第六章 假设检验.
合集下载
第6章 假设检验

×
样本均数 分布未知
样本均数服从 t分布
( X-t / 2 ( ) .S X, X+t / 2 ( ) .S X )
样本均数服从 正态分布
N ( , 2 / n)
N ( , S 2 / n)
( X-u / 2 . X, X+u / 2 . X )
( X-u / 2 .S X, X+u / 2 .S X )
时,当P值在检验水准α 附近时,应慎重做结论。
α 是犯Ⅰ型错误的最大概率,P是犯Ⅰ型错误的实际概率。
3.假设检验的统计意义
假设检验的实际意义
不管是接受还是拒绝零假设都未必有实际意义; 拒绝零假设时,即使P值很小,总体之间差异可能很小,不具有
实际意义;
接受零假设时,不代表总体之间没有差异,可能由于样本量过 小,“证据不足”,“补充证据”后,仍可能拒绝零假设;
样本均数 分布未知
×
样本均数服从 正态分布
Ⅳ N
σ 已知? Y
u
X
X
X X / n S/ n
样本均数服从 t分布
样本均数服从 正态分布
N ( , / n)
2
N ( , S 2 / n)
样本均数与总体 均数比较 (大样本:u检验) (小样本:?检验)
两样本均数比较
若小概率事件发生了,则我们犯了经验主义错误;
因为小概率事件发生可能性为α ,则我们犯经验主义错 误的概率为α ,这种错误称为Ⅰ型ห้องสมุดไป่ตู้误。
若小概率事件没有发生,接受零假设时,还是有可能犯错
误,这时候错误是教条主义,称为Ⅱ型错误。
统计学第六章假设检验

10
即 z 拒绝域,没有落入接受域,所以没有足够理由接受原假设H0, 同
时,说明该类型电子元件的使用寿命确实有了显著的提高。
第六章 假设检验
1. 正态总体均值的假设检验
(2) 总体方差 2 未知的情形
双侧举例:【例 6-6】某厂用生产线上自动包装的产品重量服从正态
分布,每包标准重量为1000克。现随机抽查9包,测得样本平均重量为
100个该类型的元件,测得平均寿命为102(小时), 给定显著水平α=0.05,
问,该类型的电子元件的使用寿命是否有明显的提高?
解:该检验的假设为右单侧检验 H0: u≤100, H1: u>100
已知 z z0.05 1.645
zˆ x u0 n 100 (102 100 ) 2 1.645
986克,样本标准差是24克。问在α=0.05的显著水平下,能否认为生产线
工作正常? 解:该检验的假设为双侧检验 H0: u=0.5, H1: u≠0.5
已知 t /2 (n 1) t0.025 (9 1) 2.306, 而 tˆ x u 986 1000 1.75 可见 tˆ 1.75 2.306
设H0, 同时,说明该包装机生产正常。
其中 P( Z 1.8) 1 P( Z 1.8) 1 0.9281 0.0719 0.05。
第六章 假设检验
单侧举例:【例 6-4】某电子产品的平均寿命达到5000小时才算合格,
现从一批产品中随机抽出12件进行试验,产品的寿命分别为
5059, 3897, 3631, 5050, 7474, 5077, 4545, 6279, 3532, 2773, 7419, 5116
的显著性水平=0.05,试测算该日生产的螺丝钉的方差是否正常?
