CO2驱油技术

合集下载

CO2的驱油机理

CO2的驱油机理

分子扩散作用
•地层基岩是复杂的,注入CO2也很难与油藏中原油完全混合好。 多数情况 下,通过分子的缓慢扩散作用溶于原油的。
四. CO2混相驱和非混相驱技术应用
不同的油藏条件适用不同的驱油方式,适于C O 2 驱地层 的筛选原则如下表所示:
原油相对密度 <0 . 8 2 5 二氧化碳混相驱 0.865~0.825 0.887~0.865 0.922~.887 二氧化碳非混相驱 0.9 2~0. 98 油藏深度(m) >7 62 >8 53 >1 00 6 >1 21 9 549 原油黏度(mPa ·s) <1 0 <1 0 <1 0 <1 0 <6 00
THANK YOU!
非混相驱油
10 年 在水驱后 晚期(> 5 ~8 年) 大 简单 可利用 高(>1tb ) 高(10%~18%OOIP) 小范围
五.CO2驱应用优点:
1.在能源紧缺和节能减排的背景下,二氧化碳驱油有着非常广阔的推广利用前景,有关部 门应适时出台相应的政策扶持措施,加快这一技术的推广应用 2.二氧化碳驱油不仅适用于常规油藏,尤其对低渗、特低渗透油藏,可以明显提高原油采 收率。根据油田地质情况的不同,每增产1 t原油约需1~4.2t二氧化碳,可增产油田总储 量约l0%的原油。 3.适合二氧化碳驱油的油藏储量就非常可观 4.二氧化碳驱油具有适用范围大、驱油成本低、采油率提高显著等优点 5.能满足油田开发需求,还能解决二氧化碳的封存问题,保护大气环境
CO2驱:CO2驱是把CO2注入油层,依靠CO2的膨胀、降粘等 机理来提高原油采收率的技术。
我国低渗、特低渗油藏投入开 发后暴露出许多矛盾,如自然 产能低、地层能量不足、地层 压力下降快等,而注水补充能 量因油藏地质条件的限制受到 很大制约,因此采收率均较低。 从国外EOR技术的发展趋势看, 气驱特别是CO2混相驱将是提高 我国低渗透油藏采收率最有前 景的方法。

CO2混相驱和非混相驱的驱油机理

CO2混相驱和非混相驱的驱油机理

谢谢Biblioteka 四、CO2混相驱和非混相驱技术应用
1、CO2混相驱对开采下面几类油藏具有更重要的意义 (1)水驱效果差的低渗透油藏;
(2)水驱完全枯竭的砂岩油藏;
(3)接近开采经济极限深层、气质油藏; (4)利用CO2重力稳定混相驱开采多盐丘油藏。
四、CO2混相驱和非混相驱技术应用
(1)可用CO2来恢复枯竭油藏的压力。 特别是对于低渗透油藏,在不能以经济速度注水或驱 替溶剂段塞来提高油藏的压力时,采用注CO2就可能办到, 因为低渗透性油层对注入CO2这类低粘度流体的阻力很 小。 (2)重力稳定非混相驱替。用于开采高倾角、垂向渗透率高 的油藏。 (3)重油CO2驱,可以改善重油的流度,从而改善水驱效 率。 (4)应用CO2驱开采高粘度原油
三、CO2非混相驱驱油机理
(1)降低原油粘度 CO2溶于原油后,降低了原油粘度,试验表明,原油粘度 越高,粘度降低程度越大。40℃时,CO2溶于沥青可以大大 降低沥青的粘度。温度较高(大于120℃)时,因CO2溶解度 降低,降粘作用反而变差。在同一温度条件下,压力升高 时,CO2溶解度升高,降粘作用随之提高,但是,压力过高,若压 力超过饱和压力时,粘度反而上升。原油粘度降低时,原油 流动能力增加,从而提高了原油产量。
CO2混相驱和非混相驱的驱油机理
CO2混相驱和非混相驱的驱油机理
一、CO2驱研究背景及相关概念 二、CO2混相驱驱油机理 三、CO2非混相驱驱油机理 四、CO2混相驱和非混相驱技术应用 五、CO2混相驱和非混相驱应用优点
一、CO2驱研究背景及相关概念
1、CO2驱研究背景 我国低渗、特低渗油藏投入开发后暴露出许多矛盾, 如自然产能低、地层能量不足、地层压力下降快等,而注 水补充能量因油藏地质条件的限制受到很大制约,因此采 收率均较低。从国外EOR技术的发展趋势看,气驱特别是 CO2混相驱将是提高我国低渗透油藏采收率最有前景的方 法。

