根轨迹串联超前校正课设报告
串联超前校正课程设计

串联超前校正课程设计一、课程目标知识目标:1. 让学生掌握串联超前校正的基本概念,理解其在控制系统中的应用和作用。
2. 学会运用数学公式和电路图表达串联超前校正环节,并分析其对系统性能的影响。
3. 掌握串联超前校正参数的设计方法,能够根据特定性能指标完成校正参数的计算。
技能目标:1. 培养学生运用仿真软件进行串联超前校正电路搭建和测试的能力。
2. 提高学生分析控制系统性能、提出改进方案并实施的能力。
3. 培养学生团队协作、沟通表达的能力,能够在小组讨论中分享观点和倾听他人意见。
情感态度价值观目标:1. 激发学生对自动化控制技术的兴趣,培养其探究精神和创新意识。
2. 引导学生认识到科技进步对国家发展的重要性,树立正确的价值观。
3. 培养学生严谨、务实的科学态度,养成良好的学习习惯。
本课程针对高年级学生的认知水平和学习特点,注重理论知识与实践操作的相结合,培养学生的动手能力和创新能力。
通过本课程的学习,使学生能够更好地理解和应用串联超前校正技术,为后续专业课程打下坚实基础。
同时,注重培养学生的团队协作能力和沟通表达能力,提升其综合素质。
1. 理论知识:- 串联超前校正的基本原理及其在自动控制系统的应用。
- 串联超前校正的数学模型及传递函数推导。
- 串联超前校正对系统稳定性、快速性、平稳性等性能的影响。
- 校正参数的设计方法及步骤。
2. 实践操作:- 使用仿真软件(如MATLAB)搭建串联超前校正电路。
- 对搭建的校正电路进行仿真测试,分析校正效果。
- 根据性能指标要求,调整校正参数,优化系统性能。
3. 教学安排与进度:- 理论知识部分:共4课时,分两个阶段进行。
第一阶段(2课时)主要介绍串联超前校正的基本原理、数学模型及传递函数;第二阶段(2课时)讲解校正参数设计方法及性能分析。
- 实践操作部分:共4课时,与理论知识部分同步进行。
学生分小组进行仿真软件操作,教师指导并解答疑问。
4. 教材章节与内容:- 教材第五章:自动控制系统中的校正方法。
基于根轨迹法的串联超前校正器的设计

图 1 有源超前 校正器
此校正器的传递 函数为 : G
。
,其 中, =
>l ,T=RC . 2
徼
l ) 瓜 G f c =
.
【 收稿 日期】 0 1 1 1 2 1—1- 2
【 作者简介】 白莉 (97 ) 张 17 - ,女 ,山西原 平人 ,忻 州师 范学院物理 电子 系讲师 ,硕 士 ,从事 电子技术应用研究。
来 决定 . 系统 要 求实 现 的动 态性 能指 标计 算 出 系统 的期 望 闭环 极 点 ,如 果 系统 的根 轨 迹 没有 通过 期 望 的 根据
闭环极点 ,说 明性能指标不符合要求 ,这时可以通过引人新的开环零点和极点来改变根轨迹的走 向,如果
引 入 的开环 零 极点 合适 ,就可 以使 根 轨迹经 过 期望 的 闭环极 点 ] . 3 串联 超前 校 正参数 计 算
i =1 =l
当 S满 足相 角方 程 时 ,必然 可 以找到 一个 K, 的值 ,使 其 同 时满 足幅 值方 程 . 如果 系统 实 现预 期性 能 指标 对应 的两个 主 导极 点 - : 满 足相 角 方程 ,就 必须 引入 校 正装 置 增 加新 的 ,不 S
开环零点和开环极点来改变根轨迹的走 向. 如果采用 的是串联超前校正 ,其传递 函数为 G () +  ̄ s c :l cT
KH 一 , z )
系统 的开 环传 递 函数 的一般 表 达式 为 G () 。 :
, =lBiblioteka 兀 一 , P) ,=l
其根 轨 迹 的幅 值方 程为
1
—
