湘教版七年级下册数学期末测试卷
湘教版七年级数学下册期末测试卷【含答案】

湘教版七年级数学下册期末检测试卷、选择题 (每小题 4 分,共 40 分)1 .下列图形中不是轴对称图形的是 (- 2n ) 24 .下列各式中,不能用平方差公式计算的是 (近期的 10 次百米测试平均成绩都是 13.2秒,方差如下表所示:选手甲乙丙丁0.020.01 0.02 0.02 方差 (秒 2)912则这四人中发挥最稳定的是 ( )A. (ab )2 ab 2B.a 2a 2 a 4 C.a 3 a 4 a 12D.(a 3)412a3.多项式 m 2-4n 2 与 m 2 -4mn +4n 2 的公因式是 ( A .(m +2n )(m - 2n ) B .m +2nC .m - 2nD .(m + 2n )(mA . (-4x +3y )(4x + 3y )B .(4x -3y )(3y -4x ) C .(-4x +3y )( -4x -3y )D . (4x +3y )(4x-3y ) 5.甲、乙、丙、丁四人参加训练,A.甲B.乙C.丙D.丁9 .甲、乙两人相距 50 千米,若同向而行,乙 10 小时可追上甲;若相向而行, 2 小时两人相遇.设甲、乙两人每小时分别走 x 千米、 y 千米,则可列出方程组10x - 10y = 50 A. 2x +2y =5010x -10y = 50 D.2x - 2y = 50 10. 下列图形都是由同样大小的棋子按一定的规律组成,其中第①个图形有 1颗棋子,第②个图形一共有 6 颗棋子,第③个图形一共有 16 颗棋子,⋯,6.如图,在方格纸中, 三角形 ABC 经过变换得到三角形 DEF , 正确的变换是 ( ) A .把三角形 ABC 绕点 C 逆时针方向旋转 90 °,再向下平移 2 格B .把三角形 ABC 绕点 C 顺时针方向旋转 90 °,再向下平移5 格 C .把三角形 ABC 向下平移 4 格,再绕点 C 逆时针方向旋转 180D .把三角形 ABC 向下平移 5 格,再绕点 C 顺时针方向旋转 180 7. 如图,下列条件中能判断直线 错误!未找到引用源。
湘教版七年级下册数学期末考试试卷含答案

湘教版七年级下册数学期末考试试卷含答案(总23页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--湘教版七年级下册数学期末考试试题一、单选题1.下列各图标中,是轴对称图形的个数有( )A .1个B .2个C .3个D .4个2.以{x =1x =−1为解的二元一次方程组是( )A .{x +x =0x −x =2B .{x +x =0x −x =−2 C .{x +x =0x −x =1 D .{x +x =0x −x =−1 3.若x 2−x 2=3,则(x +x )2⋅(x −x )2的值是( ) A .3B .6C .9D .184.如图,AB ∥CD ,AE 平分∠xxx 交CD 于点E ,若∠x =40°,则∠xxx 的度数是( )A .40°B .70°C .110°D .130°5.如图,直线a 、b 被直线c 所截,下列条件能使a ∥b 的是( )A .∠1=∠3B .∠1=∠6C .∠2=∠6D .∠5=∠76.把x 2y ﹣2y 2x+y 3分解因式正确的是A .y (x 2﹣2xy+y 2)B .x 2y ﹣y 2(2x ﹣y )C .y (x ﹣y )2D .y (x+y )27.有一组数据:3,5,5,6,7,这组数据的众数为( ) A .3B .5C .6D .78.有大小两种圆珠笔,3枝大圆珠笔和2枝小圆珠笔的售价14元,2枝大圆珠笔和3枝小圆珠笔的售价11元.设大圆珠笔为x 元/枝,小圆珠笔为y 元/枝,根据题意,列方程组正确的是( ) A .{3x −2x =112x +3x =14 B .{3x +2x =112x +3x =14 C .{14x +11x =32x +3x =11D .{3x +2x =142x +3x =119.已知a 2+2a=1,则代数式2a 2+4a ﹣1的值为( ). A .0B .1C .﹣1D .﹣210.为了丰富学生课外小组活动,培养学生动手操作能力,王老师让学生把5m 长的彩绳截成2m 或1m 的彩绳,用来做手工编织,在不造成浪费的前提下,你有几种不同的截法( ) A .4 B .3 C .2 D .1二、填空题11.计算(−2x 3y 2)3⋅4xy 2=________________________. 12.因式分解:6(x ﹣3)+x (3﹣x )= .13.已知21x y =⎧⎨=⎩是二元一次方程组7{1ax by ax by +=-=的解,则a b -= .14.如图,将ABC ∆向右平移5cm 得到DEF ∆,如果ABC ∆的周长是16cm ,那么五边形ABEFD 的周长是________cm.15.如图,已知a ∥b ,小亮把三角板的直角顶点放在直线b 上.若∠1=35°,则∠2的度数为_____.16.已知直线a b c ∥∥,a 与b 的距离是2cm ,b 与c 的距离是3cm ,则a 与c 的距离是________cm.17.某校七年级(1)班50名同学中,13岁的有25人,14岁的有23人,15岁的有2人,则这个班同学年龄的中位数是________岁. 18.已知3m a =,2n a =,则2m n a +=________.三、解答题19.先化简,再求值:2(2)(2)(2)x x x +---,其中14x =20.如图是网格中由五个小正方形组成的图形,根据下列要求画图(涂上阴影).(1)图①中,添加一块小正方形,使之成为轴对称图形,且有两条对称轴; (2)图②中,添加一块小正方形,使之成为轴对称图形,且只有一条对称轴(画出一个即可).21.给出三个多项式:a 2+3ab ﹣2b 2,b 2﹣3ab ,ab+6b 2,任请选择两个多项式进行加法运算,并把结果分解因式.22.如图①是大众汽车的图标,图②是该图标抽象的几何图形,且AC ∥BD ,∠A =∠B ,试猜想AE 与BF 的位置关系,并说明理由.23.某班在甲、乙两名同学中选拔一人参加学校数学竞赛,在相同的测试条件下,两人5次测试成绩(单位:分)如下:回答下列问题:(1)请分别求出甲、乙两同学测试成绩的平均数;(2)经计算知26S =甲,226S =乙,你认为选拔谁参加比赛更合适,说明理由.24.某同学在计算3(4+1)(24+1)时,把3写成(4﹣1)后,发现可以连续运用两数和乘以这两数差公式计算:3(4+1)(24+1)=(4﹣1)(4+1)(24+1)=(24﹣1)(24+1)=216﹣1=255.请借鉴该同学的经验,计算:2481511111111122222⎛⎫⎛⎫⎛⎫⎛⎫+++++ ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭.25.某企业在“蜀南竹海”收购毛竹,直接销售,每吨可获利100元,进行粗加工,每天可加工8吨,每吨可获利800元;如果对毛竹进行精加工,每天可加工1吨,每吨可获利4000元.由于受条件限制,每天只能采用一种方式加工,要求将在一月内(30天)将这批毛竹93吨全部销售.为此企业厂长召集职工开会,让职工讨论如何加工销售更合算.甲说:将毛竹全部进行粗加工后销售;乙说:30天都进行精加工,未加工的毛竹直接销售;丙说:30天中可用几天粗加工,再用几天精加工后销售;请问厂长应采用哪位说的方案做,获利最大?26.学习完平行线的性质与判定之后,我们发现借助构造平行线的方法可以帮我们解决许多问题.(1)小明遇到了下面的问题:如图l1∥l2,点P在l1、l2内部,探究∠A,∠APB,∠B的关系.小明过点P作l1的平行线,可得到∠APB,∠A,∠B之间的数量关系是:∠APB=________________.(2)如图2,若AC∥BD,点P在AC、BD外部,∠A,∠B,∠APB的数量关系如何?为此,小明进行了下面不完整的推理证明.请将这个证明过程补充完整,并在括号内填上依据.过点P作PE∥AC.∴∠A=∠APE(________________________________)∵AC∥BD,∴BD∥PE(________________________________)∴∠B=∠BPE,∵∠APB=∠BPE−∠APE,∴∠APB=________________.(________________)(3)随着以后的学习你还会发现平行线的许多用途.如图3,在小学中我们已知道,三角形ABC中,∠A+∠B+∠C=180°.试构造平行线说明理由.参考答案1.C【解析】【分析】根据轴对称图形的定义判断即可.【详解】解:第一、二、四个图形沿如下图所示直线折叠后,直线两旁的部分能够完全重合,是轴对称图形,而第三个图形则不可以,所以轴对称图形有3个.