二氧化碳驱油技术

二氧化碳驱油技术

目前,世界上大部分油田仍采用注水开发,这就面临着需要进一步提高采收率和水资源缺乏的问题。

对此,国外近年来大力开展二氧化碳驱油提高采收率技术的研发和应用。

这项技术不仅能满足油田开发的需求,还可以解决二氧化碳的封存问题,保护大气环境。

该技术不仅适用于常规油藏,尤其对低渗、特低渗透油藏,可以明显提高原油采收率。

一、二氧化碳驱油技术二氧化碳驱油,是一种把二氧化碳注入油层中以提高油田采收率的技术。

标准状况下,二氧化碳是一种无色、无味、比空气重的气体,密度是1.977克/升。

当温度压力高于临界点时,二氧化碳的性质发生变化:形态近于液体,黏度近于气体,扩散系数为液体的100倍。

这时的二氧化碳是一种很好的溶剂,其溶解性、穿透性均超过水、乙醇、乙醚等有机溶剂。

如果将二氧化碳流体与待分离的物质接触,它就能够有选择性地把该物质中所含的极性、沸点和分子量不同的成分依次萃取出来。

萃取出来的混合物在压力下降或温度升高时,其中的超临界流体变成普通的二氧化碳气体,而被萃取的物质则完全或基本析出,二氧化碳与萃取物就迅速分离为两相,这样,可以从许多种物质中提取其有效成分。

二氧化碳驱油一般可提高原油采收率7%~15%,延长油井生产寿命15~20年。

在二氧化碳与地层原油初次接触时并不能形成混相,但在合适的压力、温度和原油组分的条件下,二氧化碳可以形成混相前缘。

超临界流体将从原油中萃取出较重的碳氢化合物,并不断使驱替前缘的气体浓缩。

于是,二氧化碳和原油就变成混相的液体,形成单一液相,从而可以有效地将地层原油驱替到生产井。

应用混相驱油提高石油采收率的一个关键性参数是气体与原油的最小混相压力(MMP),MMP是确定气驱最佳工作压力的基础。

一般情况下,因为混相驱油比非混相驱油能采出更多的原油,所以希望在等于或略高于MMP下进行气驱。

如果压力远高于MMP,就容易造成地层破裂,无法保障生产过程的安全性,其结果是不仅不能大幅度提高原油产量,还会降低经济效益。

CO2-EOR驱油技术

CO2-EOR驱油技术



目前该技术已在大庆油田、吉林油田、胜利油田和 辽河油田等进行过试验,都取得了较好的效果(郝 敏等,2010)。 由于温室效应的存在,该技术是缓解环境污染压力、 提高石油采收率的重要手段;并且我国的低渗透和 稠油资源十分丰富,同时该技术成本低廉、成效显 著,因此在我国有较好的应用前景。
[1]江怀友,沈平平,卢颖,江良冀,罗金玲. CO2提高世界油气 资源采收率现状研究[J]. 特种油气藏,2010,02:510+120. [2]郝敏,宋永臣. 利用CO2提高石油采收率技术研究现状[J]. 钻采工艺,2010,04:59-63+139. [3]王涛,姚约东,李相方,李虎,石俊芳,杨祝华. 二氧化碳驱油 效果影响因素与分析[J]. 中国石油和化工,2008,24:3033.
①储层的深度范围在1000~3000m范围内;
②致密和高渗透率储层;
③原油黏度为低或中等级别;
④储层为砂岩或碳酸盐岩。

主要机理是:降低原油黏度,改善油水流度比,使 原油膨胀,乳化作用及降压开采。 CO2在油中的溶解度随压力的增加而增加,当压力 降低时, CO2从饱和 CO2的原油中溢出并驱动原 油,形成溶解气驱。气态CO2渗入地层与地层水反 应产生的碳酸,能有效改善井筒周围地层的渗透率, 提高驱油效率(王涛等,2008)。