其 轨 相 方 为 ∑ 一t ∑Zs P) + k 18 (=,,) 根 迹的 角 程 Z一 ( j= ( +)0 02 . ) — 2 1。 1… ,
跟轨迹超前校正课程设计

跟轨迹超前校正课程设计一、课程目标知识目标:1. 学生能理解轨迹超前校正的基本概念,掌握其相关的理论知识。
2. 学生能运用数学和物理知识,分析并描述物体在直线和曲线运动中的轨迹特点。
3. 学生能掌握轨迹超前校正的计算方法和在实际问题中的应用。
技能目标:1. 学生通过实际操作,培养观察、分析和解决问题的能力。
2. 学生能运用所学的轨迹校正方法,解决实际运动控制中的问题。
3. 学生能运用数学工具,进行轨迹校正的计算和验证。
情感态度价值观目标:1. 学生培养对科学研究的兴趣,激发探索未知领域的热情。
2. 学生养成合作、讨论的学习习惯,增强团队协作意识。
3. 学生认识到理论知识在实际应用中的价值,提高理论联系实际的能力。
本课程针对学生的年级特点,结合课程性质和教学要求,将目标分解为具体的学习成果。
课程旨在帮助学生掌握轨迹超前校正的相关知识,提高解决实际问题的能力,并培养对科学研究的兴趣和团队协作意识。
在教学过程中,注重理论与实践相结合,以使学生能够学以致用,为后续学习打下坚实基础。
二、教学内容本章节教学内容主要包括以下几部分:1. 轨迹校正的基本概念与原理- 运动轨迹的定义与分类- 轨迹校正的物理意义和实际应用2. 轨迹校正的数学模型- 直线运动轨迹的数学描述- 曲线运动轨迹的数学描述- 轨迹校正的数学方法3. 轨迹校正的计算与实现- 校正参数的计算方法- 校正算法的设计与实现- 实际案例分析4. 轨迹校正的实验与验证- 实验原理与实验方法- 实验设备与实验步骤- 实验结果的分析与讨论教学内容根据课程目标,结合教材相关章节,进行科学、系统的组织。
教学大纲明确规定了各部分内容的安排和进度,确保学生能够逐步掌握轨迹校正的相关知识。
具体教学内容安排如下:第1周:轨迹校正的基本概念与原理第2周:直线运动轨迹的数学描述第3周:曲线运动轨迹的数学描述第4周:轨迹校正的数学方法第5周:校正参数的计算方法第6周:校正算法的设计与实现第7周:实际案例分析第8周:轨迹校正的实验与验证三、教学方法为了提高教学效果,激发学生的学习兴趣和主动性,本章节采用以下多样化的教学方法:1. 讲授法:教师通过生动的语言和形象的比喻,讲解轨迹校正的基本概念、原理和数学模型,使学生系统地掌握理论知识。
自动控制原理课程设计串联超前滞后校正装置

自动控制原理课程设计报告一、设计目的(1)掌握控制系统设计与校正的步骤和方法。
(2)掌握对控制系统相角裕度、稳态误差、剪切频率、相角穿越频率以及增益裕度的求取方法。
(3)掌握利用Matlab对控制系统分析的技能。
熟悉MATLAB这一解决具体工程问题的标准软件,能熟练地应用MATLAB软件解决控制理论中的复杂和工程实际问题,并给以后的模糊控制理论、最优控制理论和多变量控制理论等奠定基础。
(4)提高控制系统设计和分析能力。
(5)所谓校正就是在系统不可变部分的基础上,加入适当的校正元部件,使系统满足给定的性能指标。
校正方案主要有串联校正、并联校正、反馈校正和前馈校正。
确定校正装置的结构和参数的方法主要有两类,分析法和综合法。
分析法是针对被校正系统的性能和给定的性能指标,首先选择合适的校正环节的结构,然后用校正方法确定校正环节的参数。
在用分析法进行串联校正时,校正环节的结构通常采用超前校正、滞后校正和滞后-超前校正这三种类型。
超前校正通常可以改善控制系统的快速性和超调量,但增加了带宽,而滞后校正可以改善超调量及相对稳定度,但往往会因带宽减小而使快速性下降。