故选:C【点睛】本题考查了轴对称图形,判断轴对称图形的关键是看这个图形能否沿一条直线折叠后,直线两旁的部分能够完全重合.2.A【解析】【分析】将{x=1y=−1代入四个选项判断即可.【详解】解:将{x=1y=−1代入A得{1−1=01−(−1)=2,满足两个方程,故A正确.故选:A【点睛】本题考查了二元一次方程组的解,即二元一次方程组的解是构成二元一次方程组的两个方程的公共解,本题采用排除法较为简便.3.C【解析】【分析】根据平方差公式可得(a+b)⋅(a−b)的值,易知(a+b)2⋅(a−b)2的值.【详解】解:由a2−b2=3可知(a+b)⋅(a−b)=3,所以(a+b)2⋅(a−b)2=[(a+b)⋅(a−b)]2=32=9故选:C【点睛】本题考查了平方差公式,利用平方差公式对式子适当变形是解题的关键. 4.B【分析】根据平行线的性质可知∠BAC,由角平分线的性质可知∠BAE,根据两直线平行内错角相等可得结论.【详解】解:∵AB∥CD∴∠C+∠BAC=180°,∠AEC=∠BAE∵∠C=40°∴∠BAC=140°∵ AE平分∠CAB∴∠BAE=12∠BAC=70°∴∠AEC=70°故选:B【点睛】本题考查了平行线的性质,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补,熟练应用平行线的性质求角的度数是解题的关键.5.C【解析】【分析】根据平行线的判定定理判断即可.【详解】解:∠1,∠3是对顶角,不能判断a∥b,A错误;∵∠6=∠8,∠1=∠6∴∠1=∠8,∠1,∠8是同旁内角,故其相等不能判断a∥b,B错误;∵∠6=∠8,∠2=∠6∴∠2=∠8,∠2,∠8是内错角,内错角相等,两直线平行,所以a∥b,C正确;∠5,∠7是对顶角,不能判断a∥b,D错误;故选:C本题考查了平行线的判定,熟练掌握其判定方法是解题的关键.平行线的判定定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.6.C【解析】【详解】分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式. 因此,先提取公因式a后继续应用完全平方公式分解即可:()()222322x y2y x y y x2xy y y x y-+=-+=-故选C7.B【解析】试题分析:根据众数是一组数据中出现次数最多的数值,5 出现了两次,其它数均只出现一次,因此众数是5.故选B考点:众数8.D【解析】【分析】根据“3枝大圆珠笔和2枝小圆珠笔的售价14元,2枝大圆珠笔和3枝小圆珠笔的售价11元”可得方程组.【详解】解:根据题意得{3x+2y=14 2x+3y=11故选:D【点睛】本题考查了二元一次方程组的实际应用,理清题中等量关系是解题的关键. 9.B【解析】试题分析:所求代数式前两项提取2,变形为2(a2+2a)-1,将已知等式代入得:2×1-1=1,故选B.考点:代数式求值.10.B【解析】【分析】可设2米的彩绳有x条,1米的彩绳有y条,根据题意可列出关于x,y的二元一次方程,为了不造成浪费,取x,y的非负整数解即可.【详解】解:设2米的彩绳有x条,1米的彩绳有y条,根据题意得2x+y=5,其非负整数解为:{x=0y=5,{x=1y=3,{x=2y=1,故在不造成浪费的前提下有三种截法.故选:B【点睛】本题考查了二元一次方程的应用,二元一次方程的解有无数个,但在实际问题中应选择符合题意的解.正确理解题意是解题的关键.11.−32x10y8【解析】【分析】先由幂的乘方法则计算乘方,再根据单项式乘单项式的计算方法计算即可. 【详解】解:(−2x3y2)3⋅4xy2=−8x9y6⋅4xy2=−32x10y8故答案为:−32x10y8【点睛】本题考查了单项式乘单项式,有乘方先算乘方,单项式乘单项式即把它们的系数、相同字母的幂分别相乘,对于只在一个单项式中含有的字母,则连同它的指数作为积的一个因式.12.(x ﹣3)(6﹣x )【解析】试题分析:原式变形后,提取公因式即可得到结果.解:原式=6(x ﹣3)﹣x (x ﹣3)=(x ﹣3)(6﹣x ),故答案为(x ﹣3)(6﹣x )点评:此题考查了因式分解﹣提公因式法,熟练掌握提取公因式的方法是解本题的关键.13.-1【解析】把21x y =⎧⎨=⎩代入二元一次方程组71ax by ax by +=⎧⎨-=⎩得2721a b a b +⎧⎨-⎩=①=②①+②得:4a=8,解得:a=2,把a=2代入①得:b=3,∴a-b=2-3=-1;故答案为-1.14.26【解析】【分析】 根据平移的性质对应线段相等可知AB+EF+DF 的值,由对应点所连线段相等且等于平移距离可知AD 、BE 的长,易知周长.【详解】解:由平移可得:5,,,AD BE cm DE AB DF AC EF BC =====,所以16ABC AB DF EF AB AC BC C cm ∆++=++==,五边形ABEFD 的周长为165526AB DF EF AD BE cm ++++=++=.故答案为:26【点睛】本题考查了平移的性质,平移前后的两个图形,对应线段平行且相等,对应角相等,对应点所连接的线段平行且相等,利用平移线段的性质可求线段的长度,利用角的性质可求平移图形中角的度数,灵活应用平移的性质是解题的关键.15.55°.【解析】【分析】∠1和∠3互余,即可求出∠3的度数,根据平行线的性质:两直线平行,同位角相等可求∠2的度数【详解】如图所示:因为三角板的直角顶点在直线b上.若∠1=35°,所以∠3=90°-35°=55°,因为a∥b,所以∠2=∠3=55°故填55°【点睛】本题主要考查平行线的基本性质,熟练掌握基础知识是解题关键16.1或5【解析】【分析】直线c可能在直线b的上方或下方,分情况讨论,根据平行线间的距离即可求解【详解】∥∥,所以a与c的距离解:如图,若直线c在直线b的上方,因为直线a b c=-=.321如图,若直线c 在直线b 的下方,因为直线a b c ∥∥,所以a 与c 的距离325=+=.故答案为:1或5【点睛】本题考查了平行线间的距离,平行线间的距离处处相等,正确理解平行线间距离的含义是解题的关键.17.【解析】【分析】将年龄按从小到大顺序排列,取最中间两个数的平均值即可.【详解】解:由题意可知处于最中间位置的年龄为13岁和14岁, 所以这个班同学年龄的中位数是131413.52+=岁. 故答案为:【点睛】本题考查了中位数,将一列数据按从小到大的顺序排列,处于最中间位置的数(处于最中间位置的有两个数则取其平均数)即为中位数,正确理解中位数的定义是求中位数的关键18.12【解析】【分析】根据同底数幂乘法的逆运算可知22m n m n a a a +=⋅,由幂的乘方的逆运算可知22()m n m n a a a a ⋅=⋅,再将3m a =,2n a =代入求解.解:2222()3212m n m n m n a a a a a +=⋅=⋅=⨯=.故答案为:12【点睛】本题考查了幂的运算,同底数幂的乘法逆运算m n m n a a a +=⋅,幂的乘方的逆运算 ()()mn m n n m a a a ==,灵活利用幂的逆运算将所求式转化为已知式是解题的关键. 19.原式48x =-;-7【解析】【分析】根据平方差公式和完全平方差公式先化简原式再代入求值即可.【详解】解:2(2)(2)(2)x x x +---()22444x x x =---+22444x x x =--+-48x =- 把14x =代入上式,得: 1484874x -=⨯-=- 【点睛】本题考查了乘法公式,平方差公式22()()a b a b a b +-=-,完全平方公式 222()2a b a ab b ±=±+,灵活应用乘法公式进行整式的化简是解题的关键. 20.见解析.【解析】【分析】(1)所添加的正方形要使图形有两条对称轴,故可添加在第二排第二列的位置;(2)要求只有一条对称轴,故可添加在第三排第五列的位置.解:(1)如图即为所求(2)如图即为所求【点睛】本题考查了轴对称图形,熟练掌握轴对称图形的含义是画轴对称图形的前提. 21.(a+b)(a﹣b)【解析】试题分析:根据平方差公式,可得答案.试题解析:(a2+3ab﹣2b2)+(b2﹣3ab)=a2+3ab﹣2b2+b2﹣3ab=a2﹣b2=(a+b)(a﹣b).22.AE∥BF,理由见解析.【解析】【分析】根据两直线平行同位角相等,可判断∠B=∠DOE,再根据∠A=∠B,即可得到∠DOE=∠A,进而得出AC∥BD.【详解】AC∥BD,理由:∵AE∥BF,∴∠B =∠DOE .∵∠A =∠B ,∴∠DOE =∠A ,∴AC ∥BD .【点睛】本题考查了平行线的判定与性质,解答本题的关键是掌握:两直线平行同位角相等;同位角相等两直线平行.23.(1)83,83;(2)选拔甲参加比赛更合适,理由见解析.【解析】【分析】(1)求出甲乙两人各自的总成绩再除以测试次数即可;(2)方差越小数据越稳定,结合两人的平均分及方差可判断谁更合适.