全球变暖,冰川融化及海平面上升等一系列问题都 与CO2的排放紧密相关,同时资源的匮竭,提高石 油的采收率显得十分重要。所以CO2-EOR( CO2 enhanced oil recovery)技术既能做到CO2的地 质封存,同时也能提高石油采收率。
CO2提高采收率的作用主要有促进原油膨胀、改变 油水流动比、溶解气驱等。 ① CO2混相驱 稀油油藏

二氧化碳气驱强化采油(CO2-EOR)的原理

二氧化碳气驱强化采油(CO2-EOR)的原理

CO2与原油混相后,不仅能萃取和汽化原油中轻质烃,而且还能形成CO2和轻质烃混合的油带(oil banking)。油带移动是最有效的驱油过程,可使采收率达到90%以上。
(6) 分子扩散作用
非混相CO2驱油机理主要建立在CO2溶于油引起油特性改变的基础上。为了最大限度地降低油的粘度和增加油的体积,以便获得最佳驱油效率,必须在油藏温度和压力条件下,要有足够的时间使CO2饱和原油。但是,地层基岩是复杂的,注入的CO2也很难与油藏中原油完全混合好。而多数情况下,CO2是通过分子的缓慢扩散作用溶于原油的。
(7) 降低界面张力
残余油饱和度随着油水界面张力的减小而降低;多数油藏的油水界面张力为10~20mN/m,要想使残余油饱和度趋向于零,必须使油水界面张力降低到0.001mN/m或更低。界面张力降到0.04mN/m以下,采收率便会明显地提高。CO2驱油的主要作用是使原油中轻质烃萃取和汽化,大量的烃与CO2混合,大大降低了油水界面张力,也大大降低了残余油饱和度,从而提高了原油采收率。
二氧化碳气驱强化采油(CO2-EOR)的原理
在二次采油结束时,由于毛细作用,不少原油残留在岩石缝隙间,而不能流向生产井,不论用水或烃类气体驱油都是一种非均相驱,油与水(或气体)均不能相溶形成一相,而是在两相之间形成界面。必须具有足够大的驱动力才能将原油从岩石缝隙间挤出,否则一部分原油就停留下来。如果能注入一种同油相混溶的物质,即与原油形成均匀的一相,孔隙中滞留油的毛细作用力就会降低和消失,原油就能被驱向生产井。设法提高原油采收率的关键是找到一种能与原油完全相溶的合适的溶剂,从50年代开始进行这方面的探索与研究,曾经使用丙烷等轻组分烃类化合物,它可以与原油完全混溶,但成本较高。油田现场生产的天然气也可作为混相驱,但经济上也不合算。后来又对非烃类物质进行了研究,其中之一是CO2,它能通过逐级提取原油中的轻组分与原油达到完全互溶。

二氧化碳混相驱油技术

二氧化碳混相驱油技术

11
二、二氧化碳混相驱油技术的应用现状
12
目录 CONTENTS
01 02
一、二氧化碳混相驱油技术的基本原理
二、二氧化碳混相驱油技术的应用现状
03
04
三、二氧化碳混相驱油渗流特征
四 、 一 种 二氧 化碳 混 相驱 油技 术的 数学 模型
三、二氧化碳混相驱油渗流特征
3.1 一维填砂模型中的渗流特征
式中,C 为注入的 CO2浓度;k1, k2为反应常数; t为时间。
四、考虑吸附现象的低渗透油藏二氧化碳混相驱油数学模型
总的吸附浓度分布为:
当吸附达到平衡即t→ +∞时,总的吸附浓度公式整理为: ( 1) 其中,