滞后-超前校正兼用两者优点,并在结构设计时设法限制它们的缺点。
二、设计要求(姬松)1.前期基础知识,主要包括MATLAB系统要素,MATLAB语言的变量与语句,MATLAB的矩阵和矩阵元素,数值输入与输出格式,MATLAB系统工作空间信息,以及MATLAB的在线帮助功能等。
2.控制系统模型,主要包括模型建立、模型变换、模型简化,Laplace变换等等。
3.控制系统的时域分析,主要包括系统的各种响应、性能指标的获取、零极点对系统性能的影响、高阶系统的近似研究,控制系统的稳定性分析,控制系统的稳态误差的求取。
4.控制系统的根轨迹分析,主要包括多回路系统的根轨迹、零度根轨迹、纯迟延系统根轨迹和控制系统的根轨迹分析。
5.控制系统的频域分析,主要包括系统Bode 图、Nyquist 图、稳定性判据和系统的频域响应。
自控课程设计实验报告串联超前校正滞后装置

课题:串联超前校正滞后装置专业:电气工程及其自动化班级:组长:组员:指导教师:设计日期:成绩:超前校正课程设计报告一、设计目的(1)把握操纵系统设计与校正的步骤和方式。
(2)把握对操纵系统相角裕度、稳态误差、剪切频率、相角穿越频率和增益裕度的求取方式。
(3)把握利用Matlab 对操纵系统分析的技术。
熟悉MATLAB 这一解决具体工程问题的标准软件,能熟练地应用MATLAB 软件解决操纵理论中的复杂和工程实际问题,并给以后的模糊操纵理论、最优操纵理论和多变量操纵理论等奠定基础。
(4)提高操纵系统设计和分析能力。
二、设计要求与内容已知单位负反馈系统的开环传递函数0()(1)(0.251)K G S S S S =++,试用频率法设计串联校正装置,要求校正后系统的静态速度误差系数1v K 5s -≥,系统的相角裕度045γ≥,校正后的剪切频率2C rad s ω≥已知参数和设计要求:1.前期基础知识,要紧包括MATLAB 系统要素,MATLAB 语言的变量与语句,MATLAB 的矩阵和矩阵元素,数值输入与输出格式,MATLAB 系统工作空间信息,和MATLAB 的在线帮忙功能等。
2.操纵系统模型,要紧包括模型成立、模型变换、模型简化,Laplace 变换等等。
3.操纵系统的时域分析,要紧包括系统的各类响应、性能指标的获取、零极点对系统性能的阻碍、高阶系统的近似研究,操纵系统的稳固性分析,操纵系统的稳态误差的求取。
4.操纵系统的根轨迹分析,要紧包括多回路系统的根轨迹、零度根轨迹、纯迟延系统根轨迹和操纵系统的根轨迹分析。
5.操纵系统的频域分析,要紧包括系统Bode图、Nyquist图、稳固性判据和系统的频域响应。
6.操纵系统的校正,要紧包括根轨迹法超前校正、频域法超前校正、频域法滞后校正和校正前后的性能分析。
三、实现进程1、系统概述所谓校正,确实是在系统中加入一些其参数能够依照需要而改变的机构或装置,使系统整个特性发生转变,从而知足给定的各项性能指标。
串联超前校正装置的课程设计

目录一、绪论 (1)二、原系统分析 (1)2.1原系统的单位阶跃响应曲线 (1)2.2原系统的Bode图 (2)2.3原系统的Nyquist曲线 (4)2.4原系统根轨迹 (5)三、校正装置设计 (6)3.1校正装置参数的确定 (6)3.2校正装置的波特图 (7)四、校正后系统的分析 (8)4.1校正后系统的单位阶跃响应曲线 (8)4.2校正后系统的波特图 (9)4.3校正后系统的Nyquist曲线 (10)4.4校正后系统的根轨迹 (11)五、总结 (13)六、参考文献 (13)一、绪论在系统中,往往需要加入一些校正装置来增加系统的灵活性,使系统发生变化,从而满足给定的各项性能指标。
按照校正装置的特性不同,可分为PID 校正、超前校正、滞后校正和滞后-超前校正。