【详解】解:(1)甲的平均分为1(7986828583)835++++= 乙的平均分为:1(8879908177)835++++= (2)选拔甲参加比赛更合适,因为甲、乙两人的平均分相同.说明两人水平差不多,而22S S <甲乙,说明甲比乙发挥稳定,所以选拔甲参加比赛更合适【点睛】本题主要考查了平均数和方差,平均数常用来反映数据的总体趋势,方差用来反映数据的稳定性,方差越小越稳定,熟练掌握平均数的定义及方差的含义是解题的关键.24.2.【解析】试题分析:原式变形后,利用平方差公式计算即可得到结果.试题解析:原式=24815111111211111222222⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+++++ ⎪⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭=1615112122⎛⎫-+ ⎪⎝⎭=2. 考点:平方差公式.25.(1)74400元;(2)126300元;(3)第三种方案获利最大【解析】分析:(1)、若将毛竹全部进行粗加工后销售,则获利为93×800元;(2)、30天都进行精加工,则可加工30吨,可获利30×4000,未加工的毛竹63吨直接销售可获利63×100,因此共获利30×4000+63×100;(3)、30天中可用几天粗加工,再用几天精加工后销售,则可根据“时间30天”,“共93吨”列方程组进行解答.详解:(1)若将毛竹全部进行粗加工后销售,则可以获利93×800=74 400元;(2)30天都进行精加工,可加工数量为30吨,此时获利30×4000=120 000元,未加工的毛竹63吨直接销售可获利63×100=6300元,因此共获利30×4000+63×100=126300元;(3)设x天粗加工,y天精加工,则,解之得所以9天粗加工数量为9×8=72吨,可获利72×800=57600元,21天精加工数量为21吨可获利21×4000=84000,因此共获利141600,所以(3)>(2)>(1),即第三种方案获利最大.点睛:此题关键是把实际问题抽象到解方程组中,利用方程组来解决问题,属于基础题型.得出等量关系是解题的关键.26.(1)∠APB=∠A+∠B;(2)见解析;(3)见解析【解析】【分析】(1)由两直线平行内错角相等可得∠APB,∠A,∠B之间的数量关系;(2)过点P作PE∥AC,易知BD∥PE,根据两直线平行内错角相等可得∠A=∠APE,∠B=∠BPE等量代换可得结论;(3)过点A作直线DE∥BC,由两直线平行内错角相等可得∠DAB=∠B,∠EAC=∠C,由平角的定义知∠DAB+∠BAC+∠EAC=180°,等量代换即可.【详解】解:(1)如图,过点P作PE∥AC.∴∠A=∠APE∵AC∥BD∴BD∥PE∴∠B=∠BPE∵∠APB=∠BPE+∠APE,∴∠APB=∠A+∠B所以∠APB,∠A,∠B之间的数量关系是:∠APB=∠A+∠B(2)过点P作PE∥AC.∴∠A=∠APE(两直线平行,内错角相等)∵AC∥BD,∴BD∥PE(如果两条直线都和第三条直线平行,那么这两条件直线也平行)∴∠B=∠BPE,∵∠APB=∠BPE−∠APE,∴∠APB=∠B−∠A.(等量代换)(3)过点A作直线DE∥BC,∵DE∥BC.∴∠DAB=∠B,∠EAC=∠C(两直线平行,内错角相等)∵∠DAB+∠BAC+∠EAC=180°,∴∠BAC+∠B+∠C=180°(等量代换)【点睛】本题考查了平行线的判定和性质,通过构造平行线将角进行拆分或合并是解题的关键.。
湘教版七年级数学下册期末试卷及答案【完整版】

湘教版七年级数学下册期末试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a =2018x +2018,b =2018x +2019,c =2018x +2020,则a 2+b 2+c 2-ab -ac -bc 的值是( )A .0B .1C .2D .32.某种衬衫因换季打折出售,如果按原价的六折出售,那么每件赔本40元;按原价的九折出售,那么每件盈利20元,则这种衬衫的原价是( )A .160元B .180元C .200元D .220元 3.已知:20n 是整数,则满足条件的最小正整数n 为( )A .2B .3C .4D .54.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x °,∠2=y °,则可得到方程组为A .x y 50{x y 180=-+=B .x y 50{x y 180=++=C .x y 50{x y 90=++=D .x y 50{x y 90=-+= 5.下列各式﹣12mn ,m ,8,1a ,x 2+2x +6,25x y -,24x y π+,1y 中,整式有( )A .3 个B .4 个C .6 个D .7 个6.有理数m ,n 在数轴上分别对应的点为M ,N ,则下列式子结果为负数的个数是( )①m n +;②m n -;③m n -;④22m n -;⑤33m n .A .2个B .3个C .4个D .5个7.在平面直角坐标中,点M(-2,3)在( )A .第一象限B .第二象限C .第三象限D .第四象限8.在平面直角坐标系中,点P(-2,2x +1)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限9.如图,将矩形ABCD 沿对角线BD 折叠,点C 落在点E 处,BE 交AD 于点F ,已知∠BDC =62°,则∠DFE 的度数为( )A .31°B .28°C .62°D .56°10.已知2,1=⎧⎨=⎩x y 是二元一次方程组7,{1ax by ax by +=-=的解,则a b -的值为 A .-1 B .1 C .2 D .3二、填空题(本大题共6小题,每小题3分,共18分)1.9的平方根是_________.2.如图,DA ⊥CE 于点A ,CD ∥AB ,∠1=30°,则∠D=________.3.已知(x ﹣1)3=64,则x 的值为_________.4.写出一个数,使这个数的绝对值等于它的相反数:__________.5.因式分解:34a a -=_____________.6.化简: 43ππ-+-=________三、解答题(本大题共6小题,共72分)1.解方程组(1)532321x yx y+=⎧⎨+=⎩(2)4(1)3(1)2223x yyx y--=--⎧⎪⎨+=⎪⎩(3)2311632x y zx y zx y z++=⎧⎪++=⎨⎪+-=⎩2.若关于x的方程221933mx x x+=-+-有增根,则增根是多少?并求方程产生增根时m的值.3.如图,ABC中,点E在BC边上,AE AB=,将线段AC绕点A旋转到AF 的位置,使得CAF BAE∠=∠,连接EF,EF与AC交于点G(1)求证:EF BC=;(2)若65ABC∠=︒,28ACB∠=︒,求FGC∠的度数.4.如图,在三角形ABC中,CD平分∠ACB,DE∥BC,∠AED=80°,求∠EDC的度数.5.某校为加强学生安全意识,组织全校学生参加安全知识竞赛.从中抽取部分学生成绩(得分取正整数值,满分为100分)进行统计,绘制以下两幅不完整的统计图.请根据图中的信息,解决下列问题:(1)填空:a=_____,n=_____;(2)补全频数直方图;(3)该校共有2000名学生.若成绩在70分以下(含70分)的学生安全意识不强,则该校安全意识不强的学生约有多少人?6.为了解某种品牌小汽车的耗油量,我们对这种车在高速公路上做了耗油试验,并把试验的数据记录下来,制成下表:汽车行驶时间t0 1 2 3 …(h)油箱剩余油量Q100 94 88 82 …①根据上表的数据,请你写出Q与t的关系式;②汽车行驶5h后,油箱中的剩余油量是多少;③该品牌汽车的油箱加满50L,若以100km/h的速度匀速行驶,该车最多能行驶多远.参考答案一、选择题(本大题共10小题,每题3分,共30分) 1、D2、C3、D4、C5、C6、B7、B8、B9、D10、A二、填空题(本大题共6小题,每小题3分,共18分)1、±32、60°3、54、1-(答案不唯一)5、(2)(2)a a a +-6、1三、解答题(本大题共6小题,共72分)1、(1)31x y =⎧⎨=-⎩;(2)23x y =⎧⎨=⎩;(3)123x y z ⎧⎪⎨⎪⎩===. 2、x =3或-3是原方程的增根;m =6或12.3、(1)略;(2)78°.4、∠EDC =40°5、(1)75,54;(2)补图见解析;(3)600人.25003km.6、①Q=100﹣6t;② 10L;③。
湘教版七年级下册数学期末考试题(附答案)