第六章--假设检验基础课件

两样本所属总体方差相等且两总体均为正态分布
H 0 : 1 2H 1 :1 2 ( 单 1 2 或 侧 1 2 )
当H0成立时,检验统计量:
t X1X2 ~t, n1n22
Sc2n 11n12
第六章 假设检验基础
Sc2
n1
1S12 n2 1S22
n1 n2 2
X1 X1 2 X2 X2 2 n1 n2 2
第六章 假设检验基础
55、作出推断结论:当P≤时,结论为 按所取检验水准α拒绝H0,接受H1,差异有 统计学显著性意义。如果P> ,结论为按 所取检验水准α不拒绝H0,差异无统计学显 著性意义。其间的差异是由抽样误差引起
的。
第六章 假设检验基础
1.建立检验假设
原 假 设 H0:0 14.1 备 择 假H设1 :0(单 侧 ) 检 验 水 准: 0.05
第六章 假设检验基础
检验假设为:
H 0 : d 0H 1 :d 0 ( 单 d 0 或 侧 d 0 )
当H0成立时,检验统计量:
td0 ~t, n1
Sd n
第六章 假设检验基础
表6第-1二用节药前t后检患儿验血清中免疫球蛋白IgG(mg/dl)含量
二、序号配对设计资用料药前的t 检验 用药后
n1 20, X1 17.15,S1 1.59,n1 34, X2 16.92,S2 1.42
Sc2
n1
1S12 n2 1S22
n1 n2 2
2011.592 3411.422
20342
2.2 0
t X1 X2 17.1516.92 0.550
Sc2
1 n1
1 n2
2.20 1 1 20 34
得治疗前后舒张压(mmHg)的差值(前–后)如下表。问新药和标准药的疗效
H 0 : 1 2H 1 :1 2 ( 单 1 2 或 侧 1 2 )
当H0成立时,检验统计量:
t X1X2 ~t, n1n22
Sc2n 11n12
第六章 假设检验基础
Sc2
n1
1S12 n2 1S22
n1 n2 2
X1 X1 2 X2 X2 2 n1 n2 2
第六章 假设检验基础
55、作出推断结论:当P≤时,结论为 按所取检验水准α拒绝H0,接受H1,差异有 统计学显著性意义。如果P> ,结论为按 所取检验水准α不拒绝H0,差异无统计学显 著性意义。其间的差异是由抽样误差引起
的。
第六章 假设检验基础
1.建立检验假设
原 假 设 H0:0 14.1 备 择 假H设1 :0(单 侧 ) 检 验 水 准: 0.05
第六章 假设检验基础
检验假设为:
H 0 : d 0H 1 :d 0 ( 单 d 0 或 侧 d 0 )
当H0成立时,检验统计量:
td0 ~t, n1
Sd n
第六章 假设检验基础
表6第-1二用节药前t后检患儿验血清中免疫球蛋白IgG(mg/dl)含量
二、序号配对设计资用料药前的t 检验 用药后
n1 20, X1 17.15,S1 1.59,n1 34, X2 16.92,S2 1.42
Sc2
n1
1S12 n2 1S22
n1 n2 2
2011.592 3411.422
20342
2.2 0
t X1 X2 17.1516.92 0.550
Sc2
1 n1
1 n2
2.20 1 1 20 34
得治疗前后舒张压(mmHg)的差值(前–后)如下表。问新药和标准药的疗效
卫生统计学课件_第六章_假设检验

16
公式:t
自由度:对子数 - 1
适用条件:两组配对计量资料。 例题:p. 34, 例8
三、两个小样本均数比较的 t 检验
▲目的:由两个样本均数的差别推断两样本
所代表的总体均数间有无差别。 ▲计算公式及意义: t 统计量: 自由度:n1 + n2 –2
18
▲ 适用条件:
(1)已知/可计算两个样本均数及它们的标准差 ;
38
(2)当不能拒绝
II 类错误的概率 β 值的两个规律:
1. 当样本量一定时, α 愈小, 则 β 愈大,反之…; 2.当 α 一定时, 样本量增加, β 减少.
