北师大版八年级数学下册第二章测试题

合集下载

北师大版八年级数学(下册)第二章测试卷(及答案)

北师大版八年级数学(下册)第二章测试卷(及答案)

第二章测试卷本试卷共3大题,计20小题,满分100分,考试时间100分钟。

题号 一二三四五总分得分一、选择题(本大题共10小题,每小题3分,满分30分)每小题都给出代号为A 、B 、C 、D 的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内,每一小题选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分1. 如果a 、b 表示两个负数,且a <b ,则( ). A .1 ba B.ba <1 C. D.ab <12. 直线y=x-1上的点在x 轴上方时对应的自变量的范围是( )A .x>1B .x ≥1C .x<1D .x ≤1 3.|a |+a 的值一定是( ).A.大于零B.小于零C.不大于零D.不小于零4. 不等式-3x +6>0的正整数有( )A. 1个B. 2个C. 3个D. 无数多个 5. 若m 满足|m |>m ,则m 一定是( )A. 正数B. 负数C. 非负数D. 任意有理数6. 在数轴上与原点的距离小于8的点对应的x 满足( )A. -8<x <8B. x <-8或x >8C. x <8D. x >87. 已知三角形三边长分别为2、x 、9,若x 为奇数,则此三角形的周长为( ). A.13 B.20 C.18 D.27 8.若不等式组无解,则m 的取值范围是( )A. m <11B. m >11C. m ≤11D. m ≥119. 要使函数y =(2m -3)x +(3n +1)的图象经过x 、y 轴的正半轴,则m 与n 的取值应为( )A. m >23,n >-B. m >3,n >-3C. m <,n <-31 D. m <23,n >-3110.等腰三角形周长为23,且腰长为整数,这样的三角形共有( )个A.4个B.5个C.6个D.7个 二、填空题(本大题共4小题,每小题3分,满分12分)11.已知直线y=x-2与y=-x+2相交于点(2,0),则不等式x-2≥-x+2•的解集是________. 12.不等式的正数解是1,2,3,那么k 的取值范围是________.13. 当自变量x 时,函数y =5x +4的值大于0;当x 时,函数y =5x +4的值小于0。

2022年北师大版八下数学第二章测试卷(图片版)

2022年北师大版八下数学第二章测试卷(图片版)

试卷第1页,总5页第二章 一元一次不等式与一元一次不等式组 单元测试卷学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 8 小题 ,每题 3 分 ,共计24分 , )1. 下列式子:①x +y =1;②x >y ;③x +2y ;④x −y ≥1;⑤x <0中,属于不等式的有( )A.2个B.3个C.4个D.5个 2. 若a <b <0,则下列式子:①a +1<b +2;②a b >1;③a +b <ab ;④1a <1b 中,正确的有( )A.1个B.2个C.3个D.4个3. 若a <b ,则下列各式中一定成立的是( )A.ac 2<bc 2B.−a <−bC.a −1<b −1D.a 3>b 3 4. 若关于x 的不等式组{x <3a +2,x >a −4无解,则a 的取值范围是( ) A.a ≤−3 B.a <−3 C.a >3 D.a ≥35. 若关于x 的不等式组{1−x ≥−1,x >a,无解,则a 的取值范围是( ) A.a >2 B.a ≥2 C.a ≤2 D.a <26. 下列不等式中,是一元一次不等式的是( )A.−y +1>yB.x 2+1>xC.1x >1D.5+4>87. 如果不等式(2−a )x <a −2的解集为x >−1,则a 必须满足的条件是( )A.a >0B.a >2C.a ≠2D.a <28. 将不等式{2x +16<8x −212x ≤8−32x 的解集在数轴上表示出来,正确的是( )A.B. C. D.二、 填空题 (本题共计 8 小题 ,每题 3 分 ,共计24分 , )9. 不等式−13x +1≥−5的解集是________. 10. 不等式−2x <4的非正整数解是________.11. 若代数式2x +5的值是正数,则x 应满足的不等式是________.12. 已知x 的一半与1的差小于2,用不等式表示为________.13. 写出一个不等式组,使它的解集为−1<x <2:________.14. 直线y =kx +3经过点A(2, 1),则不等式kx +3≥1的解集是________.15. 不等式组{2x +1>−3−x +3≥0的解集为________.16. 一次数学知识竞赛共有30道题,规定,答对一道题得4分,不答或答错一道题倒扣2分,若甲同学答对25题,答错5道题,则甲同学得________分,若得分不低于60分者获奖,则获奖者至少应答对________道题.三、解答题(本题共计 8 小题,共计72分,)17. 求不等式组{x+23<12(1−x)≤5的整数解.18. 解不等式组{3−2(x−1)>−1(1),x−32+2≤x(2),并写出它的所有整数解.19. 解不等式组{2x−13−5x+12≤15x−2<3(x+2),并求出所有正整数解的和.20. 学校准备用2000元购买名著和词典作为艺术节奖品,其中名著每套65元,词典每本40元,现已购买名著20套,问最多还能买词典多少本?21. 已知关于x的不等式组{x≥3x<m无解,求m的取值范围.22. 已知a,b,c为三个非负数,且满足3a+2b+c=5,2a+b−3c=1.(1)求c的取值范围.(2)设S=3a+b−7c,求S的最大值和最小值.23. 为支援地震灾区,某市民政局组织募捐了240吨救灾物资,现准备租用甲、乙两种货车将这批救灾物资一次性全部运往灾区,它们的载货量和租金如下表:如果计划租用6辆货车,且租车的费用不超过2300元,求最省钱的租车方案.24. 自学下面材料后,解答问题.分母中含有未知数的不等式叫分式不等式.如:x−2x+1>0;2x+1x−1<0等.那么如何求出它们的解集呢?根据我们学过的有理数除法法则可知:两数相除,同号得正,异号得负.其字母表达式为:(1)若a>0,b>0,则ab >0;若a<0,b<0,则ab>0;(2)若a>0,b<0,则ab <0;若a<0,b>0,则ab<0.反之:(1)若ab >0,则{a>0,b>0或{a<0,b<0;(2)若ab<0,则________或________.根据上述规律,求不等式x−2x+1>0的解集.试卷第3页,总5页参考答案第二章 一元一次不等式与一元一次不等式组 单元测试卷一、 选择题 (本题共计 8 小题 ,每题 3 分 ,共计24分 )1.B2.C3.C4.A5.B6.A7.B8.C二、 填空题 (本题共计 8 小题 ,每题 3 分 ,共计24分 )9.x ≤1810.−1,011.2x +5>012.12x −1<213.{x >−1x <214.x ≤215.−2<x ≤316.90,20三、 解答题 (本题共计 8 小题 ,每题 10 分 ,共计80分 ) 17.【答案】解:{x+23<12(1−x)≤5, 解不等式①得x <1, 解不等式②得x ≥−32,不等式组的解集为−32≤x <1,因此不等式组的整数解是−1,0.18.【答案】解:由(1)得3−2x +2>−1,解得x <3;由(2)得x −3+4≤2x ,解得x ≥1,∴ 原不等式组的解集为1≤x <3,∴ 原不等式组的整数解为1,2.19.【答案】解:{2x−13−5x+12≤1①5x −2<3(x +2)② 由①得x ≥1;试卷第5页,总5页 由②得x <4,∴ 不等式组的解集是1≤x <4,∴ 不等式组的所有正整数解的和为1+2+3=6. 20.【答案】解:设还能买词典x 本,根据题意得:20×65+40x ≤2000,40x ≤700,x ≤70040,x ≤1712,答:最多还能买词典17本.21.【答案】解:∵ 关于x 的不等式组{x ≥3x <m 无解, ∴ m ≤3.22.【答案】(1)37≤c ≤711.(2)S 的最大值为−111,最小值为−5723.【答案】解:设甲x 辆,乙(6−x)辆.则{400x +300(6−x)≤230045x +30(6−x)≥240∴ 4≤x ≤5且x 是整数.又∵ y =1800+100x∵ 100≥0,所以y 随x ↑而↑∴ 当x =4时,y min =2200(元)24.【答案】解:由题意得,若a b <0,则{a >0,b <0或{a <0,b >0.根据规律,将(x −2)与(x +1)分别看成两个整体, 可得不等式x−2x+1<0的解集为{x −2>0,x +1<0或{x −2<0,x +1>0,解得−1<x <2.。