湘教版七年级下册数学期末考试题(附答案)1.由方程组正确答案:C改写:求解以下方程组:2.把方程正确答案:B改写:将以下方程化简:3.设正确答案:C改写:已知:4.若正确答案:D改写:如果5.多项式2x2-4xy+2x提取公因式2x后,另一个因式为()正确答案:A改写:将2x²-4xy+2x提取公因式2x得到2x(x-2y+1),因此另一个因式为x-2y。
6.下列分解因式正确的是()正确答案:C改写:将a²-6a+9分解因式得到(a-3)²。
7.如图,直线a,b相交于点O,若∠1等于30°,则∠2等于()正确答案:B改写:在图中,∠2与∠1互补,因此∠2=90°-∠1=60°。
8.直线l3与l1,l2相交得如图所示的5个角,其中互为对顶角的是()正确答案:D改写:在图中,∠1和∠5互为对顶角,因此选D。
9.下列各项中,不是由平移设计的是()正确答案:C改写:以下哪个图形不是通过平移得到的?10.下面四个手机APP图标中,可看作轴对称图形的是()正确答案:B改写:以下哪个图标是轴对称图形?11.一组数据2,4,x,2,4,7的众数是2,则这组数据的平均数,中位数分别为()正确答案:C改写:在这组数据中,众数为2,因此2出现的次数最多。
中位数为3,平均数为(2+4+x+2+4+7)/6=19/6.12.一组数据2,4,x,6,8的众数为2,则x的值为()正确答案:A改写:在这组数据中,2出现的次数最多,因此x=2.13.在方程3x-y=5中,用含x的代数式表示y为________.正确答案:3x-5改写:将方程3x-y=5化简得到y=3x-5.14.若(x+2)(2x-n)=2x2+mx-2,则m+n=________.正确答案:0改写:将方程(x+2)(2x-n)=2x²+mx-2化简得到2n-3x²+2x=mx-2,因此m+n=0.15.若一个正方形的面积为4a2+12ab+9b2(a>,b>),则这个正方形的边长为________.正确答案:(2a+3b)改写:将正方形的面积4a²+12ab+9b²分解因式得到(2a+3b)²,因此正方形的边长为2a+3b。
湘教版七年级下册数学期末试题试卷及答案

湘教版七年级下册数学期末试题试卷及答案(总12页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--湘教版七年级下册数学期末考试试卷一、填空题(本题共8个小题,每小题3分,共24分)1.计算(﹣2x3y2)3•4xy2= .2.因式分解:6(x﹣3)+x(3﹣x)= .3.方程x﹣3y=1,xy=2,x﹣=1,x﹣2y+3z=0,x2+y=3中是二元一次方程的有个.4.(3分)下列各组图:①;②;③;④其中,左右两个图形能成轴对称的是(填序号).5.(3分)如图,若AB∥CD∥EF,∠B=40°,∠F=30°,则∠BCF=.6.(3分)方程组的解为.7.(3分)下列变形:①(x+1)(x﹣1)=x2﹣1;②9a2﹣12a+4=(3a﹣2)2;③3abc3=3c•abc2;④3a2﹣6a=3a(a﹣2)中,是因式分解的有(填序号)8.(3分)如图,三角形ABC经过平移得到三角形DEF,那么图中平行且相等的线段有对;若∠BAC=50°,则∠EDF=.二、选择题(本题共8个小题,每小题3分,共24分)9.(3分)在数据1,3,5,5中,中位数是()A.3 B.4 C.5 D.710.(3分)计算(﹣3x)•(2x2﹣5x﹣1)的结果是()A.﹣6x2﹣15x2﹣3x B.﹣6x3+15x2+3x C.﹣6x3+15x2D.﹣6x3+15x2﹣1 11.(3分)下列图形中,∠1与∠2是对顶角的是()A.B.C.D.12.(3分)把x2y﹣2y2x+y3分解因式正确的是()A.y(x2﹣2xy+y2)B.x2y﹣y2(2x﹣y)C.y(x﹣y)2D.y(x+y)213.(3分)过一点画已知直线的平行线()A.有且只有一条 B.不存在C.有两条 D.不存在或有且只有一条14.(3分)下列各式:①(x﹣2y)(2y+x);②(x﹣2y)(﹣x﹣2y);③(﹣x﹣2y)(x+2y);④(x﹣2y)(﹣x+2y).其中能用平方差公式计算的是()A.①②B.①③C.②③D.②④15.(3分)方程5x+2y=﹣9与下列方程构成的方程组的解为的是()A.x+2y=1 B.3x+2y=﹣8 C.5x+4y=﹣3 D.3x﹣4y=﹣816.(3分)如图,将直角三角形AOB绕点O旋转得到直角三角形COD,若∠AOB=90°,∠BOC=130°,则∠AOD的度数为()A.40° B.50°C.60° D.30°三、解答题(本题共6个小题,共52分)17.(6分)当x=﹣4,6时,代数式kx+b的值分别是15,﹣5,求k、b的值.18.(6分)如图,直线AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度数.19.(7分)已知x2+y2﹣4x+6y+13=0,求x2﹣6xy+9y2的值.20.(7分)体育文化用品商店购进篮球和排球共20个,进价和售价如表,全部销售完后共获利润260元.篮球排球8050进价(元/个)售价(元/9560个)(1)购进篮球和排球各多少个?(2)销售6个排球的利润与销售几个篮球的利润相等?21.(8分)已知x﹣=3,求x2+和x4+的值.22.(8分)已知直线a∥b∥c,a与b相距6cm,由a与c相距为4cm,求b与c之间的距离是多少?23.(10分)甲,乙两支仪仗队队员的身高(单位:cm)如下:甲队:178,177,179,178,177,178,177,179,178,179;乙队:178,179,176,178,180,178,176,178,177,180;(1)将下表填完整:身高176177178179180340甲队(人数)乙队(人211数)(2)甲队队员身高的平均数为cm,乙队队员身高的平均数为cm;(3)你认为哪支仪仗队更为整齐?简要说明理由.参考答案与试题解析一、填空题(本题共8个小题,每小题3分,共24分)1.(3分)(2016春•澧县期末)计算(﹣2x3y2)3•4xy2= ﹣32x10y8.【分析】分析:先算乘方,再算乘法(﹣2x3y2)3=(﹣2)3(x3)3(y2)3=﹣8x9y6,所以(﹣2x3y2)3•4xy2=(﹣8x9y6)•4xy2=﹣32x10y8.【解答】解:(﹣2x3y2)3•4xy2=(﹣8x9y6)•4xy2=﹣32x10y8【点评】本题考查整式的乘法混合运算,按照运算顺序先算乘方再算乘法.2.(3分)(2016春•澧县期末)因式分解:6(x﹣3)+x(3﹣x)= (x﹣3)(6﹣x).【分析】原式变形后,提取公因式即可得到结果.【解答】解:原式=6(x﹣3)﹣x(x﹣3)=(x﹣3)(6﹣x),故答案为:(x﹣3)(6﹣x)【点评】此题考查了因式分解﹣提公因式法,熟练掌握提取公因式的方法是解本题的关键.3.(3分)(2016春•澧县期末)方程x﹣3y=1,xy=2,x﹣=1,x﹣2y+3z=0,x2+y=3中是二元一次方程的有 1 个.【分析】根据二元一次方程的定义,可以判断题目中的哪个方程是二元一次方程,本题得以解决.【解答】解:方程x﹣3y=1,xy=2,x﹣=1,x﹣2y+3z=0,x2+y=3中是二元一次方程的有:x﹣3y=1,故答案为:1.【点评】本题考查二元一次方程的定义,解题的关键是明确二元一次方程的定义是只含有两个未知数,并且未知项的次数都是1次,等号两边都是整式.4.(3分)(2016春•澧县期末)下列各组图:①;②;③;④其中,左右两个图形能成轴对称的是④(填序号).【分析】根据轴对称图形的概念求解即可.【解答】解:图形①、图形②、图形③都不是轴对称图形,图形④是轴对称图形.故答案为:④.【点评】本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.(3分)(2014•岳阳)如图,若AB∥CD∥EF,∠B=40°,∠F=30°,则∠BCF= 70°.【分析】由“两直线平行,内错角相等”、结合图形解题.【解答】解:如图,∵AB∥CD∥EF,∴∠B=∠1,∠F=∠2.又∠B=40°,∠F=30°,∴∠BCF=∠1+∠2=70°.故答案是:70°.【点评】本题考查了平行线的性质.平行线性质定理定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.定理2:两条平行线被地三条直线所截,同旁内角互补..简单说成:两直线平行,同旁内角互补.定理3:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.6.(3分)(2014•百色)方程组的解为.【分析】方程组利用加减消元法求出解即可.【解答】解:,①+②得:2x=2,即x=1,①﹣②得:2y=﹣2,即y=﹣1,则方程组的解为.故答案为:.