待定系数法求一次函数表达式

合集下载

待定系数法求一次函数解析式题目和解析过程

待定系数法求一次函数解析式题目和解析过程

题目:用待定系数法求一次函数解析式的题目和解析过程在代数学中,待定系数法是一种常用的方法,用来求解未知系数的值。

当我们需要求一次函数的解析式时,待定系数法可以帮助我们找到正确的表达式。

下面,我将和你一起探讨待定系数法在求一次函数解析式中的应用。

1. 确定一次函数的一般形式我们知道一次函数的一般形式是 y = ax + b,其中a和b分别代表斜率和截距。

在使用待定系数法时,我们需要先确定这个一般形式,以便后续进行系数的求解。

2. 根据已知条件列出方程接下来,我们需要根据题目提供的已知条件来列出方程。

如果已知函数过点(1, 2)和斜率为3,我们可以写出方程 y = 3x + b,并代入点(1, 2)来求解b的值。

3. 求解待定系数使用待定系数法,我们将已知的条件代入一般形式中,得到一个包含未知系数a和b的方程。

根据已知条件进行求解,逐步确定待定系数的值。

在已知函数过点(1, 2)和斜率为3的情况下,我们可以设定方程y = 3x + b,代入点(1, 2),得到 2 = 3*1 + b,从而求解出b的值为-1。

4. 得出一次函数的解析式根据求解得到的待定系数,我们可以得出一次函数的解析式。

在本例中,我们已知斜率为3,截距为-1,因此得出的一次函数解析式为 y = 3x - 1。

总结回顾:待定系数法作为一种常用的代数方法,可以帮助我们求解一次函数的解析式。

在使用待定系数法时,我们需要先确定一次函数的一般形式,然后根据已知条件列出方程,逐步求解待定系数的值,最终得出一次函数的解析式。

个人观点与理解:通过使用待定系数法,我们可以更快速、更准确地求解一次函数的解析式,尤其在已知条件复杂或需要精确求解时,待定系数法可以发挥其优势。

掌握待定系数法也有助于我们在代数方程的求解过程中提高效率和准确性。

希望以上内容可以帮助你更全面、深刻地理解待定系数法在求一次函数解析式中的应用。

如果有任何问题或需要进一步探讨,欢迎随时与我联系。

知识卡片-待定系数法求一次函数解析式

知识卡片-待定系数法求一次函数解析式

待定系数法求一次函数解析式能量储备●确定一次函数的表达式y=k x+b(k≠0),只需要求出k,b的值即可,它需要两个独立的条件:这两个条件通常是两个点,或两对x,y的值.●用待定系数法确定一次函数的表达式:先设出一次函数的表达式,如y=k x+b(k≠0),再将两个已知点(通常情况下,其中一个点是与y轴的交点)的横、纵坐标或两对x,y的值分别代入y=kx+b中,建立关于k,b的两个方程,通过解这两个方程求出k和b的值,从而确定其表达式,这种方法即为待定系数法.通关宝典★基础方法点方法点1:用待定系数法确定一次函数的表达式例1在弹性限度内,弹簧的长度y(cm)是所挂物体质量x(kg)的一次函数.一根弹簧不挂物体时长9 cm;当所挂物体的质量为3 kg时,弹簧长12 cm.写出y与x之间的关系式,并求出所挂物体的质量为6 kg时弹簧的长度.分析:因为弹簧的长度y是所挂物体质量x的一次函数,所以可设函数关系式为y=k x+b(k≠0).解:设y=k x+b(k≠0),根据题意,得9=b,①12=3k+b.②所以k=1.所以y=x+9.当x=6时,y=6+9=15,即所挂物体的质量为6 kg时,弹簧的长度为15cm.★★易混易误点易混易误点1: 将正比例函数与一次函数表达式混淆例2已知y是x的一次函数,并且当x=0时,y=1;当x=2时,y=3,求它的表达式.解:设它的表达式为y=k x+b(k≠0),因为当x=0时,y=1,所以b=1.又因为当x=2时,y=3,所以2k+b=3.所以k=1.所以y=x+1.,分析:在利用待定系数法求一次函数表达式时,首先应设一次函数表达式为y=k x+b(k≠0).本题易把一次函数表达式设为y=k x,导致错误.蓄势待发考前攻略考查根据实际问题中的条件或图象确定一次函数(或正比例函数)的表达式.多以选择题或填空题的形式出现,难度较小.完胜关卡。