我们在这里讨论串联超前校正。
在直流控制系统中,由于传递直流电压信号,适于采用串联校正。
串联超前校正的基本原理:利用超前网络的相角超前特性。
只要正确的将超前网络的交接频率1/aT 和1/T 选择在带校正系统截止频率的两旁,并适当选取参数a 和T ,就可以校正系统的截止频率和相角裕度满足性能指标的要求,从而改善系统的动态性能。
串联超前校正的优点:保证低频段满足稳态误差,改善中频段,使截止频率增大,相角裕度变大,动态性能提高,高频段提高使其抗噪声干扰能力降低。
有些情况下采用串联超前校正是无效的,它受到以下两个因素的限制: 1.闭环宽带要求。
若待校正系统不稳定的话,为了得到规定的相角裕度,需要超前网络提供很大的相角超前量。
这样的话,超前网络的a 值必须选取的很大,从而造成已校正系统带宽过大,使得通过系统的高频噪声电平很高,很可能使系统失控。
2.在截至频率附近相角迅速减小的待校正系统,一般不宜采用串联超前校J 卜。
因为随着截止频率的增大,待校正系统相角迅速减小,使已校正系统的相角裕度改善不大,很难得到足够的相角超前量,在一般情况下,产生这种相角迅速减小的原因是,在待校正系统的截止频率附近,或有交接频率彼此靠近的惯性环节;或由两个交接频率彼此相等的惯性环节;或有一个震荡环节。
liujingyu课程设计根轨迹超前校正

学号 10750128计算机控制技术课程设计设计说明书根轨迹超前校正设计起止日期:2013 年7 月15 日至2013 年7 月19 日学生姓名刘经雨班级10电气一班成绩指导教师(签字)控制与机械工程学院2013年7月10日天津城市建设学院课程设计任务书2012 —2013 学年第 2 学期控制与机械工程 学院 电气工程及其自动化 系 电气一班 班级 课程设计名称: 计算机控制技术课程设计 设计题目: 根轨迹超前校正设计完成期限:自 2013 年7 月 15 日至 2013 年 7 月 19 日共 1 周 设计依据、要求及主要内容:设单位反馈系统的开环传递函数为:)15)(5(1)(++=s s s s G要求系统满足最大超调量%30%≤σ,调整时间s t s 5.0≤,试设计超前校正装置。
基本要求:1、对原系统进行分析,确定期望极点在S 复平面的位置;2、求校正补偿器的传递函数;3、计算校正后系统的性能指标:超调量、峰值时间,调节时间,并绘制系统校正后的阶跃响应曲线。
指导教师(签字): 教研室主任(签字): 批准日期:2013年7月10日目录一设计原理 (1)1、何谓校正为何校正 (1)2、超前校正的原理 (1)3、超前校正在根轨迹中的应用方法。
(2)二设计方法步骤 (2)2.1画出未校正前的根轨迹 (2)2.2校正方法 (3)2.3校正计算: (4)三课程设计总结 (8)参考文献 (9)一 设计原理1、何谓校正 为何校正所谓校正,就是在系统中加入一些其参数可以根据需要而改变的机构或装置,是系统整个特性发生变化。
校正的目的是为了在调整发大器增益后仍然不能全面满足设计要求的性能指标的情况下,通过加入的校正装置,是系统性能全面满足设计要求。
2、 超前校正的原理无源超前网络的电路如图 1 所示。
图1无源超前网络电路图如果输入信号源的内阻为零,且输出端的负载阻抗无穷大,则超前网络的传递函数可写为()TsaTss aG c ++=11 (2—1)式中1221>+=R R R a ,C R R R R T 2121+=通常 a 为分度系数,T 叫时间常数,由式(2-1)可知,采用无源超前网络进行串联校正时,整个系统的开环增益要下降a 倍,因此需要提高放大器增益交易补偿。
用根轨迹法设计相位超前校正网络.