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.7.(3分)(2016春•澧县期末)下列变形:①(x+1)(x﹣1)=x2﹣1;②9a2﹣12a+4=(3a﹣2)2;③3abc3=3c•abc2;④3a2﹣6a=3a(a﹣2)中,是因式分解的有②④(填序号)【分析】直接利用因式分解的意义分析得出答案.【解答】解:①(x+1)(x﹣1)=x2﹣1,是多项式乘法,故此选项错误;②9a2﹣12a+4=(3a﹣2)2,是因式分解;③3abc3=3c•abc2,不是因式分解;④3a2﹣6a=3a(a﹣2),是因式分解;故答案为:②④.【点评】此题主要考查了因式分解的意义,正确把握定义是解题关键.8.(3分)(2016春•澧县期末)如图,三角形ABC经过平移得到三角形DEF,那么图中平行且相等的线段有 6 对;若∠BAC=50°,则∠EDF=50°.【分析】根据平移的性质直接得出对应边平行且相等,对应角相等得出答案即可.【解答】解:∵三角形ABC经过平移得到三角形DEF,∴图中平行且相等的线段有:AB DE,AC DF,CB FE,AD BE,EB CF,AD CF,一共有六对,∵∠BAC=50°,∴∠EDF=50°.故答案为:6,50°.【点评】此题主要考查了平移的性质,熟练掌握平移的性质得出是解题关键.二、选择题(本题共8个小题,每小题3分,共24分)9.(3分)(2016春•澧县期末)在数据1,3,5,5中,中位数是()A.3 B.4 C.5 D.7【分析】先将题中的数据按照从小到大的顺序排列,然后根据中位数的概念求解即可.【解答】解:将题中的数据按照从小到大的顺序排列为:1,3,5,5,故中位数为:=4.故选B.【点评】本题考查了中位数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.10.(3分)(2016春•澧县期末)计算(﹣3x)•(2x2﹣5x﹣1)的结果是()A.﹣6x2﹣15x2﹣3x B.﹣6x3+15x2+3x C.﹣6x3+15x2D.﹣6x3+15x2﹣1【分析】根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.【解答】解:(﹣3x)•(2x2﹣5x﹣1)=﹣3x•2x2+3x•5x+3x=﹣6x3+15x2+3x.故选B.【点评】本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.11.(3分)(2016春•澧县期末)下列图形中,∠1与∠2是对顶角的是()A.B.C.D.【分析】根据对顶角:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角进行分析即可.【解答】解:A、∠1与∠2不是对顶角,故此选项错误;B、∠1与∠2不是对顶角,故此选项错误;C、∠1与∠2是对顶角,故此选项正确;D、∠1与∠2不是对顶角,故此选项错误;故选:C.【点评】此题主要考查了对顶角,关键是掌握对顶角定义.12.(3分)(2013•恩施州)把x2y﹣2y2x+y3分解因式正确的是()A.y(x2﹣2xy+y2)B.x2y﹣y2(2x﹣y)C.y(x﹣y)2D.y(x+y)2【分析】首先提取公因式y,再利用完全平方公式进行二次分解即可.【解答】解:x2y﹣2y2x+y3=y(x2﹣2yx+y2)=y(x﹣y)2.故选:C.【点评】本题主要考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.13.(3分)(2016春•澧县期末)过一点画已知直线的平行线()A.有且只有一条B.不存在C.有两条D.不存在或有且只有一条【分析】分点在直线上和点在直线外两种情况解答.【解答】解:若点在直线上,过这点不能画已知直线的平行线;若点在直线外,根据平行公理,有且只有一条直线与已知直线平行.故选D.【点评】此题的关键在分类讨论,是易错题.14.(3分)(2016春•澧县期末)下列各式:①(x﹣2y)(2y+x);②(x﹣2y)(﹣x ﹣2y);③(﹣x﹣2y)(x+2y);④(x﹣2y)(﹣x+2y).其中能用平方差公式计算的是()A.①②B.①③C.②③D.②④【分析】将4个算式进行变形,看那个算式符合(a+b)(a﹣b)的形式,由此即可得出结论.【解答】解:①(x﹣2y)(2y+x)=(x﹣2y)(x+2y)=x2﹣4y2;②(x﹣2y)(﹣x﹣2y)=﹣(x﹣2y)(x+2y)=4y2﹣x2;③(﹣x﹣2y)(x+2y)=﹣(x+2y)(x+2y)=﹣(x+2y)2;④(x﹣2y)(﹣x+2y)=﹣(x﹣2y)(x﹣2y)=﹣(x﹣2y)2;∴能用平方差公式计算的是①②.故选A.【点评】本题考查了平方差公式,解题的关键是将四个算式进行变形,再与平方差公式进行比对.本题属于基础题,难度不大,解决该题型题目时,牢记平分差公式是解题的关键.15.(3分)(2014•泰安)方程5x+2y=﹣9与下列方程构成的方程组的解为的是()A.x+2y=1 B.3x+2y=﹣8 C.5x+4y=﹣3 D.3x﹣4y=﹣8【分析】将x与y的值代入各项检验即可得到结果.【解答】解:方程5x+2y=﹣9与下列方程构成的方程组的解为的是3x﹣4y=﹣8.故选:D.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.16.(3分)(2016春•澧县期末)如图,将直角三角形AOB绕点O旋转得到直角三角形COD,若∠AOB=90°,∠BOC=130°,则∠AOD的度数为()A.40° B.50°C.60° D.30°【分析】根据旋转的性质可得出∠AOC=∠BOD,再通过角的计算即可得出结论.【解答】解:由旋转的性质可知:∠AOC=∠BOD,∵∠AOB=90°,∠BOC=∠AOB+∠AOC=130°,∴∠BOD=∠AOC=∠BOC﹣∠AOB=40°,又∵∠BOD+∠AOD=∠AOB=90°,∴∠AOD=50°,故选B.【点评】本题考查了旋转的性质以及角的计算,解题的关键是求出∠BOD=40°.本题属于基础题,难度不大,解决该题型题目时,根据旋转的性质找出相等的角是关键.三、解答题(本题共6个小题,共52分)17.(6分)(2016春•澧县期末)当x=﹣4,6时,代数式kx+b的值分别是15,﹣5,求k、b的值.【分析】首先根据题意,列出关于k、b的二元一次方程组,然后应用加减法,求出方程组的解即可.【解答】解:∵当x=﹣4,6时,代数式kx+b的值分别是15,﹣5,∴(2)﹣(1),可得10k=﹣20,解得k=﹣2,把k=﹣2代入(1),解得b=7,∴方程组的解是.【点评】此题主要考查了解二元一次方程组的方法,要熟练掌握,注意加减法的应用.18.(6分)(2015•益阳)如图,直线AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度数.【分析】由平行线的性质得到∠ABC=∠1=65°,∠ABD+∠BDC=180°,由BC平分∠ABD,得到∠ABD=2∠ABC=130°,于是得到结论.【解答】解:∵AB∥CD,∴∠ABC=∠1=65°,∠ABD+∠BDC=180°,∵BC平分∠ABD,∴∠ABD=2∠ABC=130°,∴∠BDC=180°﹣∠ABD=50°,∴∠2=∠BDC=50°.【点评】本题考查了平行线的性质和角平分线定义等知识点,解此题的关键是求出∠ABD 的度数,题目较好,难度不大.19.(7分)(2016春•澧县期末)已知x2+y2﹣4x+6y+13=0,求x2﹣6xy+9y2的值.【分析】已知等式左边利用完全平方公式变形,利用非负数的性质求出x与y的值,代入原式计算即可得到结果.【解答】解:∵x2+y2﹣4x+6y+13=(x﹣2)2+(y+3)2=0,∴x﹣2=0,y+3=0,即x=2,y=﹣3,则原式=(x﹣3y)2=112=121.【点评】此题考查了因式分解﹣运用公式法,熟练掌握公式是解本题的关键.20.(7分)(2012•娄底)体育文化用品商店购进篮球和排球共20个,进价和售价如表,全部销售完后共获利润260元.篮球排球进价(元/8050个)9560售价(元/个)(1)购进篮球和排球各多少个?(2)销售6个排球的利润与销售几个篮球的利润相等?【分析】(1)设购进篮球x个,购进排球y个,根据等量关系:①篮球和排球共20个②全部销售完后共获利润260元可列方程组,解方程组即可;(2)设销售6个排球的利润与销售a个篮球的利润相等,根据题意可得等量关系:每个排球的利润×6=每个篮球的利润×a,列出方程,解可得答案.【解答】解:(1)设购进篮球x个,购进排球y个,由题意得:解得:,答:购进篮球12个,购进排球8个;(2)设销售6个排球的利润与销售a个篮球的利润相等,由题意得:6×(60﹣50)=(95﹣80)a,解得:a=4,答:销售6个排球的利润与销售4个篮球的利润相等.