无失真信源编码设计(含MATLAB程序)

《信息论基础》题目:常用无失真信源编码程序设计目录1. 引言 (2)2. 香农编码 (2)2.1 编码步骤 (3)2.2 程序设计 (3)2.3 运行结果 (3)3. 费诺编码 (4)3.1 编码步骤 (5)3.2 程序设计 (5)3.3 运行结果 (5)4. 哈夫曼编码 (6)4.1 编码步骤 (7)4.2 程序设计 (7)4.3 运行结果 (8)5. 结论 (9)6. 参考文献 (10)7. 附录 (11)7.1 香农编码Matlab程序 (11)7.2 费诺编码Matlab程序 (12)7.3 哈夫曼编码Matlab程序 (14)1. 引言信息论(Information Theory)是运用概率论与数理统计的方法研究信息、信息熵、通信系统、数据传输、密码学、数据压缩等问题的应用数学学科。
信息系统就是广义的通信系统,泛指某种信息从一处传送到另一处所需的全部设备所构成的系统。
信息论是关于信息的理论,应有自己明确的研究对象和适用范围[1]。
信息论将信息的传递作为一种统计现象来考虑,给出了估算通信信道容量的方法。
信息传输和信息压缩是信息论研究中的两大领域。
这两个方面又由信息传输定理、信源-信道隔离定理相互联系。
信源编码是一种以提高通信有效性为目的而对信源符号进行的变换,或者说为了减少或消除信源冗余度而进行的信源符号变换。
具体说,就是针对信源输出符号序列的统计特性来寻找某种方法,把信源输出符号序列变换为最短的码字序列,使后者的各码元所载荷的平均信息量最大,同时又能保证无失真地恢复原来的符号序列[2]。
在通信中,传送信源信息只需要具有信源极限熵大小的信息率,但在实际的通信系统中用来传送信息的信息率远大于信源极限熵。
为了能够得到或接近信源熵的最小信息率,必须解决编码的问题,而编码分为信源编码和信道编码,其中的信源编码又分为无失真信源编码和限失真信源编码。
由于无失真信源编码只适用于离散信源,所以本次作业讨论无失真离散信源的三种简单编码,即香农(Shannon)编码、费诺(Fano) 编码和哈夫曼(Huffman) 编码[3]。
信息论与编码第3版第3章习题解答

第3章 无失真离散信源编码习题3.1 设信源1234567()0.20.190.180.170.150.10.01X a a a a a a a P X(1) 求信源熵H (X ); (2) 编二进制香农码;(3) 计算其平均码长及编码效率。
解: (1)()()log ()(.log ..log ..log ..log ..log ..log ..log .).7212222222=-020201901901801801701701501501010010012609 i i i H X p a p a bit symbol(2)a i p (a i ) p a (a i ) k i 码字 a 1 0.2 0 3 000 a 2 0.19 0.2 3 001 a 3 0.18 0.39 3 011 a 4 0.17 0.57 3 100 a 5 0.15 0.74 3 101 a 6 0.1 0.89 4 1110 a 70.010.9971111110(3)()3(0.2+0.19+0.18+0.17+0.15)+40.1+70.01=3.1471i i i K k p a()() 2.609=83.1%3.14H X H X R K3.2 对习题3.1的信源编二进制费诺码,计算其编码效率。
解:a i p (a i ) 编 码 码字 k i a 1 0.2 000 2 a 2 0.19 1 0 010 3 a 3 0.18 1 011 3 a 4 0.17 110 2 a 5 0.15 10 110 3 a 6 0.1 10 1110 4 a 70.011 11114()2(0.2+0.17)+3(0.19+0.18+0.15)+4(0.1+0.01)=2.7471i i i K k p a()() 2.609=95.2%2.74H X H X R K3.3 对习题3.1的信源分别编二进制和三进制赫夫曼码,计算各自的平均码长及编码效率。
第三章-无失真信源编码(2)

序列 x1x1 x1x2 x2x1 x2x2
序列概率 9/16 3/16 3/16 1/16
即时码 0 10 110 111
这个码的码字平均长度
lN
9 1
3 2
3 3
1 3 27
码元/ 信源序列
16 16 16 16 16
单个符号的平均码长
l
l
N
lN
27
码元 / 符号
N 2 32
编码效率
c
H(X)
例1:设有一简单DMS信源:
U
p
u1 1 2
u2 1 22
u3 1 23