北师大版八年级数学下册第二章《一元一次不等式与一元一次不等式组》测试卷(含答案)

北师大版八年级数学下册第二章《一元一次不等式与一元一次不等式组》测试卷(含答案)

北师大版八年级数学下册第二章《一元一次不等式与一元一次不等式组》测试卷(含答案)一、选择题(共10小题;共40分)1. 现有以下数学表达式:①−3<0;②4x+3y>0;③x=3;④x2+xy+y2;⑤x≠5;⑥x+2>y+3.其中不等式有( )A. 5个B. 4个C. 3个D. 1个2. 自从11月起,贝贝每天至少跑步1800m,若他每天跑x m,则x满足的关系式是( )A. x>1800B. x<1800C. x≥1800D. x≤18003. 不等式组{2x−4<0,3−2x<1的解集为( )A. x<1B. x>2C. x<1或x>2D. 1<x<24. 如图,直线y=kx+b交坐标轴于A,B两点,则不等式kx+b>0的解集是( )A. x>−2B. x>3C. x<−2D. x<35. 下列说法中,错误的是( )A. 不等式x<2的正整数解只有一个B. −2是不等式2x−1<0的一个解C. 不等式−3x>9的解集是x>−3D. 不等式x<10的整数解有无数个6. 实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是( )A. ∣a−c∣>∣b−c∣B. −a<cC. a+c>b+cD. ab <cb7. 使不等式 x −2≥2 与 3x −10<8 同时成立的 x 的整数值是 ( ) A. 3,4B. 4,5C. 3,4,5D. 不存在8. 已知点 P (2a −1,1−a ) 在第一象限,则 a 的取值范围在数轴上表示正确的是 ( )A.B.C. D.9. 篮球联赛中,每场比赛都要分出胜负,每队胜 1 场得 3 分,负 1 场得 1 分.某队预计在 2014~2015赛季全部 32 场比赛中最少得到 54 分,才有希望进入季后赛.假设这个队在将要举行的比赛中胜 x 场,要达到目标,x 应满足的关系式是 ( ) A. 3x −(32−x )≥54 B. 3x +(32−x )≥54 C. 3x +(32−x )≤54D. 3x ≥5410. 若关于 x 的一元一次不等式组 {x −2m <0,x +m >2 有解,则 m 的取值范围为 ( )A. m >−23B. m ≤23C. m >23D. m ≤−23二、填空题(共8小题;共32分)11. 2016年6月9日某市最高气温是 34 ∘C ,最低气温是 27 ∘C ,则当天该市气温 t 的变化范围可表示为 .12. 若 x >y ,则 −3x +2 −3y +2(填“<”或“>”).13. 若 (m −2)x ∣m−1∣−3>6 是关于 x 的一元一次不等式,则 m = .14. 不等式组 {3x +10>0,163x −10<4x 的最小整数解是 .15. 小明借到一本 72 页的图书,要在 10 天之内读完,开始两天每天只读 5 页,设以后几天里每天读 x 页,所列不等式为 .16. 函数 y =mx +n 和函数 y =kx 在同一坐标系中的图象如图所示,则关于 x 的不等式 mx +n >kx 的解集是 .17. 已知关于 x 的不等式 (a −1)x >4 的解集是 x <4a−1,则 a 的取值范围是 .18. 某商品的售价是 150 元,商家售出一件这种商品可获利润是进价的 10%∼20%,则进价的范围为 (结果取整数). 三、解答题(共7小题;共77分)19. 解不等式组 {4(x +1)≤7x +10,x −5<x−83, 并写出它的所有非负整数解.20. 若关于 x ,y 的方程组 {x +y =30−a,3x +y =50+a 的解都是非负数,求 a 的取值范围.21. 如图,一次函数 y 1=kx −2 和 y 2=−3x +b 的图象相交于点 A (2,−1).(1)求 k ,b 的值.(2)利用图象求出:当 x 取何值时,y 1≥y 2? (3)利用图象求出:当 x 取何值时,y 1>0 且 y 2<0?22. 解关于 x 的不等式 ax −x −2>0.23. 若关于x的不等式组{x2+x+13>0,3x+5a+4>4(x+1)+3a恰有三个整数解,求实数a的取值范围.24. 按如图所示的程序进行运算:并规定:程序运行到“结果是否大于65”为一次运算.(1)求程序运行一次便输出时的x的取值范围;(2)已知输入x后程序运行3次才停止,求x的取值范围.25. 去年夏天,某地区遭受到罕见的水灾,“水灾无情人有情”,某单位给该地区某中学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件.(2)现计划租用甲、乙两种型号的货车共8辆,一次性将这批饮用水和蔬菜全部运往这所中学.已知每辆甲型货车最多可装饮用水40件和蔬菜10件,每辆乙型货车最多可装饮用水和蔬菜20件,则该单位安排甲、乙两种型号的货车时有几种方案?请你帮忙设计出来.(3)在(2)的条件下,如果甲型货车每辆需付运费400元,乙型货车每辆需付运费360元,该单位选择哪种方案可使运费最少?最少运费是多少?参考答案第一部分 1. B 【解析】③ 是等式;④ 是代数式,没有不等关系,所以不是不等式.不等式有①②⑤⑥,共 4个. 2. C 3. D 4. A 5. C 6. A 7. B8. C【解析】根据点 P 在第一象限,知横、纵坐标都是正数,可得到关于 a 的不等式组{2a −1>0,1−a >0, 求得 a 的取值范围是 0.5<a <1. 9. B10. C 【解析】{x −2m <0, ⋯⋯①x +m >2. ⋯⋯②解不等式 ① 得 x <2m ,解不等式 ② 得 x >2−m .∵ 不等式组有解,∴ 2m >2−m .∴ m >23. 第二部分11. 27 ∘C ≤t ≤34 ∘C 12. < 13. 0【解析】根据一元一次不等式的定义可知 ∣m −1∣=1 且 m −2≠0,求解即可. 14. −315. 2×5+(10−2)x ≥72 16. x <−1【解析】由图象可知,直线 y =mx +n 和直线 y =kx 的交点坐标是 (−1,−1),∴ 关于 x 的不等式 mx +n >kx 的解集是 x <−1. 17. a <1 18. 125∼136 元【解析】设进价为 x 元.依题意,得 0.1x ≤150−x ≤0.2x ,即 {150−x ≥0.1x,150−x ≤0.2x, 解得 125≤x ≤136411.∵ 结果取整数,∴ 进价的范围为 125∼136 元.第三部分 19.{4(x +1)≤7x +10, ⋯⋯①x −5<x −83. ⋯⋯②由 ① 得x ≥−2,由 ② 得x <72,∴−2≤x <72.∴ 非负整数的解为 0,1,2,3. 20. 解方程组,得{x =10+a,y =20−2a.依题意有{10+a ≥0,20−2a ≥0,解得−10≤a ≤10.21. (1) 将 A 点坐标代入 y 1=kx −2,得 2k −2=−1,即 k =12;将 A 点坐标代入 y 2=−3x +b ,得 −6+b =−1,即 b =5.(2) 从图象可以看出:当 x ≥2 时,y 1≥y 2. (3) 直线 y 1=12x −2 与 x 轴的交点为 (4,0), 直线 y 2=−3x +5 与 x 轴的交点为 (53,0).从图象可以看出:当 x >4 时,y 1>0;当 x >53 时,y 2<0, ∴ 当 x >4 时,y 1>0 且 y 2<0. 22. 由题意变形得(a −1)x >2.当 a −1>0,即 a >1 时,x >2a −1. 当 a −1=0,即 a =1 时,不等式无解; 当 a −1<0,即 a <1 时,x<2 a−1.23. 由不等式x2+x+13>0,解得x>−25.由不等式3x+5a+4>4(x+1)+3a,解得x<2a.∵不等式组恰有三个整数解,∴2<2a≤3.∴1<a≤32.24. (1)根据题意得2x−1>65,解得x>33.(2)根据题意得{2x−1≤65,2(2x−1)−1≤65,2[2(2x−1)−1]−1<65,解得9<x≤17.25. (1) 设饮用水有 x 件,则蔬菜有 (x −80) 件. 依题意,得x +(x −80)=320,解这个方程,得x =200. x −80=120.答:饮用水和蔬菜分别有 200 件和 120 件.(2) 设租用甲型货车 n 辆,则租用乙型货车 (8−n ) 辆. 依题意,得{40n +20(8−n )≥200,10n +20(8−n )≥120,解这个不等式组,得2≤n ≤4.∵n 为整数, ∴ n =2 或 3 或 4,所以安排甲、乙两种型号的货车时有 3 种方案,分别是: ①甲型货车 2 辆,乙型货车 6 辆; ②甲型货车 3 辆,乙型货车 5 辆; ③甲型货车 4 辆,乙型货车 4 辆. (3) 3 种方案的运费分别为:方案①:2×400+6×360=2960(元); 方案②:3×400+5×360=3000(元); 方案③:4×400+4×360=3040(元); ∴ 方案①运费最少,最少运费是 2960 元.答:选择甲型货车 2 辆,乙型货车 6 辆,可使运费最少,最少运费是 2960 元.。