39
4. 正确理解P值的意义, P值很小时“拒绝H0 ”,P值的
大小不要误解为总体参数间差异的大小; 拒绝H0 只是说 差异不为零。 统计学中的差异显著或不显著,和日常生活中所说的差 异大小概念不同. (不仅区别于均数差异的大小,还区别 于均数变异的大小)
统计推断
用样本信息推论总体特征的过程。
包括:
参数估计: 运用统计学原理,用从样本计算出来的统计
指标量,对总体统计指标量进行估计。
假设检验:又称显著性检验,是指由样本间存在的差
别对样本所代表的总体间是否存在着差别做出判断。
第一节
▲显著性检验;
假设检验
▲科研数据处理的重要工具;
▲某事发生了:
是由于碰巧?还是由于必然的原 因?统计学家运用显著性检验来 处理这类问题。
45
41
是非判断: ( )1.标准误是一种特殊的标准差,其 表示抽样误差的大小。 ( )2.N一定时,测量值的离散程度越 小,用样本均数估计总体均数的抽样误差 就越小。 ( )3.假设检验的目的是要判断两个样 本均数的差别有多大。
公式:t
自由度:对子数 - 1
适用条件:两组配对计量资料。 例题:p. 34, 例8
三、两个小样本均数比较的 t 检验
▲目的:由两个样本均数的差别推断两样本
所代表的总体均数间有无差别。 ▲计算公式及意义: t 统计量: 自由度:n1 + n2 –2
18
▲ 适用条件:
(1)已知/可计算两个样本均数及它们的标准差 ;
38
(2)当不能拒绝
II 类错误的概率 β 值的两个规律:
1. 当样本量一定时, α 愈小, 则 β 愈大,反之…; 2.当 α 一定时, 样本量增加, β 减少.
39
4. 正确理解P值的意义, P值很小时“拒绝H0 ”,P值的
大小不要误解为总体参数间差异的大小; 拒绝H0 只是说 差异不为零。 统计学中的差异显著或不显著,和日常生活中所说的差 异大小概念不同. (不仅区别于均数差异的大小,还区别 于均数变异的大小)
统计推断
用样本信息推论总体特征的过程。
包括:
参数估计: 运用统计学原理,用从样本计算出来的统计
指标量,对总体统计指标量进行估计。
假设检验:又称显著性检验,是指由样本间存在的差
别对样本所代表的总体间是否存在着差别做出判断。
第一节
▲显著性检验;
假设检验
▲科研数据处理的重要工具;
▲某事发生了:
是由于碰巧?还是由于必然的原 因?统计学家运用显著性检验来 处理这类问题。
45
41
是非判断: ( )1.标准误是一种特殊的标准差,其 表示抽样误差的大小。 ( )2.N一定时,测量值的离散程度越 小,用样本均数估计总体均数的抽样误差 就越小。 ( )3.假设检验的目的是要判断两个样 本均数的差别有多大。
第六章 假设检验

,接受 H 1 。表明在
第二节 总体均值的假设检验
(二)总体为非正态分布或分布未知 当总体分布为非正态分布且大样本时,检验的 X 统计量为 Z
0
/
n
在“原假定成立”的条件下,只要样本容量充分 大(一般习惯上要求 n≥30),它近似服从标准正 态分布。 如果标准差σ未知,只需用样本标准差S作为它 的估计量代替式中的 σ即可,这时检验统计量为
检验统计量服从t分布与其服从标准正态分布的检验结论判断方法一致
例6.3 某厂购买了一台新的生产机器,生产零件的长度规定为10厘米。为了 检验机器的性能是否良好,质检员随机抽取了25件产品,测得其平均长度为9.8厘 米,标准差为0.4厘米。假设生产的零件长度服从正态分布,问在显著性水平 =0.05时,该机器的性能是否良好。 2 解:设 X 表示该机器生产零件的长度,则有 X ~ N (, ),样本容量n=25,样本 均值 x =9.8厘米,样本标准差 s 0.4 厘米。根据问题提出的假设为: H0 : 0 =10厘米; H 1 : 0 =10厘米 这是一个双侧检验问题,因为总体服从正态分布但总体方差未知,用检验的小 样本数据检验,故当 H 0 成立时,检验统计量为: x 0