u4 u5 u6 u7
111
1
24 25 26 26
用码元表X={0,1}对U的单个符号进行编码(N=1),即对U
的单个符号进行2进制编码。
解:用X的两个码元对U的7个符号进行编码,单 个对应的定长码长:
l lN log q log 7 2.8 码元 / 符号 N log r log 2
j 1
log r
1 qN
r l j
ln 2
P(a j ) ln
j 1
P(aj )
1 qN
r l j
ln 2 j1 P(a j )( P(a j ) 1)
(ln z z 1)
qN
qN
rlj P(a j )
j 1
j 1
ln 2
11 0 (Kraft不等式和概率完备性质) ln 2
(2)根据信源的自信息量来选取与之对应的码长:
【说明】
霍夫曼编码是真正意义上的最佳编码,对给定的信源,平 均码长达到最小,编码效率最高,费诺编码次之,香农编码 效率最低。
信息论与纠错编码题库 (1)

第三章 离散信源无失真编码3.2离散无记忆信源,熵为H[x],对信源的L 长序列进行等长编码,码字是长为n 的D 进制符号串,问:(1)满足什么条件,可实现无失真编码。
(2)L 增大,编码效率 也会增大吗? 解:(1)当log ()n D LH X ≥时,可实现无失真编码;(2)等长编码时,从总的趋势来说,增加L 可提高编码效率,且当L →∞时,1η→。
但不一定L 的每次增加都一定会使编码效率提高。
3.3变长编码定理指明,对信源进行变长编码,总可以找到一种惟一可译码,使码长n 满足D X H log )(≤n <D X H log )(+L 1,试问在n >D X H log )(+L1时,能否也找到惟一可译码? 解:在n >D X H log )(+L1时,不能找到惟一可译码。
证明:假设在n >D X H log )(+L1时,能否也找到惟一可译码,则由变长编码定理当n 满足D X H log )(≤n <D X H log )(+L 1,总可以找到一种惟一可译码知:在n ≥DX H log )( ① 时,总可以找到一种惟一可译码。
由①式有:Ln ≥L X H )(logD ② 对于离散无记忆信源,有H(x)=LX H )( 代入式②得:n L≥ D x H log )(即在nL≥Dx H log )(时,总可以找到一种惟一可译码;而由定理给定熵H (X )及有D 个元素的码符号集,构成惟一可译码,其平均码长满足D X H log )(≤n L <DX H log )(+1 两者矛盾,故假设不存在。
所以,在n >D X H log )(+L1时,不能找到惟一可译码。
3.7对一信源提供6种不同的编码方案:码1~码6,如表3-10所示信源消息 消息概率 码1 码2 码3 码4 码5 码6 u1 1/4 0 001 1 1 00 000 u2 1/4 10 010 10 01 01 001 U3 1/8 00 011 100 001 100 011 u4 1/8 11 100 1000 0001 101 100 u5 1/8 01 101 10000 00001 110 101 u6 1/16 001 110 100000 000001 1110 1110 u71/161111111000000000000111111111(1) 这些码中哪些是惟一可译码? (2) 这些码中哪些是即时码?(3) 对所有唯一可译码求出其平均码长。
信息论小题测试题

第一章自我测试题一、填空题1.在认识论层次上研究信息的时候,必须同时考虑到形式、_____和_____三个方面的因素。
2.如果从随机不确定性的角度来定义信息,信息是用以消除_____的东西。
3.信源编码的结果是_____冗余;而信道编码的手段是_____冗余。
4._____年,香农发表了著名的论文_____,标志着信息论诞生。
5.信息商品是一种特殊商品,它有_____性、_____性、_____性和知识创造性等特征。
二、判断题1.信息传输系统模型表明,噪声仅仅来源于信道()2.本体论层次信息表明,信息不依赖于人而存在()3.信道编码与译码是一对可逆变换()4.1976年,论文《密码学的新方向》的发表,标志着保密通信研究的开始()5.基因组序列信息的提取和分析是生物信息学的研究内容之一()三、选择题1.下列表述中,属于从随机不确定性的角度来定义信息的是_____A.信息是数据B.信息是集合之间的变异度C.信息是控制的指令D.信息是收信者事先不知道的报道2._____是最高层次的信息A.认识论B.本体论C.价值论D.唯物论3.下列不属于狭义信息论的是_____A.信息的测度B.信源编码C.信道容量D.计算机翻译4.下列不属于信息论的研究内容的是_____A.信息的产生B.信道传输能力C.文字的统计特性D.抗干扰编码5.下列关于信息论发展历史描述不正确的是_____A.偶然性、熵函数引进物理学为信息论的产生提供了理论前提。