北师大版八年级数学下册第二章测试题及答案

北师大版八年级数学下册第二章测试题及答案

北师大版八年级数学下册第二章测试题及答案一.选择题(每题3分,共30分)1.下列数学式子中:①﹣3<0,②2x+3y≥0,③x=1,④x2﹣2xy+y2,⑤x+1>3中,不等式有( ) A.3个B.4个C.5个D.6个2.下列各式中正确的是( )A.若a>b,则a+2>b+2B.若a>b,则a2>b2C.若a>b,且c≠0,则2ac>2bcD.若a>b,则﹣3a>﹣3b3.下列不等式的变形不一定成立的是( )A.若x>y,则﹣x<﹣y B.若x>y,则x2>y2C.若x<y,则D.若x+m<y+m,则x<y4.关于x的一元一次不等式组的解集如图所示,则它的解集是( )A.﹣1<x≤2B.﹣1≤x<2C.x≥﹣1D.x<25.若不等式组的解是x≥a,则下列各式正确的是( )A.a>b B.a≥b C.a<b D.a≤b6.某商店为了促销一种定价为20元的商品,采取下列方式优惠销售:若一次性购买不超过5件,按原价付款;若一次性购买5件以上,超过部分按原价八折付款.如果小颖有200元钱,那么她最多可以购买该商品( )A.5件B.6件C.7件D.11件7.若关于x的不等式2﹣m﹣x>0的正整数解共有3个,则m的取值范围是( )A.﹣1≤m<0B.﹣1<m≤0C.﹣2≤m<﹣1D.﹣2<m≤﹣18.一次函数y1=ax+b与y2=mx+n在同一平面直角坐标系内的图象如图所示,则不等式组的解集为( )A.x<﹣2B.﹣2<x<3C.x>3D.以上答案都不对9.若关于x的一元一次不等式组的解集是x≤k,且关于y的方程2y=3+k有正整数解,则符合条件的所有整数k的和为( )A.5B.8C.9D.1510.已知关于x.y的方程组,其中﹣3≤a≤1,给出下列说法:①当a=1时,方程组的解也是方程x+y=2﹣a的一个解;②当a=﹣2时,x.y的值互为相反数;③若x≤1,则1≤y≤4;④是方程组的解.其中说法错误的是( )A.①②③④B.①②③C.②④D.②③二.填空题(每题3分,共24分)11.若﹣a<﹣b,那么﹣2a+9 ﹣2b+9(填">""<"或"=").12.若关于x的不等式组的解集是x<4,则P(2﹣m,m+2)在第 象限.13.若不等式组无解,则a的取值范围是 .14.不等式(m﹣2)x<3的解集是,则m的取值范围是 .15.一次竞赛中,一共有10道题,5分,答错(或不答)一题扣1分,则小明至少答对 道题,成绩超过30分.16.商店为了对某种商品促销,将定价为3元的商品,以下列方式优惠销售:若购买不超过5件,按原价付款:若一次性购买5件以上,超过部分打八折.现有32元钱,最多可以购买该商品 件.17.2019年春节期间,为提倡文明,环保祭祖,某烟花销售商拟今年不再销售烟花爆竹,改为销售鲜花,经过市场调查,发现有甲乙丙丁四种鲜花组合比较受顾客的喜爱,于是制定了进货方案,其中甲丙的进货量相同,乙丁的进货量相同,甲与丁单价相同,甲乙与丙丁的单价和均为88元/束,且甲乙的进货总价比丙丁的进货总价多800元,由于年末资金紧张,所以临时决定只进购甲乙两种组合,甲乙的进货量与原方案相同,且进货量总数不超过500束,则该经销商最多需要准备 元进货资金.18.某校奖励学生,初一获奖学生中,有一人获奖品3件,其余每人获奖品7件;初二获奖学生中,有一人获奖品4件,其余每人获奖品9件.如果两个年级获奖人数不等,但奖品数目相等,且每个年级奖品数大于50而不超过100,那么两个年级获奖学生共有 ————人.三.解答题(共66分)19.解不等式组:(1)解不等式组,并将解集在数轴上表示出来.(2)求不等式组的整数解.20.阅读下列材料:问题:已知x﹣y=2,且x>1,y<0,试确定x+y的取值范围解:∵x﹣y=2,∴x=y+2,又∵x>1,∴y+2>1,∴y>﹣1,又∵y<0,∴﹣1<y<0①∴﹣1+2<y+2<0+2即1<x<2②①+②得﹣1+1<x+y<0+2,∴x+y的取值范围是0<x+y<2.请按照上述方法,完成下列问题:(1)已知x﹣y=5,且x>﹣2,y<0,①试确定y的取值范围;②试确定x+y的取值范围;(2)已知x﹣y=a+1,且x<﹣b,y>2b,若根据上述做法得到3x﹣5y的取值范围是﹣10<3x﹣5y<26,请直接写出a.b的值.21.已知关于x,y的方程满足方程组.(1)若x﹣y=2,求m的值;(2)若x,y,m均为非负数,求m的取值范围,并化简式子|m﹣3|+|m﹣5|;(3)在(2)的条件下求s=2x﹣3y+m的最小值及最大值.22.已知关于x,y的二元一次方程ax+2y=a﹣1.(1)若是该二元一次方程的一个解,求a的值;(2)若x=2时,y>0,求a的取值范围;(3)不论实数a(a≠0)取何值,方程ax+2y=a﹣1总有一个公共解,试求出这个公共解.23.