t
s n
规定显著性水平为 =0.05,查表得到临界值 t / 2(24) 2.064 ,所以原假设的否 定域为:t 2.064 。 计算检验统计量的值: t x 0 9.8 10 2.5
s 0.4 n 100
因为 |-2.5|=2.5>2.064,落在否定域,所以否定 H 0 显著性水平 =0.05时,不能说该机器的性能良好。 互动地带 6-11
第Ⅱ类错误,也称取伪错误 本来是非真的,却根据检验统计量的值把它给接受了。 发生这种错误的概率通常用 表示,即 P(接受H 0 / H 0非真) 在样本容量一定时,犯两种错误的风险是彼此消长的。两者要同时得到控制只 有增加样本容量。在样本容量受限时,通常根据研究问题的性质决定重点控制 第一类错误的风险还是控制第二类错误的风险。
第六章 假设检验

第六章 假设检验
第一节 假设检验的基本原理
第二节 总体参数假设检验
假设检验在统计方法中的地位
统计方法
描述统计 推断统计
参数估计
假设检验
第一节 假设检验的基本原理
一、假种假设,然后利
用样本信息来判断原假设是否成立,决定应接受或
否定假设。假设检验也称为显著性检验。
在此,我们关心的是新机床加工零件的椭圆度总体均值 与老机床加工零件的椭圆度总体均值为0.081mm是否有 不同,可作如下假设 原假设 H 0 : 0.081mm 没有明显差异 备择假设 H1 : 0.081mm 有显著差异, 这是一个双侧检验问题,所以只要 > 0 或 < 0 二者之间有一个成立就可以拒绝原假设。
例某机床厂加工一种零件,根据经验知道,该厂加工零件的椭
圆度近似服从正态分布,其总体均值为0=0.081mm,总体标
准差为= 0.025 今换一种新机床进行加工,抽取n=200个零件 进行检验,得到的椭圆度为0.076mm。试问新机床加工零件的 椭圆度的均值与以前有无显著差异?(=0.05)
H 0 : 0.081mm H1 : 0.081mm < 0 或 > 0 有一个成立就可以拒绝原假设。
为了减少冤枉好人的概率,应尽可能接受原假设, 判被告无罪,这可能增大了放过坏人的概率。
第二节总体参数假设检验
一、总体均值的假设检验
总体均值的检验
(检验统计量)
是
总体 是否已知 ?
否
小 样本容量 n
用样本标 准差S代替
大
z 检验
z 检验
t 检验
Z
X 0
n
Z
X 0 S n
t
第一节 假设检验的基本原理
第二节 总体参数假设检验
假设检验在统计方法中的地位
统计方法
描述统计 推断统计
参数估计
假设检验
第一节 假设检验的基本原理
一、假种假设,然后利
用样本信息来判断原假设是否成立,决定应接受或
否定假设。假设检验也称为显著性检验。
在此,我们关心的是新机床加工零件的椭圆度总体均值 与老机床加工零件的椭圆度总体均值为0.081mm是否有 不同,可作如下假设 原假设 H 0 : 0.081mm 没有明显差异 备择假设 H1 : 0.081mm 有显著差异, 这是一个双侧检验问题,所以只要 > 0 或 < 0 二者之间有一个成立就可以拒绝原假设。
例某机床厂加工一种零件,根据经验知道,该厂加工零件的椭
圆度近似服从正态分布,其总体均值为0=0.081mm,总体标
准差为= 0.025 今换一种新机床进行加工,抽取n=200个零件 进行检验,得到的椭圆度为0.076mm。试问新机床加工零件的 椭圆度的均值与以前有无显著差异?(=0.05)
H 0 : 0.081mm H1 : 0.081mm < 0 或 > 0 有一个成立就可以拒绝原假设。
为了减少冤枉好人的概率,应尽可能接受原假设, 判被告无罪,这可能增大了放过坏人的概率。
第二节总体参数假设检验
一、总体均值的假设检验
总体均值的检验
(检验统计量)
是
总体 是否已知 ?