B.1952年,香农发展了信道容量的迭代算法C.哈特莱用消息可能数目的对数来度量消息中所含有的信息量,为香农创立信息论提供了思路。
D.1959年,香农首先提出率失真函数和率失真信源编码定理,才发展成为信息率失真编码理论。
四、简答题给定爱因斯坦质能方程2Emc ,试说明该方程所传达的语法信息、语义信息和语用信息。
第一章 自我测试题参考答案一、填空题1. 语义,语用2. 随机不确定性3. 减小,增加4. 1948,通信的数学理论5. 保存性,共享性,老化可能性二、判断题1. ×;2.√;3.×;4.×;5.√三、选择题1. D ;2. B ;3. D ;4. A ;5. B四、简答题语法信息:就是该方程中各个字母、符号的排列形式。
信息论与编码习题答案-曹雪虹

3-14
信源 符号 xi x1 x2 x3 x4 x5 x6 x7
符号概 率 pi 1/3 1/3 1/9 1/9 1/27 1/27 1/27 1/3 1/3 1/9 1/9 2/27 1/27 1/3 1/3 1/9 1/9 1/9
编码过程
编码 1/3 1/3 1/3 2/3 1/3 00 01 100 101 111 1100 1101
得p0p1p223当p0或p1时信源熵为0第三章无失真信源编码31321因为abcd四个字母每个字母用两个码每个码为05ms所以每个字母用10ms当信源等概率分布时信源熵为hxlog42平均信息传递速率为2信源熵为hx0198bitms198bitsbitms200bits33与上题相同351hu12log2?14log4?18log8?116log16?132log32?164log64?1128log128?1128log128?1984111111112481632641281282每个信源使用3个二进制符号出现0的次数为出现1的次数为p0p134相应的香农编码信源符号xix1x2x3x4x5x6x7x8符号概率pi12141811613216411281128累加概率pi00507508750938096909840992logpxi12345677码长ki12345677码字010110111011110111110111111011111110相应的费诺码信源符号概符号xi率pix1x2x3x4x5x6x7x812141811613216411281128111第一次分组0第二次分组0第三次分组0第四次分组0第五次分组011第六次分组01第七次分组01二元码0101101110111101111101111110111111105香农码和费诺码相同平均码长为编码效率为
《信息论与编码理论》(王育民李晖梁传甲)课后习题问题详解高等教育出版社

信息论与编码理论习题解第二章-信息量和熵2.1解: 平均每个符号长为:1544.0312.032=⨯+⨯秒 每个符号的熵为9183.03log 3123log 32=⨯+⨯比特/符号所以信息速率为444.34159183.0=⨯比特/秒2.2 解: 同步信号均相同不含信息,其余认为等概,每个码字的信息量为 3*2=6 比特; 所以信息速率为600010006=⨯比特/秒2.3 解:(a)一对骰子总点数为7的概率是366 所以得到的信息量为 585.2)366(log 2= 比特 (b) 一对骰子总点数为12的概率是361 所以得到的信息量为 17.5361log 2= 比特 2.4 解: (a)任一特定排列的概率为!521,所以给出的信息量为 58.225!521log 2=- 比特 (b) 从中任取13张牌,所给出的点数都不相同的概率为13521313521344!13C A =⨯所以得到的信息量为 21.134log 1313522=C 比特.2.5 解:易证每次出现i 点的概率为21i,所以比特比特比特比特比特比特比特398.221log 21)(807.1)6(070.2)5(392.2)4(807.2)3(392.3)2(392.4)1(6,5,4,3,2,1,21log )(2612=-==============-==∑=i i X H x I x I x I x I x I x I i ii x I i2.6 解: 可能有的排列总数为27720!5!4!3!12= 没有两棵梧桐树相邻的排列数可如下图求得, Y X Y X Y X Y X Y X Y X Y X Y图中X 表示白杨或白桦,它有⎪⎪⎭⎫⎝⎛37种排法,Y 表示梧桐树可以栽种的位置,它有⎪⎪⎭⎫⎝⎛58种排法,所以共有⎪⎪⎭⎫ ⎝⎛58*⎪⎪⎭⎫⎝⎛37=1960种排法保证没有两棵梧桐树相邻,因此若告诉你没有两棵梧桐树相邻时,得到关于树排列的信息为1960log 27720log 22-=3.822 比特 2.7 解: X=0表示未录取,X=1表示录取; Y=0表示本市,Y=1表示外地;Z=0表示学过英语,Z=1表示未学过英语,由此得比特比特比特)01(log )01()0()00(log )00()0()(8113.04log 4134log 43)()(02698.04110435log 104354310469log 10469)1()01(log )01()0()00(log )00()0;(104352513/41)522121()0(/)1())11()1,10()10()1,00(()01(104692513/43)104109101()0(/)0())01()0,10()00()0,00(()00()(4512.04185log 854383log 83)1()01(log )01()0()00(log )00()0;(8551/4121)0(/)1()10()01(8351/43101)0(/)0()00()00()(,251225131)1(,2513100405451)10()1()00()0()0(,54511)1(,51101432141)10()1()00()0()0(,41)1(,43)0(222222222222+=====+=======+==+======+========⨯⨯+========+=========⨯⨯+========+=========+======+========⨯=========⨯=========-===⨯+====+======-===⨯+⨯====+=========x y p x y p x p x y p x y p x p X Y H X H c x p z x p z x p x p z x p z x p z X I z p x p x y p x y z p x y p x y z p z x p z p x p x y p x y z p x y p x y z p z x p b x p y x p y x p x p y x p y x p y X I y p x p x y p y x p y p x p x y p y x p a z p y z p y p y z p y p z p y p x y p x p x y p x p y p x p x p2.8 解:令{}{}R F T Y B A X ,,,,==,则比特得令同理03645.0)()(5.0,02.03.0)2.05.0(log 2.0)()2.05.0(log )2.05.0()2.03.0(log )2.03.0(5.0log 5.03.0log 3.0)5log )1(2.02log )1(5.0log )1(3.05log 2.0log 3.02log 5.0(2.0log 2.0)2.05.0(log )2.05.0()2.03.0(log )2.03.0()()();()(2.0)(,2.05.0)(2.03.0)1(3.05.0)()()()()(5.0max 2'2222223102231022222==∴==+-=---++-+=-+-+-+++-----++-=-===-=+=-⨯+=+==p p I p I p pp p I p p p p p p p p p p p p p p X Y H Y H Y X I p I R P p F P pp p B P B T P A P A T P T P2.9 & 2.12解:令X=X 1,Y=X 1+X 2,Z=X 1+X 2+X 3, H(X 1)=H(X 2)=H(X 3)= 6log 2 比特 H(X)= H(X 1) = 6log 2 =2.585比特 H(Y)= H(X 2+X 3)=6log 61)536log 365436log 364336log 363236log 36236log 361(2222222+++++ = 3.2744比特 H(Z)= H(X 1+X 2+X 3)=)27216log 2162725216log 2162521216log 2162115216log 2161510216log 216106216log 21663216log 2163216log 2161(222222222++++++= 3.5993比特 所以H(Z/Y)= H(X 3)= 2.585 比特 H(Z/X) = H(X 2+X 3)= 3.2744比特 