待定系数法求一次函数解析式题目和解析过程

待定系数法求一次函数解析式题目和解析过程

待定系数法求一次函数解析式题目和解析过程摘要:1.待定系数法简介2.一次函数的概念和形式3.如何使用待定系数法求一次函数解析式4.解析过程示例5.总结正文:1.待定系数法简介待定系数法是一种数学方法,通过给定一些未知数的系数,然后根据已知条件建立方程组,求解这些系数,从而得到未知数的值。

这种方法在求解函数解析式时被广泛应用。

2.一次函数的概念和形式一次函数是指形如y=ax+b 的函数,其中a 和b 是常数,x 是自变量,y 是因变量。

在这个函数中,a 被称为斜率,它表示函数图像的倾斜程度;b 被称为截距,它表示函数图像与y 轴的交点。

3.如何使用待定系数法求一次函数解析式求解一次函数解析式的一般步骤如下:(1)确定函数的形式。

根据已知条件,先假设函数的形式为y=ax+b。

(2)列出方程组。

根据题目所给的条件,列出关于a 和b 的方程组。

(3)解方程组。

通过求解方程组,得到a 和b 的值。

(4)写出解析式。

将求得的a 和b 代入原假设的函数形式中,得到待求函数的解析式。

4.解析过程示例例如,如果已知函数经过点(1,2) 和(2,4),求该函数的解析式。

(1)假设函数形式为y=ax+b。

(2)列出方程组:a +b = 22a + b = 4(3)解方程组:将第一个方程变形为b = 2 - a,代入第二个方程得到2a + (2 - a) = 4,解得a = 2,再代入第一个方程得到b = 0。

(4)写出解析式:y = 2x。

5.总结待定系数法是求解一次函数解析式的有效方法,通过给定系数,建立方程组,求解系数,从而得到函数解析式。

一次函数待定系数法

一次函数待定系数法

一次函数待定系数法一次函数待定系数法是解决一元一次方程组的一种常用方法,通过设定待定系数,将方程转化为未知数为常数的形式,从而求出未知数的值。

一次函数待定系数法也被广泛用于物理学、经济学等领域的实际问题求解。

设一元一次方程为ax+b=0,其中a、b为常数,为求解方程,设未知数为x,待定系数为k,即:x=k将x=k代入原方程,得:ak+b=0此时方程的未知数为常数k,将a、b看作已知量,可以直接求解出k的值,从而得到方程的解。

值得注意的是,待定系数的设定需要根据具体情况来确定,一般应该设定为能够使计算简便、公式简单的值。

例题一:已知一元一次方程2x+3=7,试用待定系数法求解该方程。

2k+3=7将方程移项并合并同类项,得到:2k=4于是得到待求的未知数k为:方程的解为:3k-5=16一次函数待定系数法的优点是计算简便、易于掌握,适用于一些简单的问题求解。