否
小 样本容量 n
用样本标 准差S代替
大
z 检验
z 检验
t 检验
Z
X 0
n
Z
X 0 S n
t
第六章假设检验

当我们把真实的原假设当成假的加以拒绝, 称为第一类错误,也称弃真错误、α错误,犯 第一类错误的概率就是显著性水平α;当我们 把不真实的原假设当作真的加以接受,称为第 二类错误,也称取伪错误、β错误,犯第二类 错误的概率是不确定的。
α也称为生产者风险:在生产者将产品售给消费者时,通常 要进行产品的质量检验,原假设总是产品是合格的,但是检验 时生产者总是担心把合格品检验为不合格品,也就是第一类错 误α,所以α也称为生产者风险。 β也称为消费者风险:在消费者一方总恐怕把不合格品检验 不出来而当作合格品接受,因而β也称为消费者风险。
(二)未知总体分布及总体方差,大样本 1.检验总体均值的统计量
(三)总体为正态分布、方差未知、小样本 1. 检验统计量
2. 拒绝域的临界值 可以根据双侧检验还是单侧检验来确定拒绝域的 临界值。当为双侧检验,显著性水平a时,临界值 为 ;当为右侧检验时,显著性水平a,监界值 为 ;当为左侧检验时,显著性水平为a,临界值 为- 。
备择假设,常用H1表示。即原假设被否定之 后而采取的逻辑对立假设。
(二)检验统计量
有了两个假设,就要根据数据来对他们进行判 断。数据的代表是作为其函数的统计量,对样 本数据进行加工并用来判断是否接受原假设的统计 量称作检验统计量 统计量最常用的是Z统计量、t统计量。
统计量的选择要根据研究的参数及其估计量 的分布、抽样的方式、总体方差是否已知等多种 因素来确定
第四步:确定决策规则。拒绝或没有拒绝原假设的决 策是建立在由样本数据来进行统计检验并将其与假设 的抽样分布比较。抽样分布被分成两个部分,拒绝域 和非拒绝域。如果原假设是真实的,那么统计检验不 可能落入拒绝域。因此,如果统计检验落入了拒绝域, 我们拒绝原假设;否则,我们不能拒绝它。
α也称为生产者风险:在生产者将产品售给消费者时,通常 要进行产品的质量检验,原假设总是产品是合格的,但是检验 时生产者总是担心把合格品检验为不合格品,也就是第一类错 误α,所以α也称为生产者风险。 β也称为消费者风险:在消费者一方总恐怕把不合格品检验 不出来而当作合格品接受,因而β也称为消费者风险。
(二)未知总体分布及总体方差,大样本 1.检验总体均值的统计量
(三)总体为正态分布、方差未知、小样本 1. 检验统计量
2. 拒绝域的临界值 可以根据双侧检验还是单侧检验来确定拒绝域的 临界值。当为双侧检验,显著性水平a时,临界值 为 ;当为右侧检验时,显著性水平a,监界值 为 ;当为左侧检验时,显著性水平为a,临界值 为- 。
备择假设,常用H1表示。即原假设被否定之 后而采取的逻辑对立假设。
(二)检验统计量
有了两个假设,就要根据数据来对他们进行判 断。数据的代表是作为其函数的统计量,对样 本数据进行加工并用来判断是否接受原假设的统计 量称作检验统计量 统计量最常用的是Z统计量、t统计量。
统计量的选择要根据研究的参数及其估计量 的分布、抽样的方式、总体方差是否已知等多种 因素来确定
第四步:确定决策规则。拒绝或没有拒绝原假设的决 策是建立在由样本数据来进行统计检验并将其与假设 的抽样分布比较。抽样分布被分成两个部分,拒绝域 和非拒绝域。如果原假设是真实的,那么统计检验不 可能落入拒绝域。因此,如果统计检验落入了拒绝域, 我们拒绝原假设;否则,我们不能拒绝它。
第六章 假设检验

绝原假设。这时需要选择另一个假设,这个假设 就是备择假设。即:
Ha : u≠3190(克) (有符号 , 或 )
2、Ha为备择假设,表示1990年新生儿与1989年新
生儿体重有明显差异。也可表达为:
Ha:u ≠ m0 或 Ha:u- m0 ≠0
6.1 假设检验的基本概念
提出假设 (结论与建议)