流体的吸附浓度是时间和CO2浓度的函数,因此有:
四、考虑吸附现象的低渗透油藏二氧化碳混相驱油数学模型
一、二氧化碳混相驱油技术的基本原理
1.3 改善油水两相体系性能
降低油水界面的界面张力 二氧化碳混相驱 中,二氧化碳抽提原油中的轻质组分或使 其汽化,从而降低界面张力。二氧化碳驱 过程是二氧化碳不断富化过程。 混相效应 二氧化碳与原油混合后,不仅能 萃取和汽化原油中轻质烃,而且还能形成 二氧化碳和轻质烃混合的油带。油带移动 是最有效的驱油过程,可使采收率达到90% 以上。 CO2在油水中的扩散作用可使 CO2本身重新 分配,并且起到稳定相系统平衡状态的作 用。
图4-2注入压力对 CO2流出端 CO2降黏效果的影响 在其他条件不变的情况下,油藏的初始原 图4-3 初始原油黏度对 浓度分布的影响 油黏度越大,混合物的黏度变化幅度越大,CO2 的降黏效果越明显。
CD
谢谢聆听
THANK YOU FOR YOUR ATTENTION

CO2驱油技术

CO2驱油技术

SCCO2超临界二氧化碳气藏可作为CO2以超临界状态(SCCO2)稳定埋存的地质载体。

但由于气藏中储存的有具有开发潜力的天然气,会影响SCCO2埋存的稳定性。

CO2储存采用低温低压储罐,常用温度、压力工作参数为-20℃、2.2MPa.就投资成本、操作工艺和保冷性能来讲,建议大罐采用聚氨酯硬质泡沫塑料浇注成型保冷工艺,小罐采用真空粉末绝热保冷工艺。

二氧化碳的物理性质不同的温度压力下,对应的饱和压力也不一样,当其压力低于它的饱和压力时,二氧化碳可为香槟酒提供气泡。

当压力超过2.1MPa,且温度在-17℃以下或更低时,二氧化碳以稳定液体状态存在,适合运输和储存。

假如温度足够低,在一定压力范围内,二氧化碳则以固态形式(干冰)存在。

纯二氧化碳临界温度31.11℃,临界压力为7.53MPa(或为1071psi)。

在高于临界温度时,无论压力有多高,二氧化碳都以气态存在,而且密度与压力的关系成正相关系。

二氧化碳易溶于原油和水,在原油中的溶解度是在水中的4~9倍。

二氧化碳的溶解度随压力增加而增加,随温度增加而降低,随水中的矿化度的增加而减少。

在大部分混相驱中,油藏温度在临界温度之上,因此在油层中很难形成二氧化碳液态驱。

二氧化碳驱的种类二氧化碳混相驱。

混相驱油是在地层高退条件下,油中的轻质烃类分子被二氧化碳提取到气相中来,形成富含烃类的气相和溶解了二氧化碳的原油的液相两种状态。

当压力达到足够高时,二氧化碳把原油中的轻质和中间组分提取后,原油溶剂沥青、石蜡的能力下降,这些重质成分将会从原油中析出,残留在原地,原油粘度大幅度下降,从而达到混相驱的目的。

混相驱油效率很高,条件允许时,可以使排驱剂所到之处的原油百分之百的采出。

但要求混相压力很高,组成原油的轻质组分C2~C6含量很高,否则很难实现混相驱油。

由于受地层破裂压力等条件的限制,混相驱替只适用于重度比较高的轻质油藏,同时在浅层、深层、致密层、高渗透层、碳酸盐层、砂岩中都有过应用的经验,总结起来,二氧化碳混相驱对开采下面几类油藏具有更重要的意义。

二氧化碳采油技术

二氧化碳采油技术

二氧化碳采油技术(徐卫东)一、CO2采油技术简介及原理自上世纪50年代美国开始CO2驱油技术研究以来,CO2EOR技术发展迅速,目前已经成为一项主导的EOR技术,据2010年油气杂志统计显示,美国2010年开展的EOR项目中,CO2EOR项目已经成为增油量最多的项目,占美国整个EOR增油量的42.4%。

CO2作为一种优良的驱油剂,其优势主要体现在几个方面:高密度、低粘度、易溶于原油和水、CO2对原油中轻质组分的抽提作用以及易于液化等特点。

CO2在温度高于31℃、压力高于7.4MPa下时将处于超临界状态,此时气液界面将消失,再提高压力CO2将不会被液化,此时的CO2密度近于液体,粘度近于气体,称为超临界CO2。