10
例:有一单位反馈控制系统的开环传函为 G( s) 足下列性能指标;
2500k ,要求满 s( s 25)
(1)当输入是一个1 rad s的单位速度函数时,输出的速度函数
与输入速度函数的最终稳态误差不大于0.01rad;
R( s)
Kr s ( s 2)
C (s)
3
解: 2 (1).由 p 20% ,由式 p e 1 可求得 0.46 ,取 0.5 由 ts 3 得 n 6 rad s ; n 得闭环主导极点 A1,2 n jn 1 2 3 j 3 3
(3)根据稳态指标求出系统所需要的误差系数 K(即开环增益 K0); 0 (4)求出系统为了满足稳态性能指标,误差系数需要增加的倍数
1 K0 ,这 个需要增加的倍数由滞后网络的这一对偶极子提 b K
供;
9
(5)选择滞后校正网络的零点 Z c 及极点 Pc ,使满足 Z c Pc 1 ,
原系统的开环传函为:
根轨迹增益为:
Kr
m
G( s) H ( s)
v n
sv (s p j )
j v 1
i 1 n
s
s pj j v 1
m
s zi i 1
开环增益为: K Kr
7
zi
pj j v 1
i 1 n
1 K ( s z ) ( s )b rc i 校正后系统的开环传函为: bT i 1 Gc ( s)G( s) H ( s) n 1 v s (s p j ) (s ) 校正后在A点的根轨迹增益 T j v 1
21 , 3.画水平线 A1B ,作角平分线 AC ,再作 CA D EAC A1D 1 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
东北大学秦皇岛分校自动化工程系自动控制系统课程设计根轨迹串联超前校正专业名称自动化班级学号50801015080101学生姓名指导教师设计时间2020111111..6.2.277~20~20111111..7.8目录摘要 (1)1.绪论 (3)1.1课题概述 (3)1.2根轨迹法超前校正简介 (3)1.3课题研究的目的和意义 (4)1.4本课题研究的主要内容 (4)2.系统校正 (5)2.1已知条件及要求 (5)2.2对系统进行分析 (5)2.2.1当串联一个零点时 (7)2.2.2串联一个具有零点性质的零极点对 (8)2.2.3串联一个具有两个零点,一个极点的控制器时 (9)2.2.4当串联具有零点性质的两个极点,一个零点的控制器时 (10)2.2.5串联更复杂的具有零点性质的控制器 (11)3.总结 (13)4.致谢 (13)5.参考文献 (14)摘要根轨迹法是一种直观的图解方法,它显示了当系统某一参数(通常为增益)从零变化到无穷大时,如何根据开环极点和零点的位置确定全部闭环极点位置。
从根轨迹图可以看出,只调整增益往往不能获得所希望的性能。
事实上,在某些情况下,对于所有的增益,系统可能都是不稳定的。
因此,必须改造系统的根轨迹,使其满足性能指标。
利用根轨迹法对系统进行超前校正的基本前提是:假设校正后的控制系统有一对闭环主导极点,这样系统的动态性能就可以近似地用这对主导极点所描述的二阶系统来表征。
因此在设计校正装置之前,必须先把系统时域性能的指标转化为一对希望的闭环主导极点。
通过校正装置的引入,使校正后的系统工作在这对希望的闭环主导极点处,而闭环系统的其它极点或靠近某一个闭环零点,或远离s平面的虚轴,使它们对校正后系统动态性能的影响最小。
是否采用超前校正可以按如下方法进行简单判断:若希望的闭环主导极点位于校正前系统根轨迹的左方时,宜用超前校正,即利用超前校正网络产生的相位超前角,使校正前系统的根轨迹向左倾斜,并通过希望的闭环主导极点。
用根据轨迹法进行超前校正的一般步骤为:1)根据对系统静态性能指标和动态性能指标的要求,分析确定希望的开环增益和闭环主导极点的位置。
2)画出校正前系统的根轨迹,判断希望的主导极点位于原系统的根轨迹左侧,以确定是否应加超前校正装置。
3)根据题目要求解出超前校正网络在闭环主导极点处应提供的相位超前角。
4)根据图解法求得G c(s)的零点和极点,进而求出校正装置的参数。