该方法不仅可以用于未知数为常数的一元一次方程,还可以推广到一些更高阶的方程组求解,例如二元一次方程组、二元二次方程组等。

一次函数待定系数法的缺点是其需要设定待定系数,而待定系数的选择对结果有决定性影响。

如果待定系数选择不合适,有可能会导致答案错误。

在一些复杂的问题求解中,一次函数待定系数法可能不太适用,对于这些问题,需要采用其他更加复杂的方法进行求解。

结束语一次函数待定系数法是解决一元一次方程组常用的方法之一。

本文主要介绍了一次函数待定系数法的原理、优点和缺点,并通过例子进行了实际练习。

希望本文对读者掌握一次函数待定系数法有所帮助。

一次函数待定系数法是学习数学时必须掌握的基础内容,适用范围广泛,应用于物理学、经济学等领域的实际问题求解。

在应用中,一次函数待定系数法具有数值计算快捷和解法简单等优点,但同时存在着较为明显的一些不足之处。

一次函数待定系数法的优点之一是计算速度快,能够在较短时间内求得答案。

这是由于该方法以待定系数为中心,旨在通过设定合适的待定系数,将方程转换为未知数为常数的形式,从而使得计算更为简便。

八年级.数学 第二 一次函数 21.3 用待定系数法确定一次函数表达式

八年级.数学 第二 一次函数 21.3 用待定系数法确定一次函数表达式
解:(1)设成本 y(元/千克)关于进货量 x(千克)的函数表达式为 y=kx+b, 由图像可知18= 0=301k0k++bb,,解得kb==-110..1, 故 y 关于 x 的函数表达式为 y=-0.1x+11,其中 10≤x≤30. (2)令 y=-0.1 x+11=9.6,即 0.1 x=1.4,解得 x=14.故该商场购进此商品 14 千克.
12/12/2021
21.3 用待定系数法确定一次函数表达式
【归纳总结】确定一次函数表达式的方法:
(1)待定系数法:已知x,y的两组值或两点坐标,利用方程 组确定k,b的值. (2)位置确定法:两直线平行,k的值相等;两直线交于y轴 上同一点,b的值相等.
(3)列方程确定法:实际问题中的列二元一次方程法.
反思
已知函数 y=kx+b 中,自变量 x 的取值范围是-1≤x≤7,相应的 函数值的范围是-12≤y≤8,求函数的表达式.
解:由-1≤x≤7,得-k+b≤kx+b≤7k+b, 即-k+b≤y≤7k+b. 又∵-12≤y≤8,∴- 7kk++bb==8-. 12,解得kb= =2-.95.,5. ∴函数的表达式为 y=2.5x-9.5.
解:(1)将 A(-3,-2),B(1,6)代入 y=kx+b, 得方程组- k+3bk+ =b6= ,-2,解得kb= =24, ,则此一次函数的表达式为 y=2x+4. (2)在 y=2x+4 中,令 x=0,得 y=4;令 y=0,得 x=-2,则此函数图像与 x 轴的交点坐标是(-2,0),与 y 轴的交点坐标是(0,4),所以此函数图像与坐标
12/12/2021
21.3 用待定系数法确定一次函数表达式 例2 教材补充例题 已知一次函数的图像经过点P(3,5),且 平行于直线y=2x.求该一次函数的表达式.

用待定系数法求一次函数解析式

用待定系数法求一次函数解析式

四、画龙点晴
规律1:确定一个待定系数需要一个条件, 规律 :确定一个待定系数需要一个条件, 确定两个待定系数需要2个条件 个条件. 确定两个待定系数需要 个条件. 规律2:确定正比例函数的表达式需要一个条件, 规律 :确定正比例函数的表达式需要一个条件,
确定一次函数的表达式需要2个条件. 确定一次函数的表达式需要 个条件. 个条件
四、画龙点晴
1、列方程解应用题的基本步骤有哪些? 、列方程解应用题的基本步骤有哪些? 2、用待定系数法求一次函数解析式的基本步骤: 、用待定系数法求一次函数解析式的基本步骤 找两点坐标 设 列 解 答
思路: 思路:求一次函数的解析式 求k、b的值 列二元一次方程组 解方程组
五、融会贯通——分类与分层 融会贯通 分类与分层
{
设 列 解 答
{
一次函数的解析式为
y=2x-1

1、已知一次函数y=kx+b ,当x=2时y的值为 ,当x=- 、已知一次函数 = + 的值为4, =-2 = 时 的值为 =- 时, y的值为 ,求k、b的值 (P120/6) 的值为-2, 、 的值.( ) 的值为 的值 2、已知直线 y=kx+b经过点(9,0)和点(24,20),求k、 、 经过点( , )和点( , ), ),求 、 = + 经过点 b的值 ( P118/2) 的值. 的值 ) 3、已知一次函数的图象经过点(-4,9)与(6,3),求这个函数 、已知一次函数的图象经过点 , 与 , 的解析式。( 的解析式。( P120/7) ) 4、 已知直线 y=kx+b经过点(3,6)和点 、 经过点( , ) = + 经过点 这条直线的函数解析式。 这条直线的函数解析式。 ( P137/4) )
5 = 3k + b − 9 = −4k + b 解得 k =2 b = −1