根据等式和不等式的基本性质,我们可以得到比较两数大小的方法:若a﹣b>0,则a>b;若a﹣b=0,则a=b;若a﹣b<0,则a<b.反之也成立.这种比较大小的方法称为"求差法比较大小".请运用这种方法尝试解决下面的问题:(1)比较4+3a2﹣2b+b2与3a2﹣2b+1的大小;(2)若2a+2b>3a+b,比较a.b的大小.24.阅读题.小明在数学课外小组活动时遇到这样一个问题:如果一个不等式中含有绝对值,并且绝对值符号中含有未知数,我们把这个不等式叫做绝对值不等式,求绝对值不等式|x|>3的解集,小明同学的思路如下:先根据绝对值的定义,求|x|=3时x的值,并在数轴上表示为点A,B,如图所示:观察数轴发现:以点A,B为分界点把数轴分为三部分,点A左边的点表示的数的绝对值大于3,点A.B之间的点表示的数的绝对值小于3,点B右边表示的数的绝对值大于3,因此,小明得出结论绝对值不等式|x|>3的解集为:x<﹣3或x>3参照小明的思路,解决下列问题:(1)请你直接写出下列绝对值不等式|x|>1的解集是 ;(2)求绝对值不等式|x﹣3|>4的解集;(3)求绝对值不等式|x﹣1|<2的解集.25.一个汽车零件制造车间可以生产甲,乙两种零件,生产4个甲种零件和3个乙种零件共获利120元;生产2个甲种零件和5个乙种零件共获利130元.(1)求生产1个甲种零件,1个乙种零件分别获利多少元?(2)若该汽车零件制造车间共有工人30名,每名工人每天可生产甲种零件6个或乙种零件5个,每名工人每天只能生产同一种零件,要使该车间每天生产的两种零件所获总利润超过2800元,至少要派多少名工人去生产乙种零件?26.某商场用60个A型包装袋与90个B型包装袋对甲,乙两类农产品进行包装出售(两种型号包装袋都用完),每个A型包装袋装2千克甲类农产品或装3千克乙类农产品,每个B型包装袋装3千克甲类农产品或装5千克乙类农产品,设有x个A型包装袋包装甲类农产品,有y个B型包装袋包装甲类农产品.(1)请用含x或y的代数式填空完成表:包装袋型号A B甲类农产品质量(千克)2x 乙类农产品质量(千克) 5(90﹣y)(2)若甲.乙两类农产品的总质量分别是260千克与210千克,求x,y的值.(3)若用于包装甲类农产品的B型包装袋数量是用于包装甲类农产品的A型包装袋数量的两倍,且它们数量之和不少于90个,记甲.乙两类农产品的总质量之和为m千克,求m的最小值与最大值.27.新农村实行大面积机械化种植,为了更好地收割庄稼,农田承包大户张大叔决定购买8台收割机,现有久保田和春雨两种品牌的收割机,其中每台收割机的价格.每天的收割面积如下表.销售商又宣传说,购买一台久保田收割机比购买一台春雨收割机多8万元,购买2台久保田收割机比购买3台春雨收割机多4万元.久保田收割机春雨收割机价格(万元/台)x y收割面积(亩/天)2418(1)求两种收割机的价格;(2)如果张大叔购买收割机的资金不超过125万元,那么有哪几种购买方案?(3)在(2)的条件下,若每天要求收割面积不低于150亩,为了节约资金,那么有没有一种最佳购买方案呢? 28."中国人的饭碗必须牢牢掌握在咱们自己手中".为扩大粮食生产规模,某粮食生产基地计划投入一笔资金购进甲.乙两种农机具.已知购进2件甲种农机具和1件乙种农机具共需3.5万元,购进1件甲种农机具和3件乙种农机具共需3万元.(1)求购进1件甲种农机具和1件乙种农机具各需多少万元?(2)若该粮食生产基地计划购进甲.乙两农机具共10件,且投入资金不少于9.8万元又不超过12万元,设购进甲种农机具m件,则有哪几种购买方案?哪种购买方案需要的资金最少,最少资金是多少?(3)在(2)的方案下,由于国家对农业生产扶持力度加大,每件甲种农机具降价0.7万元,每件乙种农机具降价0.2万元,该粮食生产基地计划将节省的资金全部用于再次购买甲.乙两种农机具(可以只购买一种)请直接写出再次购买农机具的方案有哪几种?答案一.选择题1.A.2.A.3.B.4.B.5.A.6.D.7.C.8.C.9.B.10.A.二.填空题11.<.12.二.13.a≥4.14.m<2.15.7.16.12.17.22400.18.25.三.解答题(共10小题)19.解:(1),解不等式①得:x>﹣4,解不等式②得:x≤2,∴不等式组的解集为:﹣4<x≤2,数轴表示如下:(2),解不等式①得:x>﹣1,解不等式②得:x≤5,∴不等式组的解集为:﹣1<x≤5,∴整数解为0,1,2,3,4,5.20.