【点评】此题主要考查了二元一次方程组的应用,以及一元一次方程组的应用,关键是弄清题意,找出题目中的等量关系,列出方程组或方程.21.(8分)(2016春•澧县期末)已知x﹣=3,求x2+和x4+的值.【分析】把该式子两边平方后可以求得x2+的值,再次平方即可得到x4+的值.【解答】解:∵x﹣=3,(x﹣)2=x2+﹣2∴x2+=(x﹣)2+2=32+2=11.x4+=(x2+)2﹣2=112﹣2=119.【点评】本题考查了完全平方公式,利用x和互为倒数乘积是1与完全平方公式来进行解题.22.(8分)(2016春•澧县期末)已知直线a∥b∥c,a与b相距6cm,由a与c相距为4cm,求b与c之间的距离是多少?【分析】本题主要利用平行线之间的距离的定义作答.要分类讨论:①当a在b、c之间时;②c在b、a之间时.【解答】解:①如图1,当a在b、c之间时,b与c之间距离为6+4=10(cm);②如图2,c在b、a之间时,b与c之间距离为6﹣4=2(cm);即b与c之间的距离是2cm或10cm.【点评】此题很简单,考查的是两平行线之间的距离的定义,即两直线平行,则夹在两条平行线间的垂线段的长叫两平行线间的距离.23.(10分)(2008•威海)甲,乙两支仪仗队队员的身高(单位:cm)如下:甲队:178,177,179,178,177,178,177,179,178,179;乙队:178,179,176,178,180,178,176,178,177,180;(1)将下表填完整:身高176177178179180340甲队(人数)211乙队(人数)(2)甲队队员身高的平均数为cm,乙队队员身高的平均数为cm;(3)你认为哪支仪仗队更为整齐?简要说明理由.【分析】根据平均数和方差的概念求平均数和方差,哪支仪仗队更为整齐可通过方差进行比较.【解答】解:(1)身高17617717817918003430甲队(人数)21412乙队(人数)(2)甲=(3×177+4×178+3×179)=178cm,乙=(2×176+1×177+4×178+1×179+2×180)=178cm.故答案为:178;178.(3)甲仪仗队更为整齐.理由如下:s甲2=[3(177﹣178)2+4(178﹣178)2+3(179﹣178)2]=;s乙2=[2(176﹣178)2+(177﹣178)2+4(178﹣178)2+(179﹣178)2+2(180﹣178)2]=;故甲,乙两支仪仗队队员身高数据的方差分别为和,∵s甲2<s乙2∴可以认为甲仪仗队更为整齐.(也可以根据甲,乙两队队员身高数据的极差分别为2cm,4cm判断).【点评】本题考查了平均数和方差在现实中应用,解题的关键是需要知道方差的定义与意义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.2+…+(xn﹣)。
湘教版初一下学期期末数学试卷(含答案)

七年级下册期末数学试卷一.选择题(本大题共9小题,每小题2分,共18分)1.“认识交通标志,遵守交通规则”,下列交通标志中,是轴对称图形的是()A.B.C.D.2.下列计算正确的是()A.a•a2=a2B.(x3)2=x5C.(2a)2=4a2D.(x+1)2=x2+13.下列因式分解正确的是()A.x2﹣4=(x+4)(x﹣4)B.4a2﹣8a=a(4a﹣8)C.a+2a+2=(a﹣1)2+1D.x2﹣2x+1=(x﹣1)24.下列运算正确的是()A.(m+n)(﹣m+n)=n2﹣m2B.(a﹣b)2=a2﹣b2C.(a+m)(b+n)=ab+mn D.(x﹣1)2=x2﹣2x﹣15.下列说法错误的是()A.平移不改变图形的形状和大小B.对顶角相等C.在同一平面内,垂直于同一条直线的两条直线平行D.同位角相等6.我市某中学举办了一次以“我的中国梦”为主题的演讲比赛,最后确定9名同学参加决赛,他们的决赛成绩各不相同,其中小辉已经知道自己的成绩,但能否进前5名,他还必须清楚这9名同学成绩的()A.众数B.平均数C.中位数D.方差7.如图.直线a∥b,直线L与a、b分别交于点A、B,过点A作AC⊥b于点C.若∠1=50°,则∠2的度数为()A.130°B.50°C.40°D.25°8.如图,下列条件中,能判定AD∥BC的是()A.∠C=∠CBE B.∠A+∠ADC=180°C.∠ABD=∠CDB D.∠A=∠CBE9.图(1)是一个长为2m,宽为2n(m>n)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是()A.2mn B.(m+n)2C.(m﹣n)2D.m2﹣n2二、填空题(本大题共9小题,每小题2分,共18分)10.计算:(﹣2a)2﹣a2=.11.是二元一次方程2x+ay=5的一个解,则a的值为.12.若a+4b=10,2a﹣b=﹣1,则a+b=.13.如图是一次射击训练中甲、乙两人的10次射击成绩的分布情况,则射击成绩的方差较小的是(填“甲”或“乙”).14.已知多项式x2+mx+25是完全平方式,且m<0,则m的值为.15.因式分解:(x﹣3)﹣2x(x﹣3)=.16.已知直线a∥b,a与b之间的距离为5,a与b之间有一点P,点P到a的距离是2,则点P到b的距离是.17.如图,将△ABC绕着点C按顺时针方向旋转20°后,B点落在B位置,A点落在A′位置,若AC⊥BC,则∠BCA′的度数是.18.如图,将一张矩形纸片ABCD沿EF折叠,使顶点C,D分别落在点C′,D′处,C′E交AF 于点G,若∠CEF=70°,则∠GFD′=°.三、解答题(本大题共9小题,19~23每小题6分,24~26每小题6分,27小题10分,共64分)19.先化简,再求值:2x(2x﹣y)﹣(2x﹣y)2,其中x=,y=﹣1.20.解方程组.21.如图,在正方形网格中,有格点三角形ABC(顶点都是格点)和直线MN.(1)画出三角形ABC关于直线MN对称的三角形A1B1C1(2)将三角形ABC绕点A按逆时针方向旋转90°得到三角形AB2C2,在正方形网格中画出三角形AB2C2.(不要求写作法)22.推理填空:如图,∠1+∠2=180°,∠A=∠C,试说明:AE∥BC.解:因为∠1+∠2=180°,所以AB∥(同旁内角互补,两直线平行)所以∠A=∠EDC(),又因为∠A=∠C(已知)所以∠EDC=∠C(等量代换),所以AE∥BC()23.某中学有15位学生利用暑假参加社会实践活动,到某公司销售部做某种商品的销售员,销售部为帮助学生制定合理的周销售定额,统计了这15位学生某周的销售量如下:45013060504035周销售量(件)人数113532(1)求这15位学生周销售量的平均数、中位数、众数;(2)假设销售部把每位学生的周销售定额规定为80件,你认为是否合理?为什么?如果不合理,请你从表中选一个较合理的周销售量作为周销售定额,并说明理由.24.我市某中学决定到超市购买一定数量的羽毛球拍和羽毛球,已知买1副羽毛球拍和1个羽毛球要花费35元,买2副羽毛球拍和3个羽毛球要花费75元,求购买10副羽毛球拍和20个羽毛球共需多少元?25.如图,直线a∥b,直线AB与a,b分别相交于点A,B,AC⊥AB,AC交直线b于点C.(1)若∠1=60°,求∠2的度数;(2)若AC=3,AB=4,BC=5,求a与b的距离.26.先仔细阅读材料,冉尝试解决问题完全平方公式a2±2ab+b2=(a±b)2及(a±b)2的值具有非负性的特点在数学学习中有着广泛的应用,例如求多项式2x2+12x﹣4的最小值时,我们可以这样处理:解:原式=2(x2+6x﹣2)=2(x2+6x+9﹣9﹣2)=2[(x+3)2﹣11]=2(x+3)2﹣22因为无论x取什么数,都有(x+3)2的值为非负数,所以(x+3)2的最小值为0,当x=﹣3时,2(x+3)2﹣22的最小值是﹣22,所以当x=﹣3时,原多项式的最小值是﹣22.解决问题:(1)请根据上面的解题思路探求:多项式x2+4x+5的最小值是多少,并写出此时x的值;(2)请根据上面的解题思路探求:多项式﹣3x2﹣6x+12的最大值是多少,并写出此时x的值.27.如图,MN∥OP,点A为直线MN上一定点,B为直线OP上的动点,在直线MN与OP之间且在线段AB的右方作点D,使得AD⊥BD.设∠DAB=α(α为锐角).(1)求∠NAD与∠PBD的和;(提示过点D作EF∥MN)(2)当点B在直线OP上运动时,试说明∠OBD﹣∠NAD=90°;(3)当点B在直线OP上运动的过程中,若AD平分∠NAB,AB也恰好平分∠OBD,请求出此时α的值参考答案与试题解析一.选择题(本大题共9小题,每小题2分,共18分)1.解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误;故选:B.2.解:A、a•a2=a3,故此选项错误;B、(x3)2=x6,故此选项错误;C、(2a)2=4a2,正确;D、(x+1)2=x2+2x+1,故此选项错误.