H(X/Y)=H(X)-H(Y)+H(Y/X) = 2.585-3.2744+2.585 =1.8955比特H(Z/XY)=H(Z/Y)= 2.585比特 H(XZ/Y)=H(X/Y)+H(Z/XY) =1.8955+2.585 =4.4805比特 I(Y;Z)=H(Z)-H(Z/Y) =H(Z)- H(X 3)= 3.5993-2.585 =1.0143比特 I(X;Z)=H(Z)-H(Z/X)=3.5993- 3.2744 =0.3249比特 I(XY ;Z)=H(Z)-H(Z/XY) =H(Z)-H(Z/Y)=1.0143比特 I(Y;Z/X)=H(Z/X)-H(Z/XY) = H(X 2+X 3)-H(X 3) =3.2744-2.585 =0.6894比特 I(X;Z/Y)=H(Z/Y)-H(Z/XY) =H(Z/Y)-H(Z/Y) =02.10 解:设系统输出10个数字X 等概,接收数字为Y,显然101)(101)()()(919===∑∑==i j p i j p i Q j w i iH(Y)=log10比特奇奇奇奇偶18log 81101452log 211015)(log)()()(log )()(0)(log ),()(log ),()(22,2222=⨯⨯⨯⨯+⨯⨯⨯=--=--=∑∑∑∑∑∑∑≠====x y p x y p x p x x p x x p x p x y p y x p x y p y x p X Y H x y x i y x y x所以I(X;Y)= 3219.2110log 2=-比特2.11 解:(a )接收前一个数字为0的概率 2180)0()()0(==∑=i i i u p u q wbits p pw u p u I )1(log 11log )0()0(log )0;(2212121-+=-==(b )同理 418)00()()00(==∑=ii iu p u q wbits p p w u p u I )1(log 22)1(log )00()00(log )00;(24122121-+=-== (c )同理 818)000()()000(==∑=ii iu p u q wbits p p w u p u I )1(log 33)1(log )000()000(log )000;(28132121-+=-== (d )同理 ))1(6)1(()0000()()0000(4226818p p p p u p u q w ii i+-+-==∑=bitsp p p p p p p p p p w u p u I 42264242268142121)1(6)1()1(8log ))1(6)1(()1(log )0000()0000(log )0000;(+-+--=+-+--==2.12 解:见2.9 2.13 解: (b))/()/()/(1log)()/(1log)()/()/(1log)()/(1log)()/(XY Z H X Y H xy z p xyz p x y p xyz p xy z p x y p xyz p x yz p xyz p X YZ H x y z xyzxyzxyz+=+===∑∑∑∑∑∑∑∑∑∑∑∑(c))/()/(1log)/()()/(1log)/()()/(X Z H x z p xy z p xy p xy z p xy z p xy p XY Z H xyzxyz=≤=∑∑∑∑∑∑(由第二基本不等式) 或)1)/()/((log )/()()/()/(log)/()()/(1log)/()()/(1log)/()()/()/(=-⨯≤=-=-∑∑∑∑∑∑∑∑∑∑∑∑xy z p x z p e xy z p xy p xy z p x z p xy z p xy p x z p xy z p xy p xy z p xy z p xy p X Z H XY Z H xyzxyzxyzxyz(由第一基本不等式)所以)/()/(X Z H XY Z H ≤(a))/()/()/()/()/(X YZ H XY Z H X Y H X Z H X Y H =+≥+等号成立的条件为)/()/(x z p xy z p =,对所有Z z Y y X x ∈∈∈,,,即在给定X 条件下Y 与Z 相互独立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平均码长是衡量码的性能的重要参数,小说明平均一个码元 所携带的信息量大,信息的冗余度就小。
例题:
U u1 设DMS的概率空间 P 1 / 2 定义编码f1为:
4