解:(1)①∵x﹣y=5,∴x=y+5,∵x>﹣2,∴y+5>﹣2,∴y>﹣7,∵y<0,∴﹣7<y<0,②由①得﹣7<y<0,∴﹣2<y+5<5,即﹣2<x<5②,∴﹣7﹣2<y+x<0+5,∴x+y的取值范围是﹣9<x+y<5;(2)∵x﹣y=a+1,∴x=y+a+1,∵x<﹣b,∴y+a+1<﹣b,∴y<﹣a﹣b﹣1,∴﹣y>a+b+1,∵y>2b,∴﹣y<﹣2b,∴a+b+1<﹣y<﹣2b①,∴10b<5y<﹣5a﹣5b﹣5,∵2b+a+1<y+a+1<﹣b,∴2b+a+1<x<﹣b,∴6b+3a+3<3x<﹣3b②,∴11b+8a+8<3x﹣5y<﹣13b,∴①+②得:5b+5a+5+6b+3a+3<3x﹣y<﹣10b﹣3b,∵3x﹣y的取值范围是﹣10<3x﹣5y<2,∴,解得:.21解:(1),①﹣②×2得:﹣x=﹣m+3,即x=m﹣3,把x=m﹣3代入②得:2m﹣6+y=m﹣1,即y=﹣m+5,把x=m﹣3,y=﹣m+5代入x﹣y=2中,得:m﹣3+m﹣5=2,即m=5;(2)由题意得:,解得:3≤m≤5,∴m﹣3≥0,m﹣5≤0,则原式=m﹣3+5﹣m=2;(3)根据题意得:s=2x﹣3y+m=2(m﹣3)﹣3(﹣m+5)+m=6m﹣21,∵3≤m≤5,∴当m=3时,s=18﹣21=﹣3;m=5时,s=30﹣21=9,则s的最小值为﹣3,最大值为9.22.解:(1)∵是ax+2y=a﹣1的一个解,∴2a﹣2=a﹣1,解得a=1;(2)x=2时,2a+2y=a﹣1,∴y=∵x=2时,y>0,∴>0,解得a<﹣1;(3)ax+2y=a﹣1变形为(x﹣1)a+2y=﹣1,∵不论实数a(a≠0)取何值,方程ax+2y=a﹣1总有一个公共解,∴x﹣1=0,此时2y=﹣1,∴这个公共解为.23.解:(1)4+3a2﹣2b+b2﹣(3a2﹣2b+1)=4+3a2﹣2b+b2﹣3a2+2b﹣1=b2+3>0,∴4+3a2﹣2b+b2>3a2﹣2b+1;(2)∵2a+2b>3a+b,∴(2a+2b)﹣(3a+b)>0,∴2a+2b﹣3a﹣b>0,∴﹣a+b>0,∴a<b.24.解:(1)根据阅读材料可知:①|x|>1的解集是x<﹣1或x>1;故答案为:x<﹣1或x>1;(2)∵|x﹣3|>4∴x﹣3<﹣4或x﹣3>4解得:x<﹣1或x>7;(3)|x﹣1|<2,∵﹣2<x﹣1<2,解得:﹣1<x<3.25.解:(1)设生产1个甲种零件获利x元,生产1个乙种零件获利y元,根据题意得:,解得:.答:生产1个甲种零件获利15元,生产1个乙种零件获利20元.(2)设要派a名工人去生产乙种零件,则(30﹣a)名工人去生产甲种零件,根据题意得:15×6(30﹣a)+20×5a>2800,解得:a>10.∵a为正整数,∴a的最小值为11.答:至少要派11名工人去生产乙种零件.26.解:(1)由题意可以填表如下:包装袋型号A B 甲类农产品质量(千克)2x3y 乙类农产品质量(千克)3(60﹣x) 5(90﹣y)故答案为:3y;3(60﹣x).(2)由题意可得,,解得.∴即x的值为40;y的值为60.(3)设有x个A型包装袋包装甲类农产品,则有y=2x个B型包装袋包装甲类农产品.∵用于包装甲类的A,B型包装袋的数量之和不少于90个,∴x+2x≥90,∴x≥30.∵90﹣2x≥0,∴x≤45;∴30≤x≤45,∴m=2x+3(60﹣x)+6x+5( 90﹣2x)=﹣5x+630,∵﹣5<0,∴当30≤x≤45时,m随x增大而减小,∴当x=45时,m有小值405,当x=30时,m有最大值480,∴m的最大值为480,最小值为405.27.解:(1)设两种收割机的价格分别为x万元,y万元,依题意得,解得故久保田收割机的价格为每台20万元,春雨收割机的价格为每台12万元;(2)设购买久保田收割机m台,依题意得20m+12(8﹣m)≤125 解得m≤3,故有以下4种购买方案:①久保田收割机3台,春雨收割机5台;②久保田收割机2台,春雨收割机6台;③久保田收割机1台,春雨收割机7台;④久保田收割机0台,春雨收割机8台;(3)由题意可得24m+18(8﹣m)≥150,解得m≥1,由(1)得购买久保田收割机越少越省钱,所以最佳购买方案为久保田收割机1台,春雨收割机7台.28.解:(1)设购进1件甲种农机具x万元,1件乙种农机具y万元.根据题意得:,解得:,答:购进1件甲种农机具1.5万元,1件乙种农机具0.5万元.(2)设购进甲种农机具m件,购进乙种农机具(10﹣m)件,根据题意得:,解得:4.8≤m≤7.∵m为整数.∴m可取5.6.7.∴有三种方案:方案一:购买甲种农机具5件,乙种农机具5件.方案二:购买甲种农机具6件,乙种农机具4件.方案三:购买甲种农机具7件,乙种农机具3件.设总资金为w万元.w=1.5m+0.5(10﹣m)=m+5.∵k=1>0,∴w随着m的减少而减少,=1×5+5=10(万元).∴m=5时,w最小∴方案一需要资金最少,最少资金是10万元.(3)设节省的资金用于再次购买甲种农机具a件,乙种农机具b件,由题意得:(1.5﹣0.7)a+(0.5﹣0.2)b=0.7×5+0.2×5,其整数解:或,∴节省的资金全部用于再次购买农机具的方案有两种:方案一:购买甲种农机具0件,乙种农机具15件.方案二:购买甲种农机具3件,乙种农机具7件.。