超临界CO2具有一些特殊的物理性质,主要表现在具有类似于气体的扩散性,同时兼有低粘度、低表面张力的特性。

其扩散系数为常规液体100倍以上、表面张力远小于常规液体的表面张力、而其粘度比常规液体低2个数量级以上。

随着注入气体摩尔分数的增加,原油粘度迅速下降,当注入压力达到21MPa时,体积膨胀1.4倍,原油粘度降低到原来的0.32倍,注入CO2降粘效果显著。

CO2萃取和汽化原油中的轻烃,大量的轻烃与CO2混合,可大幅度降低油水界面张力,从而提高原油采收率。

CO2遇水可形成弱酸,可改变油层岩石的孔隙结构。

大量的CO2溶于原油中具有溶解气驱的作用。

随着压力的下降,CO2从液体中逸出,液体内产生气体驱动力,提高驱油效果。

CO2注入后与原油的混相作用,CO2与原油形成混相后驱油效率达到90%以上,将会大大提高原油采收率。

二、国内技术现状与国外注气开发技术相比,我国这方面起步晚,发展慢,与国际先进水平存在明显的差距。

近几年在我国先后开展了CO2驱油实验,国内众多高校和研究机构针对不同油藏类型,不同原油物性开展了系列室内混相驱试验研究,并用组分模型软件,开展了数值模拟和室内物理模拟研究,取得了很多成果。

1988年,大庆油田在萨南东部过渡带开辟了注CO2试验区,1990年至1995年底先后对葡Ⅰ2油层和萨Ⅱ10—14油层进行了非混相CO2油先导性矿场试验。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SCCO2超临界二氧化碳
气藏可作为CO2以超临界状态(SCCO2)稳定埋存的地质载体。

但由于气藏中储存的有具有开发潜力的天然气,会影响SCCO2埋存的稳定性。

CO2储存采用低温低压储罐,常用温度、压力工作参数为-20℃、2.2MPa.就投资成本、操作工艺和保冷性能来讲,建议大罐采用聚氨酯硬质泡沫塑料浇注成型保冷工艺,小罐采用真空粉末绝热保冷工艺。

二氧化碳的物理性质
不同的温度压力下,对应的饱和压力也不一样,当其压力低于它的饱和压力时,二氧化碳可为香槟酒提供气泡。

当压力超过2.1MPa,且温度在-17℃以下或更低时,二氧化碳以稳定液体状态存在,适合运输和储存。

假如温度足够低,在一定压力范围内,二氧化碳则以固态形式(干冰)存在。

纯二氧化碳临界温度31.11℃,临界压力为7.53MPa(或为1071psi)。

在高于临界温度时,无论压力有多高,二氧化碳都以气态存在,而且密度与压力的关系成正相关系。

二氧化碳易溶于原油和水,在原油中的溶解度是在水中的4~9倍。

二氧化碳的溶解度随压力增加而增加,随温度增加而降低,随水中的矿化度的增加而减少。

在大部分混相驱中,油藏温度在临界温度之上,因此在油层中很难形成二氧化碳液态驱。

二氧化碳驱的种类
二氧化碳混相驱。

混相驱油是在地层高退条件下,油中的轻质烃类分子被二氧化碳提取到气相中来,形成富含烃类的气相和溶解了二氧化碳的原油的液相两种状态。

当压力达到足够高时,二氧化碳把原油中的轻质和中间组分提取后,原油溶剂沥青、石蜡的能力下降,这些重质成分将会从原油中析出,残留在原地,原油粘度大幅度下降,从而达到混相驱的目的。

混相驱油效率很高,条件允许时,可以使排驱剂所到之处的原油百分之百的采出。

但要求混相压力很高,组成原油的轻质组分C2~C6含量很高,否则很难实现混相驱油。

由于受地层破裂压力等条件的限制,混相驱替只适用于重度比较高的轻质油藏,同时在浅层、深层、致密层、高渗透层、碳酸盐层、砂岩中都有过应用的经验,总结起来,二氧化碳混相驱对开采下面几类油藏具有更重要的意义。

a、水驱效果差的低渗透油藏;b、水驱完全枯竭的砂岩油藏;c、接近开采经济极限的深层、轻质油藏;d利用二氧化碳重力稳定混相驱开采多盐丘油藏。

(2)二氧化碳非混相驱。

二氧化碳非混相驱的主要采油机理是降低原油的粘度,使原油体积膨胀,减少界面张力,对原油中轻烃汽化和油提。

当地层及其
中流体的性质决定油藏不能采用混相驱时,利用二氧化碳非混相驱的开采机理,也能达到提高原油采收率的目的,主要应用包括:a、可用二氧化碳来恢复枯竭油藏的压力。