u4 , 1/ 4 1/ 8 1/ 8 对其单个符号进行二进制编码,即码元集为X ={0,1}。 u2 u3 f1 (u1 ) w1 00, l1 2 f1 (u3 ) w3 10, l3 2 l P (ui )li
3.1 编码定义 3.2 定长编码定理
3.3 变长编码定理
3.4 最佳编码 3.5 游程编码
3.1 编码定义
编码器可看作这样一个系统:
输入端:原始信源U,其符号集为U:{u1,u2,…,uq}; 信道:所能传输的码符号集(码元集)为X:{x1,x2,…,xr};
编码器的功能:用符号集X中的元素,将原始信源的符号ui变
r进制码树:有r个分支 一级节点:经过一个分支到达的节点,有r个 N阶节点:rn个 码字:从树根到节点的分枝标号序列
码树图
4 唯一可译码存在的充要条件:
对含有N个信源符号的信源用含有r个码元的码符号集进行 编码,各码字的长为l1,l2…..,其唯一可译码存在的充要条 件是,满足克劳夫特(Kraft)不等式
0 11 00 11
0 10 00 01
1 10 100 1000
1 01 001 0001
码1是奇异码,码2,码3和码4是非奇异码
3.4 唯一可译码 非奇异码中,任意有限长的码元序列,只能被唯一的译成所对 应的信源符号序列,称为唯一可译码。
例如:U: {u1,u2,u3}; X:{0,1}; W: {w1=0, w2=10, w3=11},
(bit / 码元)
l
l
编码后的信息率: 平均一个码元携带的信息量,记为R(就是X的熵):
R H (X ) H (U )
(bit / 码元)
可见:平均码长越小,每个码元携带的信息量就越
l
多;传输一个码元就传输了较多的信息。
编码效率:
编码后的实际信息率与编码后的最大信息率之比:
c
R H (X ) H (U ) / l H (U ) Rmax H max ( X ) log r l log r
i 1
f1 (u2 ) w2 01, l2 2 f1 (u4 ) w4 11, l4 2
定义编码f 2为:
4
1 1 1 1 2 2 2 2 2 (码元 / 符号) 2 4 8 8 f 2 (u1 ) w1 0, l1 1 f 2 (u2 ) w2 10, l2 2 f 2 (u4 ) w4 111, l4 3
r-li 1
i=1
N
其中N表示信源符号数,r表示进制数,li表示各码字长度。
例:设二进制码树中U∈{u1,u2,u3,u4},l1=1,l2=2,l3=2,l4=3, 请判断这是否存在唯一可译码?
2
i=1
4
-li
9 = 2 +2 +2 +2 = >1 8
-1 -2 -2 -3
不存在这种唯一可译码。
i
其中li为码字长度或者码长。
【注】信源编码就是从信源符号到输出码字符
号的一种映射。若要实现无失真编码,则这种
映射必须是一一对应的、可逆的。
1. 平均码长
码字的码长:码字wi所含码元的个数,记为li(码元/符号, r进制单位/符号)。 定长编码(变长编码):
所有码字均有相同的码长l,即l1=l2=…=lq=l
第三章 无失真信源编码
通信系统模型
包括:信源、编码器、信道、译码器、信宿五部分
信 源 编 码 保 密 编 码 信 道 编 码 信 道 译 码 保 密 译 码 信 源 译 码
信源
信道
噪声
信宿
编码器、译码器是人为设计的,很大程度上
决定了通信性能的好坏。
信源编码的分类?
无失真信源编码-冗余度压缩编码
编码效率是新信源X的熵的相对率,冗余度为:
rc 1 c
3. 码的类型
奇异码 非奇异码
码
{
{
非唯一可译码 非即时码 唯一可译码 即时码(非延长码)
{
3.1 码元集中符号数r=2称为二元码,r=3称为三元码 3.2 若分组码中的码长都相同则称为等长码,否则称为变长码
信源符号 信源符号出 现概率 a1 p(a1) 码表
如果改成l1=1,l2=2,l3=3,l4=3,请判断这是否存在唯一可译码?
2-li =2-1 +2-2 +2-3 +2-3 =1
i=1
4
存在这种唯一可译码。
注意:克劳夫特(Kraft)不等式只是用来说明唯一可译码是否 存在,并不能作为判断哪些码是唯一可译码的依据。 如码字(0,10,010,111)满足克劳夫特不等式,但它不是 唯一可译码
信源编码的主要任务就是减少冗余,提高编码效率。
具体说,就是针对信源输出符号序列的统计特性,
寻找一定的方法把信源输出符号序列变换为最短的码字序列。
信源编码的基本途径 是什么? 信源编码的基本途径有两个: 使序列中的各个符号尽可能地互相独立,即解除
相关性;
解除相关性后,再使编码中各个符号出现的概率
尽可能地相等,即概率均匀化,就能进一步改造有
冗余信源的输出,去掉冗余度,增大传输效率。
信源编码的基础是什么?
