广州市七年级下学期数学期末考试试卷
广州七年级下学期期末考数学

七年级(下)期末数学试卷一、选择题(本大题共12小题,共36.0分)1. 下面有4个汽车标志图案,其中是轴对称图形的有( )A. 1个B. 2个C. 3个D. 4个2. 据广东省卫计委通报,5月27日广东出现首例中东呼吸综合症(MERS )疑似病例,MERS 属于冠状病毒,病毒粒子成球形,直径约为140纳米(1米=1000000000纳米),用科学记数法表示为( )A. 1.4×1011米B. 140×109米C. 1.4×10−11米D. 1.4×10−7米 3. 下列条件中,能判定两个直角三角形全等的是() A. 一锐角对应相等B. 两锐角对应相等C. 一条边对应相等D. 两条直角边对应相等4. 下列运算正确的是( ) A. a 6÷a 2=a 3 B. a 3⋅a 3⋅a 3=3a 3C. (a 3)4=a 12D. (a +2b)2=a 2+4b 25. 下列计算正确的是( ) A. (3x −y)(3x +y)=9x 2−y 2 B. (x −9)(x +9)x 2−9C. (x −y)(−x +y)=x 2−y 2D. (x −12)2=x 2−14 6. 已知m +n =2,mn =-2,则(1-m )(1-n )的值为( )A. −1B. 1C. −3D. 57. 下列判断正确的个数是( )(1)能够完全重合的两个图形全等;(2)两边和一角对应相等的两个三角形全等;(3)两角和一边对应相等的两个三角形全等;(4)全等三角形对应边相等.A. 1个B. 2个C. 3个D. 4个8. 如图,下图是汽车行驶速度(千米/时)和时间(分)的关系图,下列说法其中正确的个数为( )(1)汽车行驶时间为40分钟;(2)AB 表示汽车匀速行驶;(3)在第30分钟时,汽车的速度是90千米/时;(4)第40分钟时,汽车停下来了.A. 1个B. 2个C. 3个D. 4个9. 下列关于概率的描述属于“等可能性事件”的是( )A. 交通信号灯有“红、绿、黄”三种颜色,它们发生的概率B. 掷一枚图钉,落地后钉尖“朝上”或“朝下”的概率C. 小亮在沿着“直角三角形”三边的小路上散步,他出现在各边上的概率D. 小明用随机抽签的方式选择以上三种答案,则A、B、C被选中的概率10.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A. 三角形的稳定性B. 两点之间线段最短C. 两点确定一条直线D. 垂线段最短11.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BCBD,点D到边AB的距离为6,则BC于D,若CD=12的长是()A. 6B. 12C. 18D. 2412.如图,已知AB∥CD,直线l分别交AB、CD于点E、F,EG平分∠BEF,若∠EFG=40°,则∠EGF的度数是()A. 60∘B. 70∘C. 80∘D. 90∘二、填空题(本大题共4小题,共12.0分)13.若x2+mx+9是一个完全平方式,则m的值是_______.14.如图,有一小球在如图所示的地板上面自由滚动,则小球在地板上最终停留在黑色区域的概率为______.15.如图,把一张长方形纸条ABCD沿EF折叠,若∠1=56°,则∠EGF应为______.16.如图,直线l是四边形ABCD的对称轴.若AD∥BC,则下列结论:(1)AB∥CD;(2)AB=BC;(3)BD平分∠ABC;(4)AO=CO.其中正确的有______(填序号).三、计算题(本大题共3小题,共18.0分)17.计算:)0+(-0.2)2014×52014(1)2-2+(23(2)已知a m=3,a n=9,则a m+n=______.18.化简,再求值:[(x+2y)2-(3x+y)(3x-y)-5y2]÷2x,其中x=-1,y=1.219.一个不透明口袋中装有5个白球和6个红球,这些球除颜色外完全相同,充分搅匀后随机摸球.(1)如果先摸出一白球,将这个白球放回,再摸出一球,那么它是白球的概率是多少?