虽然与水相比,恢复压力所用的时间要长得多,但由于油藏中存在的游离气相将分散二氧化碳,使之接触到比混相驱更多的地下原油,从而使波及效率增大。

特别是对于低渗透油藏,在不能以经济速度注入或驱替溶剂段塞来提高油藏的压力时,采用注二氧化碳,就可能办到,因为低渗透油层对注入二氧化碳这类低粘度流体的阻力很小。

b、重力稳定非混相驱替。

用于开采高倾角、垂向渗透率高的油藏。

c、重油二氧化碳驱,可以改善重油的流度,从而改善水驱效率。

d、应用二氧化碳驱开采高粘度原油。

二氧化碳驱注入工艺
(1)连续注二氧化碳气体。

直接向已枯竭的地层中连续注入二氧化碳气体,特点为:a.见效快,但二氧化碳消耗量大,一般为地层孔隙体积的几倍;b.
由于不利的流度比,容易发生早期气窜,产气量上升快,二氧化碳利用率低;c.不适于压力过低的油藏,因为这类油藏一方面需要大量的二氧化碳气体,另一方面,过低的压力下二氧化碳气体与原油混相困难,造成只有少量轻质烃采出,大量重质烃留在地下。

(2)注碳酸水(ORCO)。

利用二氧化碳溶于水的性质,将水-二氧化碳溶液注入到地层后,水中的二氧化碳在分子扩散作用下与原油接触并驱油。

(3)水和二氧化碳气体交替注入。

将二氧化碳和水以较小的段塞尺寸(一般小于5%HCPV)交替注入到油层中驱油。

虽然注入的水可能造成水屏蔽和二氧化碳绕流原油,且存在潜力的重力分层作用,同时还可能造成注入能力下降等缺点。

但由于改善了二氧化碳的流度,提高了二氧化碳的体积波及系数和利用率,因此,交替注入方式是经济有效的提高采收率的工艺方法。

(4)同时注入二氧化碳气体和水。

二氧化碳和水同时注入是利用双注系统同时将水和二氧化碳注入油层的方法。

可以看做WAG法的一种极端情况。

此种注入方法的不利因素就是:当高压注入二氧化碳和水的混合物时,注入井腐蚀严重;当两相同时注入时,注入能力会降低。

吉林油田二氧化碳驱油:
选择已建的吉林长山化肥集团有限公司和吉林油田万金塔二氧化碳气田所产二氧化碳为注入介质来源。

槽车运输至二氧化碳试验区,通过注入系统注入地下。

工艺流程
主流程:
二氧化碳槽车来液卸入储罐暂存,生产时,储罐内的二氧化碳液经泵加压、计量后进入二氧化碳注入泵,由注入泵加压后,再经单井管道输送至注入井口注入地下。

气相循环流程
储罐内的二氧化碳液体在喂液泵中分两部分输出,一部分供给注入泵;另一部分流经喂液泵电机转子与定子间形成的环形空间,对电机冷却,自身汽化,这部分气液混合物再经储罐气相管回流到储罐内。

系统循环回流流程
当整个系统初次运行或停运后再投时,系统温度可能高于饱和二氧化碳液体温度。

流体流经系统设备、管路时,由于升温,部分二氧化碳液体汽化,形成气液混合物,使喂液泵气蚀、注入泵气锁,系统无法正常运行。

所以在系统末端设循环流程,对整个系统冷却。

监测
二氧化碳来液处于-20℃、2.0MPa的饱和状态,环境温度及压力的变化都会造成二氧化碳相态变化,生产中,注入介质(液态二氧化碳)处于密闭系统中,无法直观感知其相态。

因此,在储罐、喂液泵出入口、注入泵出口设温度压力传感器进行监测,同时对注入流量进行计量,远传至仪表值班室,进行显示存储,以便全面掌握运行情况。

相关文档
最新文档