第Ⅰ类错误的概率的条件下,尽可能使犯第Ⅱ类
错误的概率减小。
6.2 一个总体参数的检验
1. 总体均值的检验 2. 总体比例的检验
第四章 概率论与抽样分布
6.2 一个总体参数的检验
总体均值的检验
(检验样本是否来自某已知总体均值的总体)
第四章 概率论与抽样分布
6.2 一个总体参数的检验
总体均值的检验( 2 已知)
H0 :m 1.35 Ha :m <1.35 = 0.01
n = 50 临界值(c):
拒绝H0 0.01
-2.33 0
检验统计量:
z 1.3152 1.35 2.6061 0.365749 50
决策:
拒绝H0
结论:
新机床加工的零件尺寸的平均误 差与旧机床相比有极显著的降低
z
6.2 一个总体参数的检验
6.2 一个总体参数的检验
显著性水平和拒绝域
抽样分布
(左侧检验 )
置信水平
拒绝H0
1 -
临界值
H0 样本统计量
第四章 概率论与抽样分布
6.2 一个总体参数的检验
显著性水平和拒绝域
抽样分布
(左侧检验 )
置信水平
拒绝H0
1 -
临界值
H0
样本统计量
第四章 概率论与抽样分布
Ha : u≠3190(克) (有符号 , 或 )
2、Ha为备择假设,表示1990年新生儿与1989年新
生儿体重有明显差异。也可表达为:
Ha:u ≠ m0 或 Ha:u- m0 ≠0
6.1 假设检验的基本概念
提出假设 (结论与建议)
第Ⅰ类错误的概率的条件下,尽可能使犯第Ⅱ类
错误的概率减小。
6.2 一个总体参数的检验
1. 总体均值的检验 2. 总体比例的检验
第四章 概率论与抽样分布
6.2 一个总体参数的检验
总体均值的检验
(检验样本是否来自某已知总体均值的总体)
第四章 概率论与抽样分布
6.2 一个总体参数的检验
总体均值的检验( 2 已知)
H0 :m 1.35 Ha :m <1.35 = 0.01
n = 50 临界值(c):
拒绝H0 0.01
-2.33 0
检验统计量:
z 1.3152 1.35 2.6061 0.365749 50
决策:
拒绝H0
结论:
新机床加工的零件尺寸的平均误 差与旧机床相比有极显著的降低
z
6.2 一个总体参数的检验
6.2 一个总体参数的检验
显著性水平和拒绝域
抽样分布
(左侧检验 )
置信水平
拒绝H0
1 -
临界值
H0 样本统计量
第四章 概率论与抽样分布
6.2 一个总体参数的检验
显著性水平和拒绝域
抽样分布
(左侧检验 )
置信水平
拒绝H0
1 -
临界值
H0
样本统计量
第四章 概率论与抽样分布
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n 即 z A,没有落入拒绝域内 , 所以没有足够的理由 来拒绝原假设 H 0,该样本的信息说明生 产正常
检验统计量的 P 值为: P( Z 1.8) 1 - P( Z 1.8) 1 - 0.9281 0.0719 0.05 因此,拒绝原假设的证 据也不强。
2.单侧检验 对于单侧检验,以左侧检验为例,要检验的 假设: H0 : 0对H1 : 0 1)假定原假设 H 0 : 0成立, 并令
S是样本标准方差,即检验统计量服从自 由度为n-1的t分布,我们称之为t检验统 计量,n>30, 可用z检验代替
例6.6 解:根据问题的要求,确定原假设与备择假设
H0 : 1000 对H1 : 1000
这是一个双侧检验 , S 24 已知, 可用t检验。 x 986, 0.05, 查表,t / 2 (n 1) t / 2 (8) 2.306, 因此,拒绝域A {t ; t 2.306}, 计算t检验统计量的值
P( Z za)
2)通过查标准正态分布表求出临界值za.由此临界 值确定由检验统计量表示的拒绝域
A {z; z z / 2 }