(2)如果先摸出一白球,这个白球不放回,再摸出一球,那么它是白球的概率是多少?(3)如果先摸出一红球,这个红球不放回,再摸出一球,那么它是白球的概率是多少?四、解答题(本大题共5小题,共40.0分)20.如图,方格纸中的每个小方格都是边长为1个单位的正方形,△ABC的顶点均在格点上,直线a为对称轴,A和C都在对称轴上.(1)△ABC以直线a为对称轴作△AB1C;(2)若∠BAC=30°,则∠BAB1=______°;(3)求△ABB1的面积等于______.21.“西气东输”是造福子孙后代的创世纪工程.现有两条高速公路和A、B两个城镇(如图),准备建立一个燃气中心站P,使中心站到两条公路距离相等,并且到两个城镇距离相等,请你画出中心站位置.22.如图表示一辆汽车在行驶途中的速度v(千米/时)随时间t(分)的变化示意图.(1)从点A到点B、点E到点F、点G到点H分别表明汽车在什么状态?(2)汽车在点A的速度是多少?在点C呢?(3)司机在第28分钟开始匀速先行驶了4分钟,之后立即以减速行驶2分钟停止,请你在本图中补上从28分钟以后汽车速度与行驶时间的关系图.23.如图,已知:点B、E、F、C在同一直线上,∠A=∠D,BE=CF,且AB∥CD.求证:AF∥ED证明:∵BE=FC∴BE+EF=FC+EF(______)即:______∵AB∥CD∴∠B=∠C(______)∠A=∠D∠B=∠C在△ABF和△DCE中,有BF=CE∴△ABF≌△DCE(______)∴∠AFB=∠DEC(______)∴AF∥ED(______)(1)如图1,已知以△ABC的边AB、AC分别向外作等腰直角△ABD与等腰直角△ACE,∠BAD=∠CAE=90°,连接BE和CD相交于点O,AB交CD于点F,AC交BE于点G,求证:BE=DC,且BE⊥DC.(2)探究:若以△ABC的边AB、AC分别向外作等边△ABD与等边△ACE,连接BE和CD相交于点O,AB交CD于点F,AC交BE于G,如图2,则BE与DC还相等吗?若相等,请证明,若不相等,说明理由;并请求出∠BOD的度数?答案和解析1.【答案】C【解析】解:由轴对称图形的概念可知第1个,第2个,第3个都是轴对称图形.第4个不是轴对称图形,是中心对称图形.故是轴对称图形的有3个.故选:C.根据轴对称图形的概念结合4个汽车标志图案的形状求解.本题考查了轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.2.【答案】D【解析】解:140纳米=1.4×10-7米,故选:D.绝对值<1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.3.【答案】D【解析】【分析】此题主要考查两个直角三角形全等的判定,除了一般三角形全等的4种外,还有特殊的判定:HL.判定两个直角三角形全等的方法有:SAS、SSS、AAS、ASA、HL五种.据此作答.【解答】解:两直角三角形隐含一个条件是两直角相等,要判定两直角三角形全等,起码还要两个条件,故可排除A、C;而B构成了AAA,不能判定全等;D构成了SAS,可以判定两个直角三角形全等.故选D.4.【答案】C【解析】解:A、a6÷a2=a4,故A错误;B、a3•a3•a3=a9,故B错误;C、(a3)4=a12,故C正确;D、(a+2b)2=a2+4b2+4ab,故D错误.故选:C.根据同底数幂的乘法与除法以及幂的乘方和完全平方公式的知识求解即可求得答案.本题主要考查了同底数幂的乘法与除法以及幂的乘方和完全平方公式的知识,解题的关键是熟记法则.5.【答案】A【解析】解:A、原式=9x2-y2,符合题意;B、原式=x2-81,不符合题意;C、原式=-x2+2xy-y2,不符合题意;D、原式=x2-x+,不符合题意,故选:A.各项计算得到结果,即可作出判断.此题考查了平方差公式,以及完全平方公式,熟练掌握公式是解本题的关键.6.【答案】C【解析】解:∵m+n=2,mn=-2,∴(1-m)(1-n)=1-n-m+mn=1-(n+m)+mn=1-2-2=-3;故选:C.