用待定系数法求一次函数解析式

用待定系数法求一次函数解析式

y=3x-30
60 元上网费用; (2)若小李 4 月份上网 20 小时,他应付________
(3)若小李 5 月份上网费用为 75 元,则他在该月份的上网时间 是__________.
35
点拨:(1)当 x≥30 时,设函数解析式为 y=kx+b,
30k b 60 k 3 则 ,解得 .所以 y=3x-30. b 30 40k b 90
k=2 ∴ y=2 x +2 ∴ x=-1 时 y=度y(厘米)在一定限度内 所挂重物质量x(千克)的一次函数,现已测得 不挂重物时弹簧的长度是6厘米,挂4千克质量 的重物时,弹簧的长度是7.2厘米,求这个一次 函数的解析式。
解:设这个一次函数的解析式为:y=kx+b 根据题意,把x=0,y=6和x=4,y=7.2代入,得: b=6 k=0.3 4k+b=7.2 解得 b=6
Page 2
变式3:已知一次函数y=2x+b 的 图象过点(2,-1).求这个一次函数 的解析式.
解: ∵ y=2x+b 的图象过点(2,-1).
∴ -1=2×2 + b
解得
b=-5
∴这个一次函数的解析式为y=2x-5
Page
3
变式4:已知一次函数y=kx+b 的图象 与y=2x平行且过点(2,-1).求这个一 次函数的解析式. ∵ y=kx+b 的图象与y=2x平行. 解:
当B点的坐标为(0,4)时,则 y=kx+4
4 ∴ 0=3k+4, ∴k= - ∴ 3 4 ∴ 0=3k+4, ∴k= 3
y= -
4 x+4 3
当B点的坐标为(0,-4)时,则 y=kx-4