3)对于样本 x ( x1 , x2 ,..., xn )计算检验统计量的值
n 不能拒绝原假设
z
x 0
, 若 z A,则拒绝原假设,否则
即 z A {z, z 1.645},落入拒绝域内 , 所以没有充分的理由 接受原假设H 0,接受备择假设,该样 本的数据支持该公司的 自我声称
三、正态总体方差的假设检验
2 2 设原假设H 0 : 2 0 , H1 : 2 0
检验统计量为
2
(n 1) S 2
2
2 ~ ( n 1 )
根据给定的显著性水平 ,有
2 P[ 2 (n - 1)] 2 我们就可以得到临界值 (n - 1)作为我们判断
拒绝还是接受原假设的 依据
例6.9 解:首先可以求得样本方差 S 0.226 ,该假设检验的过程如 下
建立假设:原假设 H 0 : 2 0.04, H1 : 2 0.04; 计算检验统计量: (n 1) S 2
2
总体方差正常
第三节 非参数检验
一、非参数假设检验概述 二、总体分布的 检验 检验中的原假设和备择假设 (一) 原假设和备择假设分别为:
2
H 0 : F ( x) F0 ( x), H1 : F ( x) F0 ( x) 其中F ( x)表示总体的分布函数, F0 ( x)是某个已知的分布函数
H0 : 0.5对H1 : 0.5
由于X ~ N(, 0.0152) , 2 0.0152已知, 可用z检验。
0.05,1 0.95,查表,z / 2 1.96, 而检验统计量的值z 满足:
z
x
பைடு நூலகம்
9 (0.509 0.5) 1.8 1.96 0.015
并作出判断,根据资料 ,计算:
z
x
100(102 100) 2 1.645 10
n 由于样本统计量的值 z 2 1.645, 所以没有充分的理由 接受原假设H 0,说明该类型电子元件 的使用寿命确实 有明显提高。
(二)总体方差未知的情形
检验统计量服从t分布 X t ~ t (n 1) S n
t
x 9 (986 1000 ) 1.75 S 24 n
由于 t 2.306,即t A,没有落入拒绝域内 , 所以没有充分的理由 来拒绝原假设 H 0,该样本的数据说明生 产线的工作正常
例6.7 解:这是左单侧检验,根据问题的要求,确定 原假设与备择假设
H0 : 500对H1 : 500 由于是单侧检验 , 所以只有一个临界值, 已知n 10, 0.01, 查表,t (n 1) t (9) 2.821 ,
如果问题是离散型的, 则原假设为: H 0 : P ( X xi ) pi ( pi , i 1,2...是已知的分布列 ) 如果问题是连续型的, 则原假设为: H 0 : f ( x) f 0 ( x)( f 0 ( x)是已知的分布族 )
(二) 检验的步骤 1.建立假设:H0 : F ( x) F0 ( x), H1 : F ( x) F0 ( x) 2.将样本数据按区间进行适当的划分:分为m区间, xi 1 i m 1 各个区间的分界值为 ,其中 同时应保证各个区间互不相容。 3.计算在各个区间内的实际频数 f i (1 i m) 也即为样本数值落在各区间的样本个数 4.设原假设H0为真,然后计算总体X落在各个区间 的理论概率值: pi P( xi1 X xi ) F0 ( xi ) F0 ( xi1 ) 从而计算出各个区间的理论频数为npi,其中n为样 本量。
一、单侧检验与双侧检验 (一)适当的原假设与备选假设
例6.2
原假设,H 0 : 250 备择假设,H1 : 250
250可以认为不会出现
(二)假设检验的形式 1.双侧检验:如图6-1 2.左侧检验 3.右侧检验
二、总体均值的假设检验
(一)总体方差已知的情形 标准化变换: Z X ~ N (0,1)
n
1.双侧检验 给定显著性水平a,对于双侧检验,要检验的假设: H 0 : 0对H1 : 0 1)假定原假设 H 0 : 0成立