根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn,再代入计算即可.本题主要考查多项式乘以多项式,掌握多项式乘以多项式的法则是本题的关键.注意不要漏项,漏字母,有同类项的合并同类项.7.【答案】C【解析】解:(1)能够完全重合的两个图形全等,正确;(2)两边和一角对应相等的两个三角形全等,必须是SAS才可以得出全等,错误;(3)两角和一边对应相等的两个三角形全等,是一角的对边或两角的夹边对应相等,正确;(4)全等三角形对应边相等,正确.所以有3个判断正确.故选:C.分别利用全等图形的概念以及全等三角形的判定方法进而判断得出即可.此题主要考查了全等图形的概念与性质,正确掌握判定两三角形全等的方法是解题关键.8.【答案】C【解析】解:读图可得,在x=40时,速度为0,故(1)(4)正确;AB段,y的值相等,故速度不变,故(2)正确;x=30时,y=80,即在第30分钟时,汽车的速度是80千米/时;故(3)错误;故选:C.观察图象,结合题意,明确横轴与纵轴的意义,依次分析选项可得答案.解决本题的关键是读懂图意,明确横轴与纵轴的意义.9.【答案】D【解析】解:∵交通信号灯有“红、绿、黄”三种颜色,但是红黄绿灯发生的时间一般不相同,∴它们发生的概率不相同,∴它不属于“等可能性事件”,∴选项A不正确;∵图钉上下不一样,∴钉尖朝上的概率和钉尖着地的概率不相同,∴它不属于“等可能性事件”,∴选项B不正确;∵“直角三角形”三边的长度不相同,∴小亮在沿着“直角三角形”三边的小路上散步,他出现在各边上的概率不相同,∴它不属于“等可能性事件”,∴选项C不正确;∵小明用随机抽签的方式选择以上三种答案,A、B、C被选中的相同,∴它属于“等可能性事件”,∴选项D正确.故选:D.A:交通信号灯有“红、绿、黄”三种颜色,但是红黄绿灯发生的时间一般不相同,所以它们发生的概率不相同,不属于“等可能性事件”,据此判断即可.B:因为图钉上下不一样,所以钉尖朝上的概率和钉尖着地的概率不相同,所以掷一枚图钉,落地后钉尖“朝上”或“朝下”的概率不相同,不属于“等可能性事件”,据此判断即可.C:因为“直角三角形”三边的长度不相同,所以小亮在沿着“直角三角形”三边的小路上散步,他出现在各边上的概率不相同,不属于“等可能性事件”,据此判断即可.D:小明用随机抽签的方式选择以上三种答案,则A、B、C被选中的相同,属于“等可能性事件”,据此判断即可.此题主要考查了概率的意义,以及“等可能性事件”的性质和应用,要熟练掌握.10.【答案】A【解析】解:构成△AOB,这里所运用的几何原理是三角形的稳定性.故选:A.根据加上窗钩,可以构成三角形的形状,故可用三角形的稳定性解释.本题考查三角形的稳定性在实际生活中的应用问题.三角形的稳定性在实际生活中有着广泛的应用.11.【答案】C【解析】【分析】本题考查了角平分线性质的应用,注意:角平分线上的点到这个角的两边的距离相等.过D作DE⊥AB于E,则DE=6,根据角平分线性质求出CD=DE=6,求出BD即可.【解答】解:过D作DE⊥AB于E,∵点D到边AB的距离为6,∴DE=6,∵∠C=90°,AD平分∠BAC,DE⊥AB,∴CD=DE=6,∵CD=DB,∴DB=12,∴BC=6+12=18,故选C.12.【答案】B【解析】解:∵AB∥CD,∴∠BEF+∠EFG=180°,又∠EFG=40°∴∠BEF=140°;∵EG平分∠BEF,∴∠BEG=∠BEF=70°,∴∠EGF=∠BEG=70°.故选:B.根据两直线平行,同旁内角互补可求出∠FEB,然后根据角平分线的性质求出∠BEG,最后根据内错角相等即可解答.两直线平行时,应该想到它们的性质,由两直线平行的关系得到角之间的数量关系,从而达到解决问题的目的.13.【答案】±6【解析】解:∵x2+mx+9是一个完全平方式,∴m=±6,故答案为:±6.利用完全平方公式的结构特征判断即可确定出m的值.