5)画出校正后系统的根轨迹,校核闭环主导极点是否符合设计要求。
本文在进行根轨迹超前校正时应用了MATLAB,MATLAB的根轨迹方法允许进行可视化设计,具有操作简单、界面直观、交互性好、设计效率高等优点。
早期超前校正器的设计往往依赖于试凑的方法,重复劳动多,运算量大,又难以得到满意的结果。
MATLAB作为一种高性能软件和编程语言,以矩阵运算为基础,把计算、可视化、程序设计融合到了一个简单易用的交互式工作环境中,是进行控制系统计算机辅助设计的方便可行的实用工具。
因此,随着计算机的飞速发展和MATLAB软件的普及,借助MATLAB,通过编写函数和程序,可以容易地设计出超前校正器,避免了繁琐的计算和绘图过程,从而为线性控制系统的设计提供了一种简单有效的途径。
本文将基于根轨迹法设计超前校正器,并给出它的MATLAB实现。
关键词:根轨迹,超前校正,MATLAB绪论1.1课题概述在系统校正中,当性能指标是以时域指标给出时,通常采用根轨迹法对系统进行校正,根轨迹法校正通常超前校正、滞后校正和滞后——超前校正,本文主要介绍根轨迹串联超前校正法。
固有传递函数的闭环特征根在S平面上是有确定点的,由这些点确定的响应性能不好时,需要加以改变。
改变开环放大系数能使闭环特征根沿着根轨迹移动,结果有两种情形:一种情形是开环放大系数在某个数值下或某个取值范围内特征根的分布能够满足系统性能的要求,于是只要调节开环增益就行了;另一情形是根轨迹上没有合乎要求的特征根,这是需要在S平面上先选定一个期望的闭环主导极点,再通过串联合适的校正装置使校正过的根轨迹:1、通过这一点,并且确定开环增益使校正后的一个特征根就是这点;2、其余的特征根比这个特征根远离虚轴,以确保选定的闭环主导极点的地位。
当在系统中配置一个开环零点或具有零点性质的开环零极点对时,可使原根轨迹向左偏移,如若在系统中配置一个极点,或一个具有极点性质的开环零极点对时可使的原根轨迹向右偏移,只要配置的零点或极点或零极点对适当,就可使得期望点成为校正后的闭环主导极点。
根轨迹串联超前校正就是通过串联零点,或具有零点性质的零极点对来实现的。
1.2根轨迹法超前校正简介1948年,伊文斯(W·R·EV ANS)提出了直接由系统的开环传递函数确定系统闭环特征根的图解法,即工程上广泛使用的根轨迹法。
利用这一方法可以分析系统的性能,确定系统应有的结构和参数,也可用于校正装置的综合,根轨迹法的基础是系统的传递函数,这一方法仅适用于线性系统。
根轨迹法是一种图解方法,它是古典控制理论中对系统进行分析和综合的基本方法之一。
它描述的是系统某个参数(通常指增益)从零变化到无穷大时的闭环极点的位置变化。
由于根轨迹图直观地描述了系统特征方程的根(即系统的闭环极点)在s平面上的分布,因此,用根轨迹法分析自动控制系统十分方便,特别是对于高阶系统和多回路系统,应用根轨迹法比用其他方法更为方便,因此在工程实践中获得了广泛应用。
所谓校正,就是在系统中加入一些其参数可以根据需要而改变的机构或装置,使系统整个特性发生变化,从而满足给定的各项性能指标。
这一附加装置称为校正装置。
加入校正装置后使未校正系统的缺陷得到补偿,这就是校正作用。
常用的校正方式有串联校正、反馈校正、前馈校正和复合校正4种。
本文我们所涉及的是超前校正。
超前校正网络:无源超前校正网络的传递函数可写为1()1aTs G s Ts+=+其中a>1,故超前网络的负实零点总是位于其负实极点之右,起到微分作用,a 的值选的越大,则超前网络的微分作用越强。
1.3课题研究的目的和意义在实际工程控制中,往往需要设计一个系统并选择适当的参数以满足性能指标的要求,或对原有系统增加某些必要的元件或环节,使系统能够全面满足性能指标要求,此类问题就称为系统校正与综合,或称为系统设计。
当被控对象给定后,按照被控对象的工作条件被控信号应具有的最大速度和加速度要求等,可以初步选定执行元件的形式、特性和参数。
然后,根据测量精度、抗扰能力、被测信号的物理性质、测量过程中的惯性及非线性度等因素,选择合适的测量变送元件。