P( Z za / 2) 或P( Z za / 2) 1
2)通过查标准正态分布表求出临界值 z / 2 由此,再确定由检验统计量表示的拒绝域
2
2
2 ~ ( 5)
确定临界值,查表: 02.05 (5) 11.07 计算样本统计量及判断 : (n 1) S 2 (6 1 ) 0.2262 2 5 . 108 (5) 11.07 0.05 2 0.04 所以,我们没有充分的 理由拒绝原假设,即认 为该日生产的螺钉
例6.5 解:根据题意,要检验的假设为右单侧检验
假设H 0 : 100,即平均使用寿命无提高 对H1 : 100 ,即平均使用寿命有明 显提高
已知x 102, n 100, 10,可用z检验。
0.05,1 2 0.9,查表,z 1.645, 计算样本统计量
计算样本均值和样本标 准差 x S
x 5007 500.7
n 10
( x x)
n 1
2
392.1 6.601 10 1
x 10(500.7 500) 0.335 S 6.601 n 由于贴t 0.335 t0.01 (9) 2.821 ,所以没有充分的理由 拒绝原假设H 0, t 该批产品显著的高于标 准,说明生产线出毛病 了
假设检验的基本程序 1.根据实际问题的需要提出合适的原假设H0和备选 假设H1 2.构造适当的(检验)统计量,并在H0为真的假定条件 下确定该统计量的抽样分布 3.根据实际问题的要求给定检验的显著性水平a,利 用检验统计量的抽样分布和显著性水平a求出相应 的临界值,从而划分出拒绝域和接受域 4.由样本观测值计算检验统计量的观测值以查看样 本(或检验统计量)的观测值是属于拒绝域还是接 受域,从而对假设作出拒绝或接受的决策
错误概率 第一类错误概率 PH (X A),A是拒绝域 第二类错误概率 PH (X A) 1 PH (X A) 如例6-1犯第一类错误概率
0
1
1
PH0 (X A) P 0 ( X 10 1.96)
皮尔逊原则: 显著性检验: 检验功效:1
第二节 总体参数检验
如果从P-值的大小来检验假设,则P-值的计算公式
P( Z z )
例6.4 解:根据题意,要检验的假设为左侧检验 H 0 : 5000 对H1 : 5000
已知x 4986,n 12, 1400, 可用z检验。
0.05,1 2 0.9,查表,z 1.645, 而检验统计量的值z 满足:
2
5.调整区间:由于该检验要求n足够大,以及 npi不能太小(根据经验,一般要求n≥50, npi >5) 如果npi≤5,则将理论频数npi≤5的区间合并 6.构造检验统计量:当原假设为真时,样本频数fi应该与理 论频数npi接近,即| fi- npi|不应太大,根据皮尔逊定理, 可以构造如下的检验统计量: 2 m ( f np ) 2 2
二、两种类型的错误与检验功能
1.原假设为真,决策结果接受原假设,因此决策正 确。 2.原假设为真,但决策结果拒绝原假设,因此决策 产生错误。这是一种“弃真错误”,也称作假设 检验的第一类错误,用a表示。 3.原假设不真,决策结果拒绝原假设,因此决策正 确。 4.原假设不真,决策结果接受原假设,因此决策产 生错误。这是一种“纳伪错误”,也称作假设检 验的第一类错误,用 表示。
A {z; z z / 2 }
3)对于样本 x ( x1 , x2 ,..., xn )计算检验统计量的值
z
x
, 若 z A,则拒绝原假设,否则
n 不能拒绝原假设
如果从P-值的大小来检验假设,则P-值的计算公式
P( Z z )
例6.3 解:根据题意,要检验的假设为双侧检验
z
x 0
12(4986 5000 ) 1.296 1.645 1400
n 即 z A {z, z z }, 没有落入拒绝域内 , 所以没有足够的理由 来拒绝原假设 H 0,即样本的信息支持该 批电子产品合格