此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.14.【答案】13【解析】解:∵由图可知,黑色方砖3块,共有9块方砖,∴黑色方砖在整个地板中所占的比值==,∴小球停留在黑色区域的概率是.故答案为:.先求出黑色方砖在整个地板中所占的比值,再根据其比值即可得出结论.本题考查的是几何概率,用到的知识点为:几何概率=相应的面积与总面积之比.15.【答案】68°【解析】【分析】本题考查了平行线的性质,翻折变换的性质,熟记各性质并准确识图是解题的关键.根据两直线平行,内错角相等可得∠2=∠1,再根据翻折变换的性质和平角的定义求出∠3,然后根据两直线平行,内错角相等可得∠EGF=∠3.【解答】解:如图,∵长方形的对边AD∥BC,∴∠2=∠1=56°,由翻折的性质和平角的定义可得∠3=180°-2∠2=180°-2×56°=68°,∵AD∥BC,∴∠EGF=∠3=68°.故答案为:68°.16.【答案】(1)(2)(3)(4)【解析】解:如图,∵直线l是四边形ABCD的对称轴,∴∠1=∠2,∠3=∠4,∵AD∥BC,∴∠2=∠3,∴∠1=∠3=∠4,∴AB∥CD,AB=BC,故(1)(2)正确;由轴对称的性质,AC⊥BD,∴BD平分∠ABC,AO=CO(等腰三角形三线合一),故(3)(4)正确.综上所述,正确的是(1)(2)(3)(4).故答案为:(1)(2)(3)(4).根据轴对称的性质可得∠1=∠2,∠3=∠4,根据两直线平行,内错角相等可得∠2=∠3,从而得到∠1=∠3=∠4,然后根据内错角相等,两直线平行可得AB∥CD,等角对等边可得AB=BC,再根据等腰三角形三线合一的性质可得BD平分∠ABC,AO=CO.本题考查了轴对称的性质,平行线的性质以及等腰三角形三线合一的性质,熟记各性质是解题的关键,用阿拉伯数字加弧线表示角更形象直观.17.【答案】27【解析】解:(1)2-2+()0+(-0.2)2014×52014=+1+(-0.2×5)2014=+(-1)2014=+1=;(2)∵a m=3,a n=9,∴a m+n=a m×a n=3×9=27,故答案为:27.(1)先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到有的顺序进行.(2)利用同底数幂的乘法法则的逆运算进行计算即可.本题主要考查了实数的运算以及幂的运算,解题时注意:同底数幂相乘,底数不变,指数相加.18.【答案】解:当x =-12,y =1时,原式=(x 2+4xy +4y 2-9x 2+y 2-5y 2)÷2x =(-8x 2+4xy )÷2x=-4x +2y=2+2=4【解析】根据整式的运算法则即可求出答案.本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.19.【答案】解:(1)先摸出一白球,将这个白球放回,那么第二次模球时,仍然有5个白球和6个红球,则再摸出一球,那么它是白球的概率是P =511;(2)先摸出一白球,这个白球不放回,那么第二次摸球时,有4个白球和6个红球,那么它是白球的概率是P =410=25;(3)先摸出一红球,这个红球不放回,那么第二次摸球时,有5个白球和5个红球,那么它是白球的概率是P =510=12.【解析】列表得出所有等可能的情况数,即可确定出所求的概率.此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.20.【答案】60;28【解析】解:(1)△AB 1C 如图所示;(2)∠BAB 1=2∠BAC=2×30°=60°;(3)△ABB1的面积=×8×7=28.故答案为:60;28.(1)根据网格结构找出点B关于直线a的对称点B1的位置,然后与A、C顺次连接即可;(2)根据轴对称的性质解答即可;(3)根据三角形的面积公式列式计算即可得解.本题考查了利用轴对称变换作图,熟练掌握网格结构准确找出对应点的位置.21.【答案】解:如图所示,.