在此基础上,设计增益可调的前置放大器与功率放大器。
这些初步选定的元件以及被控对象适当组合起来,使之满足表征控制精度、阻尼程度和响应速度的性能指标要求。
如果通过调整放大器增益后仍然不能全面满足设计要求的性能指标,就需要在系统中增加一些参数及特性可按需要改变的校正装置,使系统能够全面满足设计要求,这就是控制系统设计中的校正问题。
系统设计过程是一个反复试探的过程,需要很多经验的积累。
在某些系统校正中,当所要求的性能指标是以时域指标给出时,则此时应用根轨迹校正法来解决问题就显得比较方便何必要了。
1.4本课题研究的主要内容已知某控制系统的开环传递函数为,当k=0.25时控制以a 为变量的根轨迹,用根轨迹法设计串联超前校正装置,使超调量。
2.2.系统校正系统校正2.1已知条件及要求已知条件:系统的开环传递函数为:,其中k=0.25;要求:控制以a为变量的根轨迹,用根轨迹法设计串联超前校正装置,使超调量,并用matlab仿真出其结果。
2.2对系统进行分析根据所给定的开环传递函数可以用MATLAB作出其初始的根轨迹图:因为是以a为变量的根轨迹,所以所得到的轨迹为广义根轨迹。
经变形后的广义根轨迹方程为:,由MATLAB作出其根轨迹图,输入程序如下:num=[0,1];den=conv([1,1,0.25,0],[0,1]);g=tf(num,den)rlocus(g)hold on所得广义根轨迹图为:图1校正前广义根轨迹校正后使得根轨迹上所有的点都满足其超调量都小于10%,即对任意变化的a 的值,都能满足题目要求。
1、根据要求知要使得校正后系统的超调量小于10%,如若要满足此条件,则首先要满足整个系统是稳定的,即所有的根轨迹必须在虚轴的左侧。
因为根轨迹中极点数与零点数之差大于2,所以得出所有的根轨迹之和应为定值,当零极点数之和为奇数时,总有根轨迹沿着实轴负方向趋向无穷远处,那么必然有根轨迹趋向于实轴正方向无穷远处,即有根轨迹处于虚轴的右侧,即不能够满足题意。
则如若想满足题意,利用根轨迹串联超前校正时,只能串联奇数个零极点。
2、仅仅使得系统满足稳定还不够,还要使其超调量满足小于10%,根据二阶系统时域指标公式:%100%10%e σ=×≤可得到阻尼比:0.59ζ≥;这里取0.625ζ=,则对应的阻尼角:arccos 51οβζ==。
及系统的根轨迹要满足在阻尼比为0.625到1之间。
2.2.1当串联一个零点时即校正后的广义根轨迹方程为:当零点在0到0.5之间取值时,以0.25为例,用MATLAB进行仿真,输入程序:num=[1,0.25];den=conv([1,1,0.25,0],[0,1]);g=tf(num,den)rlocus(g)hold on得到对应的根轨迹为:图2串联一个零点后的根轨迹根轨迹上的点都在虚轴的左侧,系统满足稳定性,但是其渐近线与实轴成90ο,根轨迹上有一部分点超出了0.625ζ=的范围。
所以此种情况满足题意,不可取。
当零点在大于0.5的范围内取值时,以1为例,用MATLAB进行仿真,输入程序:num=[1,1];den=conv([1,1,0.25,0],[0,1]);g=tf(num,den)rlocus(g)hold on得到对应的根轨迹为:图3串联一个零点后的根轨迹同理虽然根轨迹上的点都在虚轴的左侧,系统满足稳定性,但是其渐近线与实轴成90ο,根轨迹上有一部分点超出了0.625ζ=的范围。
所以此种情况同样不满足题意,不可取。
时2.2.2串联一个具有零点性质的零极点对串联一个具有零点性质的零极点对时分析可知当零极点数之和为奇数时,总有根轨迹沿着实轴负方向趋向无穷远处,那么必然有根轨迹趋向于实轴正方向无穷远处,即有根轨迹处于虚轴的右侧,即不能够满足题意。
当串联一个零极点对时,此时零极点数之和正好为奇数,因此不能满足题意。
2.2.3串联一个具有两个零点,一个极点的控制器时即校正后的广义根轨迹方程为:此时极点数与零点数之差为2,则渐近线与实轴的夹角为90ο,与串联一个零点的状况类似,也会有一部分根轨迹不在0.625ζ=与1ζ=之间,因此此种情况也不满足题意。