故选:C.3.解:A、原式=(x+2)(x﹣2),不符合题意;B、原式=4a(a﹣2),不符合题意;C、原式不能分解,不符合题意;D、原式=(x﹣1)2,符合题意,故选:D.4.解:∵(m+n)(﹣m+n)=n2﹣m2,故选项A正确,∵(a﹣b)2=a2﹣2ab+b2,故选项B错误,∵(a+m)(b+n)=ab+an+bm+mn,故选项C错误,∵(x﹣1)2=x2﹣2x+1,故选项D错误,故选:A.5.解:A、平移不改变图形的形状和大小,正确;B、对顶角相等,正确;C、在同一平面内,垂直于同一条直线的两条直线平行,正确;D、两直线平行,同位角相等,错误;故选:D.6.解:由于总共有9个人,且他们的分数互不相同,第5名的成绩是中位数,要判断是否进入前5名,故应知道自已的成绩和中位数.故选:C.7.解:∵AC⊥b,∴∠ACB=90°,∵∠1=50°,∴∠ABC=40°,∵a∥b,∴∠ABC=∠2=40°.故选:C.8.解:A、∵∠C=∠CBE,∴AB∥CD,故本选项错误;B、∵∠A+∠ADC=180°,∴AB∥CD,故本选项错误;C、∵∠ABD=∠CDB,∴AB∥CD,故本选项错误;D、∵∠A=∠CBE,∴AD∥BC,故本选项正确.故选:D.9.解:由题意可得,正方形的边长为(m+n),故正方形的面积为(m+n)2,又∵原矩形的面积为4mn,∴中间空的部分的面积=(m+n)2﹣4mn=(m﹣n)2.故选:C.二、填空题(本大题共9小题,每小题2分,共18分)10.解:(﹣2a)2﹣a2=4a2﹣a2=3a2,故答案为:3a2.11.解:将代入二元一次方程2x+ay=5,得2+3a=5,解得a=1,故答案为:1.12.解:∵a+4b=10①,2a﹣b=﹣1②,①+②可得:3a+3b=9,即:a+b=3.故答案为:3.13.解:由图中知,甲的成绩为7,8,8,9,8,9,9,8,7,7,乙的成绩为6,8,8,9,8,10,9,8,6,7,=(7+8+8+9+8+9+9+8+7+7)÷10=8,=(6+8+8+9+8+10+9+8+6+7)÷10=7.9,甲的方差S甲2=[3×(7﹣8)2+4×(8﹣8)2+3×(9﹣8)2]÷10=0.6,乙的方差S乙2=[2×(6﹣7.9)2+4×(8﹣7.9)2+2×(9﹣7.9)2+(10﹣7.9)2+(7﹣7.9)2]÷10=1.49,则S2甲<S2乙,即射击成绩的方差较小的是甲.故答案为:甲.14.解:∵x2+mx+25是一个完全平方式,∴x2+mx+25=(x+5)2或x2+mx+25=(k﹣5)2,∴m=±10.∵m<0,∴m的值为﹣10.故答案是:﹣10.15.解:(x﹣3)﹣2x(x﹣3)=(x﹣3)(1﹣2x).故答案为:(x﹣3)(1﹣2x).16.解:∵直线a∥b,a与b之间的距离为5,a与b之间有一点P,点P到a的距离是2,∴点P到b的距离是5﹣2=3,故答案为:3.17.解:∵AC⊥BC,∴∠ACB=90°,∵∠ACB=∠A′CB′=90°,∴∠BCB′=∠ACA′=20°,∴∠BCA′=90°+20°=110°,故答案为110°.18.解:矩形纸片ABCD中,AD∥BC,∵∠CEF=70°,∴∠EFG=∠CEF=70°,∴∠EFD=180°﹣70°=110°,根据折叠的性质,∠EFD′=∠EFD=110°,∴∠GFD′=∠EFD′﹣∠EFG,=110°﹣70°,=40°.故答案为:40.三、解答题(本大题共9小题,19~23每小题6分,24~26每小题6分,27小题10分,共64分)19.解:2x(2x﹣y)﹣(2x﹣y)2=4x2﹣2xy﹣4x2+4xy﹣y2=2xy﹣y2,当x=,y=﹣1时,原式=2××(﹣1)﹣(﹣1)2=﹣2.20.解:①×2+②得:7x=14,即x=2,将x=2代入①得:y=﹣1,则方程组的解为.21.解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,△AB2C2即为所求.22.解:因为∠1+∠2=180°,所以AB∥DC(同旁内角互补,两直线平行)所以∠A=∠EDC(两直线平行,同位角相等),又因为∠A=∠C(已知)所以∠EDC=∠C(等量代换),所以AE∥BC(内错角相等,两直线平行)故答案为:DC,两直线平行,同位角相等;内错角相等,两直线平行.23.解:(1)这15位学生周销售量的平均数=(450×1+130×1+60×3+50×5+40×3+35×2)÷15=80,中位数为50,众数为50;(2)不合理.因为15人中有13人销售量达不到80,周销售额定为50较合适,因为50是众数也是中位数.24.解:设购买1副羽毛球拍需要x元,购买1个羽毛球需要y元,根据题意得:,解得:,∴10x+20y=10×30+20×5=400.答:购买10副羽毛球拍和20个羽毛球共需400元.25.解:(1)∵直线a∥b,∴∠3=∠1=60°,又∵AC⊥AB,∴∠2=90°﹣∠3=30°;(2)如图,过A作AD⊥BC于D,则AD的长即为a与b之间的距离.∵AC⊥AB,∴×AB×AC=×BC×AD,∴AD==,∴a与b的距离为.26.解:(1)x2+4x+5=x2+4x+4+1=(x+2)2+1,当x=﹣2时,多项式x2+4x+5的最小值是1;(2)﹣3x2﹣6x+12=﹣3(x2+2x+1)+3+12=﹣3(x+1)2+15,当x=﹣1时,多项式﹣3x2﹣6x+12的最大值是15.27.解:(1)如图,过点D作EF∥MN,则∠NAD=∠ADE.∵MN∥OP,EF∥MN,∴EF∥OP.∴∠PBD=∠BDE,∴∠NAD+∠PBD=∠ADE+∠BDE=∠ADB.∵AD⊥BD,∴∠ADB=90°,∴∠NAD+∠PBD=90°.(2)由(1)得:∠NAD+∠PBD=90°,则∠NAD=90°﹣∠PBD.∵∠OBD+∠PBD=180°,∴∠OBD=180°﹣∠PBD,∴∠OBD﹣∠NAD=(180°﹣∠PBD)﹣(90°﹣∠PBD)=90°.(3)若AD平分∠NAB,AB也恰好平分∠OBD,则有∠NAD=∠BAD=α,∠NAB=2∠BAD =2α,∠OBD=2∠OBA.∵OP∥MN,∴∠OBA=∠NAB=2α,∴∠OBD=4α.由(2)知:∠OBD﹣∠NAD=90°,则4α﹣α=90°,解得:α=30°.。
湘教版七年级数学下册期末考试及答案【完美版】

湘教版七年级数学下册期末考试及答案【完美版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a=2018x+2018,b=2018x+2019,c=2018x+2020,则a2+b2+c2-ab-ac-bc的值是()A.0 B.1 C.2 D.32.实数a、b在数轴上的位置如图所示,且|a|>|b|,则化简2a a b-+的结果为()A.2a+b B.-2a+b C.b D.2a-b3.已知x+y=﹣5,xy=3,则x2+y2=()A.25 B.﹣25 C.19 D.﹣194.式子:①2>0;②4x+y≤1;③x+3=0;④y-7;⑤m-2.5>3.其中不等式有()A.1个B.2个C.3个D.4个5.如图,已知在△ABC,AB=AC.若以点B为圆心,BC长为半径画弧,交腰AC 于点E,则下列结论一定正确的是()A.AE=EC B.AE=BE C.∠EBC=∠BAC D.∠EBC=∠ABE6.设x y z234==,则x2y3zx y z-+++的值为()A .27B .23C .89D .577.在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C .若CO=BO ,则a 的值为( )A .-3B .-2C .-1D .18.如图,直线AB 、CD 、EF 相交于点O ,其中AB ⊥CD ,∠1:∠2=3:6,则∠EOD =( )A .120°B .130°C .60°D .150°9.已知x a =3,x b =4,则x 3a-2b 的值是( )A .278B .2716C .11D .1910.若320,a b -++=则a b +的值是( )A .2B .1C .0D .1-二、填空题(本大题共6小题,每小题3分,共18分)1.27-的立方根是________.2.如图,A α∠=,,ABC ACD ∠∠的平分线相交于点1P ,11,PBC PCD ∠∠的平分线相交于点2P ,2P BC ∠,2PCD ∠的平分线相交于点3P ……以此类推,则n P ∠的度数是___________(用含n 与α的代数式表示).3.已知点A (0,1),B (0 ,2),点C 在x 轴上,且2ABC S ∆=,则点C 的坐标________.4.已知15x x +=,则221x x +=________________. 5.如图,已知C 为线段AB 的中点,D 在线段CB 上.