【解析】到两条公路的距离相等,则要画两条公路的夹角的角平分线,到A,B两点的距离相等又要画线段AB的垂直平分线,两线的交点就是点P的位置.本题主要考查了角平分线的性质及垂直平分线的性质.解题的关键是理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.22.【答案】解:(1)根据图象知道:点A到点B是匀速运动、点E到点F是匀加速运动、点G到点H匀减速运动;(2)根据图象知道:汽车在点A的速度是30千米每小时,在点C的速度为0千米每小时;(3)如图所示:.【解析】(1)根据图象可以确定从点A到点B、点E到点F、点G到点H分别表明汽车的运动状态;(2)根据图象可以直接得到汽车在点A和点C的速度;(3)结合已知条件利用图象可以画出从28分钟以后汽车速度与行驶时间的关系图.本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.23.【答案】等式的性质;BF=CE;两直线平行内错角相等;AAS;全等三角形对应角相等;内错角相等两直线平行【解析】证明:∵BE=FC,∴BE+EF=FC+EF(等式的性质),即BF=CE,∵AB∥CD,∴∠B=∠C(两直线平行内错角相等),∠A=∠D,∠B=∠C,在△ABF和△DCE中,,∴△ABF≌△DCE(AAS),∴∠AFB=∠DEC(全等三角形对应角相等),∴AF∥ED(内错角相等两直线平行).故答案为:等式的性质;BF=CE;两直线平行内错角相等;AAS;全等三角形对应角相等;内错角相等两直线平行由BE=CF,利用等式的性质得到BF=CE,再由AB与DC平行,得到两对内错角相等,利用AAS得到三角形ABF与三角形DCE全等,利用全等三角形的对应角相等得到一对内错角相等,利用内错角相等两直线平行即可得证.此题考查了全等三角形的判定与性质,以及平行线的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.24.【答案】(1)证明:∵△ABD和△ACE都是等腰直角三角形,∴AB=AD,AE=AC,又∵∠BAD=∠CAE=90°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠DAC=∠BAE,在△ABE和△ADC中,{AB=AD∠DAC=∠BAE AE=AC,∴△ABE≌△ADC(SAS),∴BE=DC,∠ABE=∠ADC,又∵∠BFO=∠DFA,∠ADF+∠DFA=90°,∴∠ABE+∠BFO=90°,∴∠BOF=∠DAF=90,即BE⊥DC.(2)解:结论:BE=CD.理由:如图2,∵以AB、AC为边分别向外做等边△ABD和等边△ACE,∴AD=AB,AE=AC,∠ACE=∠AEC=60°,∠DAB=∠EAC=60°,∴∠DAB+∠BAC=∠EAC+∠BAC,∴∠DAC=∠BAE,在△DAC和△BAE中,{AD=AB∠DAC=∠BAE AC=AE,∴△DAC≌△BAE(SAS),∴CD=BE,∠BEA=∠ACD,∴∠BOC=∠ECO+∠OEC=∠DCA+∠ACE+∠OEC=∠BEA+∠ACE+∠OEC=∠ACE+∠AEC=60°+60°=120°.∴∠BOD=180°-∠BOC=60°.【解析】(1)只要证明△ABE≌△ADC即可解决问题;(2)根据等边三角形的性质得出AD=AB,AE=AC,∠ACE=∠AEC=60°,∠DAB=∠EAC=60°,求出∠DAC=∠BAE,根据SAS推出△DAC≌△BAE,根据全等三角形的性质得出∠BEA=∠ACD,求出∠BOC=∠ECO+∠OEC=∠ACE+∠AEC,再根据∠BOD=180°-∠BOC,即可求出∠BOD;此题考查了全等三角形的判定与性质,等边三角形的性质,熟练掌握全等三角形的判定与性质是解本题的关键。
广东省广州市七年级下学期数学期末考试试卷