信源编码的基础: 无失真编码定理 限失真编码定理 说明: 1)无失真编码是可逆编码,即信源符号转换成代码后,可
从代码无失真的恢复原信源符号。只适用于离散信源。
2)对于连续信源,编成代码后就无法无失真地恢复原来的连 续值,因为后者的取值可有无限多个。此时只能根据限失真 编码定理在失真受限制的情况下进行限失真编码。
4. 即时码及其树图构造法 --码树
码树:用码树表示码字的组成,由树根、树枝、节点组成。 码树构造要点: 1)最上(下)端为树根,从树根向下(上)延伸出树枝, 树枝总数等于r,树枝的尽头为节点。 2)从每个节点再伸出r个树枝,当某节点被安排为码字
后,就不再伸枝,此节点称为终端节点(用粗黑点表
示),其它节点称为中间节点(用空心圈表示)。 3)每个节点伸出的树枝标上码符号,从根出发到终端节 点所走路径对应的码符号序列则为终端节点的码字。
码1
00
码2 0
a2
a3 a4
p(a2)
p(a3) p(a4)
01
10 11
01
001 111
码1是等长码,码2是变长码
3.3 奇异码和非奇异码
若信源符号和码字是一一对应的,即所有码字都不相同,
则该码为非奇异码;反之为奇异码。
信源符号 符号出现概率 码1 码2 码3 码4
a1 a2 a3 a4
1/2 1/4 1/8 1/8
2.信源编码前后的熵 将信源编码器输出可视为一个新信源: 信源W:以码字集为符号集;
无失真编码一一对应映射,故
P(wi)=P(ui) (i=1,2,…q),
编码前后熵保持不变:
H(W)=H(U) (bit/码字或bit/符号)
信源X:以码元集为符号集;
H(X ) H (W )
H (U )
称f为定长编码,对应的码W叫做定长码。 否则,称f为变长编码,对应的码W叫做变长码。
平均码长:对码W中所有码字的码长求统计平均
l P( wi )li P(ui )li 码元/符号
i 1 q i 1 q q q
l P( wi )l P(ui )l l 码元/符号 ——定长码
换为相应的码字符号wi(i=1,2,…,q),即相当于 一个一一对应的变化或映射f (f: ui wi)
编码器输出端:符号集(码字集)为W:{w1,w2,…,wq}。
wi ( xi1 xi2 ...xil ) (i 1, 2,..., q), xik X (k 1, 2,..., li )
f1 (u3 ) w3 110, l3 3
1 1 1 1 l P (ui )li 1 2 3 3 1.75 (码元 / 符号) 2 4 8 8 i 1
【说明】
f1是定长编码;
f2是变长编码,根据信源符号的概率不同,采用不
同码长的码字,经常出现(概率大)的符号采用较 短的码字,不经常出现(概率小)的符号采用较长 的码字,因此平均码长就会缩短,是一种较好的编 码策略。
为唯一可译码。
当接收码字序列为:10011001111 时,可以唯一地译为: w2,w1,w3,w1,w1,w3,w3;
如果码字集合为:W:{w1=0,w2=01,w3=11}
则为非唯一可译码。 当接收码字序列为:0011111101 时,可以译为:w1,w1(w2)……
3.5 非即时码和即时码 唯一可译码中,如果接收端收到一个完整的码字后,不能立
只对信源的冗余度进行压缩,而不改变信源的熵。
保证码元序列经译码后能无失真地恢复成信源符号序列。 适用于离散信源或数字信号(文字、文件信源)。
限失真信源编码-熵压缩编码
改变信源的熵。 只能保证码元序列经译码后能按一定的失真容许度恢复
信源符号序列。
适用于连续信源或模拟信号(语音、图像信源)。
为什么要对信源进行编码?
由于信源符号之间存在分布不均匀和相关性,使得信源存 在冗余度。
(1)符号变化
符号集中的符号不同,如英语信源的符号是英文字母或单词,汉语信 源的符号是汉字或汉语词组等等。为了便于信道传送,必须将信源符号 序列变换成信道能够传送的符号序列。