若DA=6,DB=4,则CD=_____.6.如图,已知AE 是△ABC 的边BC 上的中线,若AB=8cm,△ACE 的周长比△AEB 的周长多2cm,则AC=________.三、解答题(本大题共6小题,共72分)1.解下列方程:(1)2(x +3)=5(x -3) 2123x -()=435x --x2.解不等式2151132x x -+-≤,把它的解集在数轴上表示出来,并求出这个不等式的负整数解.3.如图,直线AB ∥CD,BC 平分∠ABD,∠1=65°,求∠2的度数.4.已知:在ABC 中,C 90∠=,AC 6cm =,BC 8cm =.()1如图1,若点B关于直线DE的对称点为点A,连接AD,试求ACD的周长;()2如图2,将直角边AC沿直线AM折叠,使点C恰好落在斜边AB上的点N,且=,求CM的长.BN4cm5.“大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B“的学生人数.6.某商贸公司有A、B两种型号的商品需运出,这两种商品的体积和质量分别如下表所示:(1)已知一批商品有A、B两种型号,体积一共是20立方米,质量一共是10.5吨,求A、B两种型号商品各有几件?(2)物资公司现有可供使用的货车每辆额定载重3.5吨,容积为6立方米,其收费方式有以下两种:①按车收费:每辆车运输货物到目的地收费600元;②按吨收费:每吨货物运输到目的地收费200元.现要将(1)中商品一次或分批运输到目的地,如果两种收费方式可混合使用,商贸公司应如何选择运送、付费方式,使其所花运费最少,最少运费是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、C3、C4、C5、C6、C7、A8、D9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、-3.2、12nα⎛⎫ ⎪⎝⎭ 3、(4,0)或(﹣4,0)4、235、16、10cm三、解答题(本大题共6小题,共72分)1、(1)x=7;(2)x=12.2、1x ≥-;解集在数轴上表示见解析;负整数解为-1.3、50°.4、()1ACD 的周长14cm =;()2CM 3cm =.5、(1)40;(2)72;(3)280.6、(1)A 种型号商品有5件,B 种型号商品有8件;(2)先按车收费用3辆车运送18m 3,再按吨收费运送1件B 型产品,运费最少为2000元。
湘教版七年级下册数学期末测试卷及含答案A4版打印

湘教版七年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、下列因式分解正确的是()A.x 2-xy+x=x(x-y)B.ax 2-9=a(x+3)(x-3)C.x 2-2x+4=(x-1)2+3D.a 3+2a 2b+ab 2=a(a+b) 22、如果一组数据x1, x2,…,xn的方差是4,则另一组数据x1+3,x 2+3,…,xn+3的方差是()A.4B.7C.8D.193、如图,在长方形ABCD中,放入六个形状、大小相同的小长方形即空白的长方形,若,,则一个小长方形的面积为()A.16cm 2B.21cm 2C.24cm 2D.32 cm 24、下列图形中,不是轴对称图形的是()A. B. C. D.5、下列计算正确的是()A. B. C. D.6、顺次连结菱形各边中点所得到四边形一定是( )A.平行四边形B.正方形C.矩形D.菱形7、下列运算正确的是()A. B. C. D.8、将一个直角三角板和一把直尺如图放置,如果∠α=47°,则∠β的度数是()A.43°B.47°C.30°D.60°9、若□×3xy=3x2y,则□内应填的单项式是()A.xyB.3xyC.xD.3x10、下列等式中成立的是()A. B. C.D.11、有下列两个命题:①若两个角是对顶角,则这两个角相等;②若一个三角形的两个内角分别为30°和60°,则这个三角形是直角三角形.说法正确的是()A.命题①正确,命题②不正确B.命题①、②都正确C.命题①不正确,命题②正确D.命题①、②都不正确12、把多项式4x-x2-4分解因式,结果正确的是()A. x(4-x)-4B. 4x-(x+2)(x-2)C. -(x-2)2D. -(x+2)213、二元一次方程组的解为()A. B. C. D.14、下列运算正确的是()A. B. C.D.15、下列运算正确的是()A. B. C. D.(a 2b 3)2=a 4b 6二、填空题(共10题,共计30分)16、如图,EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD的度数.请将解题过程填写完整。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级(下)数学期末试题
班次:_____姓名:__________
一、选择题(本题有9小题,每小题4分,共36分)
1.在△ABC 中,若∠A =∠B =40º,则∠C 等于( )
(A )40º (B )60º (C )80º (D )100º
2.下列计算正确的是( )
(A )(2a )3=6a 3(B )a 2·a =a 2(C )a
3+a 3=a 6 (D )(a 3)2=a 6 3.不等式组 的解集是( )
4.一个三角形的两边长为3和4,第三边长为奇数,则这个三角形的周长是( )
(A )11 (B )12 (C )13 (D )10或12
7. 等腰三角形的一个角是50°,那么它的另外两个角分别是( )
(A) 65°,65° (B) 50°,80° ( C) 65°,65°或50°,80° (D) 90°,40°
8.
(A) 6.5 (B) 5 (C ) 4.5 (D) 3
9.张颖同学把自己一周的支出情况,用如图所示的统计图来表示.则从图中可以看出( )
A.一周支出的总金额
B .一周各项支出的金额
C .一周内各项支出金额占总支出的百分比
D .各项支出金额在一周中的变化情况
二、填空题(本题有8小题,每小题4分,共32分)
9.如图1,AD 是线段BC 的垂直平分线.已知△ABC 的周长为14cm , A BC =4cm ,则AB =__________cm .
3-x >1
2x +1<2(A )x >2(B )x <1(C )1<x<2
(D )x <1
25.方程组x +3y =5x -6y =2的解是()(A )x =4y =13(B )x =2y =1(C )x =8y =1(D )x =0y =16.(a +b )2与(a -b )2的差是(
)(A )2a 2+2b
2(B )4ab (C )4a 2b 2(D )2a 4+2b 4数据2,-3,3,-2,的方差s 2等于()10.x =2y =1是方程组ax +by =4ax -by =0
的解,那么(a -b )(a +b )=
B D C
11.如果4x 2+mx +25是一个完全平方式,则实数m 的值是__________.
13. 120,160,200,分别以
15. 将ΔABC 经过平移后得到ΔEFG,已知∠A=30°,∠B=70°,
那么∠F= 度。
16.如图直线AB 、CD 相交于点O ,OE ⊥AB ,O 为垂足, 如果∠EOD = 38°,则∠AOC = ,∠COB = 。
三、解答题(本题有小题,共27分)
17.(5分)已知⎪⎩⎪⎨⎧->--≥--3
212)
1(
3)3(211x
x x x 并化简x x ---15
18.(5分)解方程组:⎪⎪⎩⎪⎪⎨⎧-=+-=-13
32
7
3132y x y x
12.不等式组4-2x ≤13x +1≤7
的整数解是12,14,14
为权数,那么这组数据的平均数是14.已知x +1x =5,则x 2+1
x 2=
19. (5分)先化简再求值:(3x+1)(3x-1)-(3x+1)2,其中x=16.
20.(5分)已知一次式 y=kx+b ,当x为20,30时,y的值分别为68,86,
求k , b 各等于多少?
21(7分)某码头货场有甲种货物1530吨,乙种货物1150吨。
安排用A,B两种不同规格的集装箱共50个,将这批货物运往外地。
已知甲种货物35吨和乙种货物15吨可以装满一个A型集装箱;甲种货物25吨和乙种货物35吨可以装满一个B型集装箱。
按此要求安排A,B两种集装箱的个数,有哪几种运输方案?请你设计方案。
四· 探索题
22.(5分)如果一个正整数能表示为两个连续奇数的平方差,
那么称这个正整数为“奇特数”.如:
8=32-12,
16=52-32,
24=72-52,
⋯⋯
因此8,16,24这三个数都是奇特数.
(1)56这个数是奇特数吗?为什么?
(2)设两个连续奇数的2n-1和2n+1(其中n取正整数),由这两个连续奇数构造的奇特数是8的倍数吗?为什么?。