北师大版八年级数学下册第二章检测题【含答案】

北师大版八年级数学下册第二章检测题【含答案】

第二章检测题时间:120分钟 满分:120分一、选择题(每小题3分,共30分) 1.下列各项中,结论正确的是( B )A .若a >0,b <0,则b a>0 B .若a >b ,则a -b >0 C .若a <0,b <0,则ab <0 D .若a >b ,a <0,则b a<02.(2017·丽水)若关于x 的一元一次方程x -m +2=0的解是负数,则m 的取值范围是( C )A .m ≥2B .m >2C .m <2D .m ≤23.(2017·遵义)不等式6-4x ≥3x -8的非负整数解为( B ) A .2个 B .3个 C .4个 D .5个4.不等式(1-a) x >2变形后得到x <21-a成立,则a 的取值范围是( C )A .a >0B .a <0C .a >1D .a <15.在等腰三角形ABC 中,AB =AC ,其周长为20 cm ,则AB 边的取值范围是( B ) A .1 cm<AB <4 cm B .5 cm<AB <10 cm C .4 cm<AB <8 cm D .4 cm<AB <10 cm6.(2017·临沂)不等式组⎩⎪⎨⎪⎧2-x >1,①x +52≥1②中,不等式①和②的解集在数轴上表示正确的是( B )7.一次函数y =-3x +b 和y =kx +1的图象如图所示,其交点为P(3,4),则不等式kx +1≥-3x +b 的解集在数轴上表示正确的是( B )8.(2017·百色)关于x 的不等式组⎩⎨⎧x -a ≤0,2x +3a >0的解集中至少有5个整数解,则正数a 的最小值是( B )A .3B .2C .1 D.239.某校团委与社区联合举办“保护地球,人人有责”活动,拟选派20名学生分三组到120个店铺发宣传单,若第一组、第二组、第三组每人分别负责8个,6个,5个店铺,且每组至少有两人,则学生分组方案有( B )A .6种B .5种C .4种D .3种10.设[x)表示大于x 的最小整数,如[2)=3,[-1.4)=-1,则下列结论:①[0)=0;②[x)-x 的最小值是0;③[x)-x 的最大值是0;④存在实数x ,使[x)-x =0.5成立; ⑤若x 满足不等式组⎩⎪⎨⎪⎧2-3x ≤5,x +22<1,则[x)的值为-1.其中正确结论的个数是( A )A .1B .2C .3D .4二、填空题(每小题3分,共24分)11.若代数式t +15-t -12的值不小于-3,则t 的取值范围是__t ≤373__.12.若(m -2)x |m -1|-3>6是关于x 的一元一次不等式,则m =__0__. 13.已知2x -y =0,且x -5>y ,则x 的取值范围是__x <-5__.14.不等式组⎩⎪⎨⎪⎧2x -13-5x +12≤1,5x -2<3(x +2)的所有正整数解的和为__6__.15.已知点P 1关于x 轴的对称点P 2(3-2a ,2a -5)是第三象限内的整点(横、纵坐标都为整数的点,称为整点),则点P 1的坐标是__(-1,1)__.16.已知关于x 的不等式组⎩⎨⎧x -a ≥b ,2x -a -1<2b的解集为3≤x <5,则a =__-3__,b=__6__.17.如图,某面粉加工企业急需汽车,但因资金问题无力购买,经理想租一辆汽车.A 公司的条件是每百千米租费110元;B 公司的条件是每月付司机工资1 000元,油钱600元,另外每百千米付10元.如果该公司每月有30百千米左右的业务,你建议经理租__B __公司的车.18.定义新运算:对于任意实数a ,b 都有a △b =ab -a -b +1,等式右边是通常的加法、减法及乘法运算,例如:2△4=2×4-2-4+1=8-6+1=3,请根据上述知识解决问题:若3△x 的值大于2而小于6,则x 的取值范围为__2<x <4__.三、解答题(共66分)19.(10分)(1)解不等式组⎩⎪⎨⎪⎧4x >2x -6,x -13≤x +19,并把解集在数轴上表示出来;解:-3<x ≤2,数轴表示略.(2)解不等式组⎩⎪⎨⎪⎧23x +5>1-x ,x -1<34x -18,并写出它的非负整数解.解:-125<x <72,非负整数解为0,1,2,3.20.(8分)已知不等式13(x -m)>2-m.(1)若其解集为x>3,求m 的值;(2)若满足x>3的每一个数都能使已知不等式成立,求m 的取值范围.解:解不等式可得x>6-2m.(1)由题意,得6-2m =3,解得m =32.(2)由题意,得6-2m ≤3,解得m ≥32.21.(8分)已知关于x ,y 的方程组⎩⎨⎧x -2y =m ,①2x +3y =2m +4 ②的解满足不等式组⎩⎨⎧3x +y ≤0,x +5y >0.求m 的取值范围. 解:①+②,得3x +y =3m +4,②-①,得x +5y =m +4,∵⎩⎨⎧3x +y ≤0,x +5y >0,∴⎩⎨⎧3m +4≤0,m +4>0,解得-4<m ≤-43.22.(9分)如图,一次函数y 1=kx -2和y 2=-3x +b 的图象相交于点A(2,-1). (1)求k ,b 的值;(2)利用图象求出:当x 取何值时,y 1≥y 2?(3)利用图象求出:当x 取何值时,y 1>0且y 2<0?解:(1)k =12,b =5.(2)当x ≥2时,y 1≥y 2.(3)当x >4时,y 1>0且y 2<0.23.(9分)对x ,y 定义一种新运算T ,规定:T(x ,y)=ax +byx +y(其中a ,b 均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)=a ×0+b ×10+1=b ,已知T(1,1)=2.5,T(4,-2)=4.(1)求a ,b 的值;(2)若关于m 的不等式组⎩⎨⎧T (4m ,5-4m )≤3,T (2m ,3-2m )>p恰好有2个整数解,求实数p 的取值范围.解:(1)根据题意,得T (1,1)=a +b 1+1=2.5,T (4,-2)=4a -2b4+(-2)=4,即⎩⎨⎧a +b =5,①2a -b =4,②①+②,得3a =9,解得a =3,把a =3代入①,得b =2,故a ,b 的值分别为3和2.(2)根据题意,得T (4m ,5-4m )=4m ×3+2(5-4m )4m +5-4m≤3,T (2m ,3-2m )=2m ×3+2(3-2m )2m +3-2m >p ,即⎩⎪⎨⎪⎧12m +10-8m5≤3,①6m +6-4m3>p ,②由①得m ≤54,由②得m >32p -3,∴不等式组的解集为32p -3<m ≤54,∵不等式组恰好有2个整数解,即m =0,1,∴-1≤32p -3<0,解得43≤p <2,即实数p 的取值范围是43≤p <2.24.(10分)“全民阅读”深入人心,好读书,读好书,让人终身受益.为了满足同学们的读书需求,学校图书馆准备到新华店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1 520元.20本文学名著比20本动漫书多440元.(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样)(1)求每本文学名著和动漫书各多少元?(2)若学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2 000元,请求出所有符合条件的购书方案.解:(1)设每本文学名著x 元,动漫书y 元,可得⎩⎨⎧20x +40y =1 520,20x -20y =440,解得⎩⎨⎧x =40,y =18,则每本文学名著和动漫书各为40元和18元.(2)设学校要求购买文学名著x 本,则动漫书为(x +20)本,根据题意,得⎩⎨⎧x +x +20≥72,40x +18(x +20)≤2 000,解得26≤x ≤82029,因为取整数,所以x 取26,27,28,故有如下方案:①文学名著26本,动漫书46本;②文学名著27本,动漫书47本;③文学名著28本,动漫书48本.25.(12分)(2017·咸宁)某公司开发出一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试营销,售价为8元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成图象,图中的折线ODE 表示日销售量y(件)与销售时间x(天)之间的函数关系,已知线段DE 表示的函数关系中,时间每增加1天,日销售量减少5件.(1)第24天的日销售量是________件,日销售利润是________元; (2)求y 与x 之间的函数关系式,并写出x 的取值范围;(3)日销售利润不低于640元的天数共有多少天?试销售期间,日销售最大利润是多少元?解:(1)340-(24-22)×5=330(件), 330×(8-6)=660(元).故答案为:330 660.(2)设线段OD 所表示的y 与x 之间的函数关系式为y =kx, 将(17,340)代入y =kx 中,得340=17k ,解得k =20,∴线段OD 所表示的y 与x 之间的函数关系式为y =20x.根据题意,得线段DE 所表示的y 与x 之间的函数关系式为y =340-5(x -22)=-5x +450.联立两线段所表示的函数关系式成方程组, 得⎩⎨⎧y =20x ,y =-5x +450,解得⎩⎨⎧x =18,y =360,∴交点D 的坐标为(18,360), ∴y 与x 之间的函数关系式为y =⎩⎨⎧20x (0≤x ≤18),-5x +450(18<x ≤30).(3)当0≤x ≤18时,根据题意,得(8-6)×20x ≥640,解得x ≥16;当18<x ≤30时,根据题意,得(8-6)×(-5x +450)≥640, 解得x ≤26. ∴16≤x ≤26.26-16+1=11(天),∴日销售利润不低于640元的天数共有11天.∵点D 的坐标为(18,360), ∴日最大销售量为360件, 360×2=720(元),∴试销售期间,日销售最大利润是720元.。