待定系数法求一次函数表达式

待定系数法求一次函数表达式

例4:在弹性限度内,弹簧长度y(cm)是所挂物体质量x(g)的一次函 数.已知一根弹簧挂10g物体时的长度为10cm,挂30g物体时的长度 为15cm,试求y与x的函数表达式
Hale Waihona Puke 拓展探究1.已知: y与x成正比例,且当 x=3时 y=7,求y与x的函数解析式.
变式1 : y与x-1成正比例,且当 x=3时 y=7,求y与x的函数解析式. 变式2 : y+3与x-1成正比例,且当 x=3时 y=7,求y与x的函数解析式.
(1)求这个函数的解析式 (2)求当x=3时,y的值。
例3:(1)已知y是 x的一次函数,当 x=-1时 y=3,当 x =2 时 y=-3, 求y关于 x 的函数解析式.
(2)已知y是 x的正比例函数,当x=2时,y=-4, 求这个函数的解析式.
练:已知y是x的一次函数,又表给出了部分对应值,则m的值是_______.
练:已知:y-1与x成正比例,当x=1时,y=3. 写出y与x之间的函数关系式
拓展探究:
2.已知y=y1+y2 ,y1与x成正比例,y2与x-1成正比例,且 x=3时 y=4; x=1时 y=2. 求y与x的函数解析式.
练:已知y=y1+y2 ,y1与x成正比例,y2与x-2成正比例,且 x=-1时 y=2; x=3时 y=-2. 求y与x的函数解析式.
例1:已知一次函数y=kx+b。当x=3时,y= 0;当x=0时,y=-4。 (1)求k,b的值 (2)求当x=2时,y的值
例2:已知正比例函数y=kx,当x=3时,y=4. 求当x=2时,y的值
练1:在一次函数y=kx-3中,当x=3时,y=6。则k= 练2:已知一次函数y=kx+b中,当x=1时,y=3,当x=-1时,y=7。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
根据题意,得 10k+.2 解得, b=8
∴ 函数的解析式为 y= 0.2x +8 (-20≤x≤100)
变式2 :求下图中直线的函数表达式
解:设这个一次函数的解析式为y=kx+b. ∵y=kx+b的图象过点(0,3)与(1,0).
y
∴ b=3 k+b=0
解得 k=-3 b=3
Page 4
练习1:已知一次函数的图象经过点(1,5)与 (-1,-1).求这个函数的表达式。 解 : 设这个一次函数的表达式为y=kx+b (k≠0). ∵根据题意,得: k+b=5 -k+b=-1 解得 k=3 b=2
∴这个一次函数的解析式为y=3x+2
Page 5
变式1:已知一次函数y=kx+b,当x=1时, y=1,当x=2时,y=3.求这个一次函数的解 析式。
• • • •
例3、已知温度计中水银(或酒精)柱的高度y(厘
米)是温度x(℃)的一次函数。某型号的实验用水银 温度计能测量-20℃至100℃的温度,当温度为10℃时水 银柱高10厘米;温度为50℃水银柱高18厘米。求这个函 数的表达式。
y=kx+b(k≠0) , 解: 设这个函数的表达式为_______________
k
b
步骤概括: 设、 代、 求、写 注意:对于是实际问题时所求的结果还得考虑自
变量的取値范围。
Page 10
思考1:已知一次函数y=kx+b 的图象 与y=2x平行且过点(2,-1).求这个函数 x=5时的函数值.
∵ y=kx+b 的图象与y=2x平行. 解:
∴ k=2 ∴
∴ y=2x-b
b=-5
解: ∵当x=1时,y=1,当x=2时,y=3.
∴ k+b=1 2k+b=3
解得
k=2 b=-1
∴这个一次函数的解析式为y=2x-1
Page 6
先设出函数解析式,再根据条件列出方 程或方程组,求出未知的系数,从而具体写 出这个式子的方法,叫做待定系数法. 用待定系数法求一次函数的一般步骤: 第一步:设,设出函数的一般形式。 第二步:代,代入解析式得出方程或方程组。 第三步:求,求出待定系数k、b的值 第四步:写,写出该函数的解析式。
解:设这个函数的表达式为y=kx(k≠0). ∵y=kx的图象过点 (-2,4),

∴ 4= -2k
解得 k=-2
Page 3
代 求 写
∴这个函数的表达式为y=-2x .
例2:已知一次函数的图象经过点(2,5) 与(-1,-4),求这个一次函数的表达式。 解 : 设这个一次函数的表达式为y=kx+b (k≠0). 根据题意,得: 解得 k=3 2k+b=5 b=-1 -k+b=-4 ∴这个一次函数的表达式为y=3x-1
一次函数和正比例函数的表达式各 是什么? y=kx+b(k、b为常数且k≠0) y=kx(k为常数且k≠0) 也就是说当知道k和b的值时,就能 确定一次函数和正比例函数的表达式。
本节课要研究的是在一定条件下, 我们能用什么方法求出k和b值。
例1:已知正比例函数 y= kx,(k≠0) 的图象经过点(-2,4). 求这个正比例函数的表达式.
∵ y=2x+b 的图象过点(2,-1).
-1=2×2 - b 解得
∴这个一次函数的解析式为y=2x-5 ∴当x=5时,y=2×5-5=5
Page 11
思考2:一次函数y=kx+b 的图象过点 A(3,0).与y轴交于点B,若△AOB的面积为6, 求这个一次函数的解析式 。 解:∵y=kx+b的图象过点A(3,0). y 1 1 ∴OA=3,S= OA×OB= ×3×OB=6 B 2 2 ∴OB=4, B点的坐标为 o x (0,4)或(0,-4), A
3
1
o
x
∴这个一次函数的解析式为y=-3x+3
Page 9
总结:用待定系数法求一次函数解析式的一般步骤:先设
函数的一般形式( y=kx+b ) ,再求系数( )与( )。即 b 根据题意列出关于未知数( k )与( )的方程或方程 k b 组,求出这两个未知系数( )与( )再将它们代入 y=kx+b中,从而得到所求结果。
......
B'
4 4 y x 4或y x 4 3 3
Page 12
作业
52页习题第1题
相关文档
最新文档