广东省广州市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)下列三条线段中(单位长度都是cm),能组成三角形的是()A . 3,4,9B . 50,60,12C . 11,11,31D . 20,30,502. (2分)两条平行线被第三条直线所截,则()A . 一对内错角的平分线互相平行B . 一对同旁内角的平分线互相平行C . 一对对顶角的平分线互相平行D . 一对邻补角的平分线互相平行3. (2分)分解因式2x2− 4x + 2的最终结果是()A . 2x(x− 2)B . 2(x2− 2x + 1)C . 2(x− 1)2D . (2x− 2)24. (2分)(2017·新野模拟) 下列说法正确的是()A . 为检测某市正在销售的酸奶质量,应采用抽样调查的方式B . 两名同学连续六次的数学测试平均分相同,那么方差较大的同学的数学成绩更稳定C . 抛掷一个正方体骰子,点数为奇数的概率是D . “打开电视,正在播放动画片”是必然事件5. (2分)已知点P在x轴上,P到y轴的距离是3,则点P的坐标为()A . (0,3)B . (3,0)C . (-3,0)D . (3,0)或(-3,0)6. (2分)(2017·霍邱模拟) 要使多项式(x2+px+2)(x﹣q)不含关于x的二次项,则p与q的关系是()A . 相等B . 互为相反数C . 互为倒数D . 乘积为﹣17. (2分)若点P在第二象限,点P到x轴的距离是4,到y轴的距离是3,点P的坐标是()A . (﹣4,3)B . (4,﹣3)C . (﹣3,4)D . (3,﹣4)8. (2分) (2019七下·长春期中) 用若干量载重量为6吨的火车运一批货物,若每辆货车只装4吨,则剩下18吨货物;若每辆货车装6吨,则最后一辆车装的货物不足5吨,若设有辆货车,则应满足的不等式组是()A .B .C .D .9. (2分)在0到20的自然数中,立方根是有理数的共有()A . 1个B . 2个C . 3个D . 4个10. (2分)(2017·新泰模拟) 一个盒子中装有四张完全相同的卡片,分别写着2cm,3cm,4cm和5cm,盒子外有两张卡片,分别写着3cm和5cm,现随机从盒中取出一张卡片,与盒子外的两张卡片放在一起,以卡片上的数量分别作为三条线段的长度,那么这三条线段能构成三角形的概率是()A .B .C .D .11. (2分) (2016九上·西城期中) 如图,将△ABC绕着点C顺时针旋转50°后得到△A′B′C′.若∠A=40°,∠B′=110°,则∠BCA′的度数是()A . 90°B . 80°C . 50°D . 30°12. (2分)下列说法正确的是()A . 为了解我国中学生课外阅读的情况,应采用全面调查的方式B . 一组数据1,2,5,5,5,3,3的中位数和众数都是5C . 抛掷一枚硬币100次,一定有50次“正面朝上”D . 甲组数据的方差是0.03,乙组数据的方差是0.1,则甲组数据比乙组数据稳定二、填空题 (共4题;共5分)13. (2分) (2017八上·余杭期中) 命题“ 的倍数都是偶数”的逆命题是________,这个逆命题是一个________命题.(填“真”或“假”)14. (1分) (2017七下·椒江期末) 已知点P(a-2,a)在x轴上,那么a=________.15. (1分) (2016八上·江苏期末) 王胖子在扬州某小区经营特色长鱼面,生意火爆,开业前5天销售情况如下:第一天46碗,第二天54碗,第三天69碗,第四天62碗,第五天87碗,如果要清楚地反映王胖子的特色长鱼面在前5天的销售情况,不能选择________统计图.16. (1分)某学生身高为1.63m,体重为60kg,该学生的体重指数为________ .(精确到0.1)三、解答题 (共6题;共56分)17. (5分) (2017七下·昌平期末) 分解因式:ax2-2ax+a .18. (15分)(2016·攀枝花) 某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价m元收费;若每月用水量超过14吨,则超过部分每吨按市场价n元收费.小明家3月份用水20吨,交水费49元;4月份用水18吨,交水费42元.