北师大版八年级数学下册第二章测试题(含答案)

北师大版八年级数学下册第二章测试题(含答案)

北师⼤版⼋年级数学下册第⼆章测试题(含答案)13{x x ≥≤北师⼤版⼋年级数学下期第⼀、⼆章测试卷⼀、填空题(30分,每空2分)1.⽤不等式表⽰:(1) x 与5的差不⼩于x 的2倍:;(2)a 与b 两数和的平⽅不可能⼤于3:.2.请写出解集为3x <的不等式:.(写出⼀个即可)3.不等式930x ->的⾮负整数解是.4.已知点P (m -3,m +1)在第⼀象限,则m 的取值范围是.5.如果1”、“<”或“=”)6.将–x 4–3x 2+x 提取公因式–x 后,剩下的因式是.7.因式分解:a 2b –4b = .8.⼩明⽤100元钱去购买笔记本和钢笔共30件,如果每⽀钢笔5元,每本笔记本2元,那么⼩明最多能买⽀钢笔.9.若4a 4–ka 2b +25b 2是⼀个完全平⽅式,则k = .10.若⼀个正⽅形的⾯积是9m 2+24mn +16n 2,则这个正⽅形的边长是.11.已知x –3y=3,则=+-223231y xy x . 12.已知2k -3 x2+2k >1是关于x 的⼀元⼀次不等式,那么k= ,不等式的解集是 13.函数y =kx +b (k 、b 为常数,k ≠0)的图象如图所⽰,则关于x 的不等式kx+b>0的解集为.⼆、选择题(21分,每题3分)14.已知x y >,则下列不等式不成⽴的是().A .66x y ->-B .33x y >C .22x y -<-D .3636x y -+>-+15.将不等式组的解集在数轴上表⽰出来,应是().A16.下列从左到右的变形中,是因式分解的是()A .a 2–4a +5=a (a –4)+5B .(x +3)(x +2)=x 2+5x +6C .a 2–9b 2=(a +3b )(a –3b )D .(x +3)(x –1)+1=x 2+2x +217.下列各组代数式中没有公因式的是()A CB DA .4a 2bc 与8abc 2B .a 3b 2+1与a 2b 3–1C. b (a –2b )2与a (2b –a )2D. x +1与x 2–118.下列因式分解正确的是()A .–4a 2+4b 2=–4(a 2–4b 2)=–4(a +2b )(a –2b ) B. 3m 3–12m =3m (m 2–4)C.4x 4y –12x 2y 2+7=4x 2y (x 2–3y )+7 D .4–9m 2=(2+3m )(2–3m ) 19.22006+3×22005–5×22007的值不能被下列哪个数整除()A .3B .5C .22006D .2200520.若x+y =2,xy =3,则x 2+y 2的值是【】A .2B .10C .–2D .x 2+y 2的值不存在三、解答题21.解下列不等式(组),并把它们的解集在数轴上表⽰出来(12分,每⼩题6分)(1) 1-33122x x +≤- (2) 13 214)2(3->+≤--x x x x22.把下列多项式因式分解(12分,每⼩题6分)(1) a 4–8a 2b 2+16b 4 (2) (m+n )2–4(m+n )(m –n )+4(m –n )223.(10分)甲、⼄两家超市以相同的价格出售同样的商品,为了吸引顾客,各⾃推出不同的优惠⽅案:在甲超市累计购买商品超出300元之后,超出部分按原价8折优惠;在⼄超市累计购买商品超出200元之后,超出部分按原价8.5折优惠.设顾客预计累计购物x 元(x>300).(1)请⽤含x 的代数式分别表⽰顾客在两家超市购物所付的费⽤;(2)顾客到哪家超市购物更优惠?说明你的理由.24.(8分)有⼀个长⽅形⾜球场的长为x m ,宽为70m .如果它的周长⼤于350m ,⾯积⼩于7560m 2,求x 的取值范围,并判断这个球场是否可以⽤作国际⾜球⽐赛.(注:⽤于国际⽐赛的⾜球场的长在100m 到110m 之间,宽在64m 到75m 之间)25.(7分)已知多项式(a 2+ka +25)–b 2,在给定k 的值的条件下可以因式分解.(1)写出常数k 可能给定的值;(2)针对其中⼀个给定的k 值,写出因式分解的过程.②①参考答案⼀、填空题1.(1)52x x -≥ (2)()b a +23≤ 2.略 3.0、1、2; 4.m>35.<; 6.x 3+3x –1; 7. b(a+2)(a –2); 8. 13; 9.±20;10. 3m+4n ; 11.3; 12. -21 ,x <-32 13. x <2 ⼆、选择题14.D 15.A 16.C 17 .B 18.D 19.C 20.D三、解答题21. (1)910≥x 在数轴上表⽰解集略。

完整版)北师大版八年级数学下册第二单元试题与答案

完整版)北师大版八年级数学下册第二单元试题与答案

完整版)北师大版八年级数学下册第二单元试题与答案北师大版八年级数学下册第二章测试题试卷满分100分,时间120分钟)请同学们认真思考、认真解答,相信你会成功!一、选择题(每小题3分,共30分)1.当x=2时,多项式x+kx-1的值小于0,那么k的值为[。

].A.k<-2 B.k<2 C.k>-2 D.k>22.同时满足不等式-2<1-x和6x-1≥3x-3的整数x是[。

].A.1,2,3 B.2,3 C.1,2,3,4 D.2,3,43.若三个连续正奇数的和不大于27,则这样的奇数组有[。

].A.3组 B.4组 C.5组 D.6组4.如果b>a>0,那么[。

].A.a-b<0 B.a-b>0 C.-a<b<-b/2 D.-b/2<b<a5.把不等式组{x≤2,x>-1}的解集表示在数轴上,正确的是(。

)A.-1<x≤2 B.x≥2 C.x≤-1或x≥2 D.-1≤x<26.不等式组{3x+1>2x,2x<7}的正整数解的个数是[。

].A.1 B.2 C.3 D.47.关于x的不等式组{2x<3(x-3)+1,x+a>4}有四个整数解,则a的取值范围是[。

].A.-15<a≤-1 B.-1<a≤3 C.3<a≤15 D.-15≤a<-1或3<a≤158.在数轴上与原点的距离小于8的点对应的x满足(。

)A、-8<x<8B、x>8C、x<-8或x>8D、-8≤x≤89.不等式组{-x+2<x-6,x>m}的解集是x>4,那么m的取值范围是[。

].A.m≥4 B.m≤4 C.m<4 D.m=410.现用甲、乙两种运输车将46吨抗旱物资运往灾区,甲种运输车载重5吨,乙种运输车载重4吨,安排车辆不超过10辆,则甲种运输车至少应安排[。

].A.4辆 B.5辆 C.6辆 D.7辆二、填空题(每小题3分,共30分)1.若代数式t+1/t-1的值不小于-3,则t的取值范围是(-∞,-2]∪[2,∞).2.不等式3x-k≤0的正数解是1,2,3,那么k的取值范围是[1,9].3.若(x+2)(x-3)>5,则x的取值范围是(-∞,-2)∪(3,∞).4.若a<b,用“<”或“>”号填空:2a<a+b。

北师大版八年级数学下册第二章检测试卷

北师大版八年级数学下册第二章检测试卷

北师大版八年级数学下册第二章检测试卷第二章检测卷时间:120分钟。

满分:120分一、选择题(每小题3分,共30分)1.“x的3倍与y的和不小于2”用不等式可表示为(。

)A。

3x+y>2.B。

3(x+y)>2.C。

3x+y≥2.D。

3(x+y)≥22.已知a>b>0,下列结论错误的是(。

)A。

a+m>b+m。

B。

ac^2>bc^2(c≠0)。

C。

-2a>-2b。

D。

a^2>b^23.一元一次不等式2(x+1)≥4的解集在数轴上表示为(。

)A。

B。

C。

D。

4.不等式组3x<2x+4。

x-1≥2的解集是(。

)A。

x>4.B。

x≤3.C。

3≤x<4.D。

无解5.与不等式x-3)/3<-1有相同解集的是(。

)A。

3x-3<4x-5.B。

2(x-3)<3(4x+1)-1.C。

3(x-3)<2(x-6)+3.D。

3x-9<4x-46.在平面直角坐标系内,点P(2x-6,x-5)在第四象限,则x 的取值范围是(。

)A。

3<x<5.B。

-3<x<5.C。

-5<x<3.D。

-5<x<-37.若关于x的方程3m(x+1)+1=m(3-x)-5x的解是负数,则m的取值范围是(。

)A。

m>-5/4.B。

m5/4.D。

m<-5/48.若不等式组1+x<a。

x+9)/2+1≥x+1有解,则实数a的取值范围是(。

)A。

a-36.D。

a≥-369.如图,直线y=kx+b经过点A(-1,-2)和点B(-2,0),直线y=2x过点A,则不等式2x<kx+b<的解集为(。

)A。

x<-2.B。

-2<x<-1.C。

-2<x<。

D。

-1<x<210.有一家人参加登山活动,他们要将矿泉水分装在旅行包内带上山。

若每人带3瓶,则剩余3瓶;若每人带4瓶,则有一人带了矿泉水,但不足3瓶,则这家参加登山的人数为(。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

13{x x ≥≤北师大版八年级数学下期第一、二章测试卷
一、填空题
1.用不等式表示:
(1) x 与5的差不小于x 的2倍: ; (2)a 与b 两数和的平方不可能大于3: .
2.请写出解集为3x <的不等式: .(写出一个即可)
3.不等式930x ->的非负整数解是 .
4.已知点P (m -3,m +1)在第一象限,则m 的取值范围是 .
5.如果1<x<2,则(x -1)(x -2) 0.(填写“>”、“<”或“=”)
6.将–x 4–3x 2+x 提取公因式–x 后,剩下的因式是 .
7.因式分解:a 2b –4b = .
8.小明用100元钱去购买笔记本和钢笔共30件,如果每支钢笔5元,每本笔记本2元,那么小明最多能买 支钢笔.
9.若4a 4–ka 2b +25b 2是一个完全平方式,则k = .
10.若一个正方形的面积是9m 2+24mn +16n 2,则这个正方形的边长是 .
11.已知x –3y=3,则=+-22323
1y xy x . 12.已知2k -3 x
2+2k >1是关于x 的一元一次不等式,那么k= ,不等式的解集是 13.函数y =kx +b (k 、b 为常数,k ≠0)的图象如图所示,则关于x 的不等式kx+b>0的解集为 .
二、选择题 14.已知x y >,则下列不等式不成立的是 ( ).
A .66x y ->-
B .33x y >
C .22x y -<-
D .3636x y -+>-+
15.将不等式组 的解集在数轴上表示出来,应是( ).
A
16.下列从左到右的变形中,是因式分解的是( )
A .a 2–4a +5=a (a –4)+5
B .(x +3)(x +2)=x 2+5x +6
C .a 2–9b 2=(a +3b )(a –3b )
D .(x +3)(x –1)+1=x 2+2x +2
17.下列各组代数式中没有公因式的是( )
A C
B D
A .4a 2bc 与8abc 2
B .a 3b 2+1与a 2b 3
–1
C. b (a –2b )2与a (2b –a )2
D. x +1与x 2–1
18.下列因式分解正确的是 ( )
A .–4a 2+4b 2=–4(a 2–4b 2)=–4(a +2b )(a –2b ) B. 3m 3–12m =3m (m 2–4) –12x 2y 2+7=4x 2y (x 2–3y )+7 D .4–9m 2=(2+3m )(2–3m )
19.22006+3×22005–5×22007的值不能被下列哪个数整除 ( )
A .3
B .5
C .22006
D .22005
20.若x+y =2,xy =3,则x 2+y 2的值是 【 】
A .2
B .10
C .–2
D .x 2+y 2的值不存在
三、解答题
21.解下列不等式(组),并把它们的解集在数轴上表示出来 (1) 1-33122x x +≤- (2) 13
214)2(3->+≤--x x x x
22.把下列多项式因式分解
(1) a 4–8a 2b 2+16b 4 (2) (m+n )2–4(m+n )(m –n )+4(m –n )2
23.甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价8折优惠;在乙超市累计购买商品超出200元之后,超出部分按原价折优惠.设顾客预计累计购物x 元(x>300).
(1)请用含x 的代数式分别表示顾客在两家超市购物所付的费用;
(2)顾客到哪家超市购物更优惠说明你的理由.
24.有一个长方形足球场的长为x m ,宽为70m .如果它的周长大于350m ,面积小于7560m 2,求x 的取
值范围,并判断这个球场是否可以用作国际足球比赛.
(注:用于国际比赛的足球场的长在100m 到110m 之间,宽在64m 到75m 之间)
25.已知多项式(a 2+ka +25)–b 2,在给定k 的值的条件下可以因式分解.
(1)写出常数k 可能给定的值;
(2)针对其中一个给定的k 值,写出因式分解的过程.。

相关文档
最新文档