(1)求每吨水的政府补贴优惠价和市场价分别是多少?(2)设每月用水量为x吨,应交水费为y元,请写出y与x之间的函数关系式;(3)小明家5月份用水26吨,则他家应交水费多少元?19. (10分)如图,在平面直角坐标系中,已知点B(4,2),BA⊥x轴于A.(1)求tan∠BOA的值;(2)将点B绕原点逆时针方向旋转90°后记作点C,求点C的坐标.20. (11分) (2019八上·北京期中) 定义:任意两个数a 、b ,按规则c = a +b-ab 扩充得到一个新数c ,称所得的新数c 为“如意数”.(1)若a =2, b =-3,直接写出a 、b 的“如意数” c ;(2)若a =2, b = x2 +1,求a 、b 的“如意数” c ,并比较b 与c 的大小;(3)已知a=x2-1,且a 、b 的“如意数” c = x3 +3x2-1,则b =________(用含 x 的式子表示)21. (10分)如图①,把△ABC纸片沿DE折叠,使点A落在四边形BCED内部点A′的位置.通过计算我们知道:2∠A=∠1+∠2.请你继续探索:(1)如果把△ABC纸片沿DE折叠,使点A落在四边形BCED外部点A′的位置,如图②所示.此时∠A与∠1、∠2之间存在什么样的关系?并说明理由.(2)如果把四边形ABCD沿EF折叠,使点A、D分别落在四边形BCFE内部点A′、D′的位置,如图③所示.你能求出∠A′、∠D′、∠1 与∠2之间的关系吗?并说明理由.22. (5分) (2016七上·县月考) 如图,∠CAB=100°,∠ABF=130°,AC∥MD,BF∥ME,求∠DME 的度数.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共5分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共56分)17-1、18-1、18-2、18-3、19-1、19-2、20-1、20-2、20-3、21-1、21-2、22-1、。
广州市七年级下册数学期末试卷-百度文库

广州市七年级下册数学期末试卷-百度文库一、选择题1.如图1的8张长为a ,宽为b (a <b )的小长方形纸片,按如图2的方式不重叠地放在长方形ABCD 内,未被覆盖的部分(两个长方形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S ,当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,则a ,b 满足( )A .b =5aB .b =4aC .b =3aD .b =a2.如图所示,直线a ,b 被直线c 所截,则1∠与2∠是( )A .同位角B .内错角C .同旁内角D .对顶角3.下列运算正确的是 () A .()23524a a -= B .()222a b a b -=- C .61213a a +=+ D .325236a a a ⋅= 4.若一个多边形的每个内角都为108°,则它的边数为( ) A .5 B .8 C .6 D .105.小晶有两根长度为 5cm 、8cm 的木条,她想钉一个三角形的木框,现在有长度分别为 2cm 、3cm 、 8cm 、15cm 的木条供她选择,那她第三根应选择( )A .2cmB .3cmC .8cmD .15cm 6.计算23x x 的结果是( ) A .5xB .6xC .8xD .23x 7.已知4m =a ,8n =b ,其中m ,n 为正整数,则22m +6n =( )A .ab 2B .a +b 2C .a 2b 3D .a 2+b 3 8.将一副三角板(含30°、45°的直角三角形)摆放成如图所示,图中∠1的度数是( )A .90°B .120°C .135°D .150°9.下列各式中,能用平方差公式计算的是( )A .(p +q )(p +q )B .(p ﹣q )(p ﹣q )C .(p +q )(p ﹣q )D .(p +q )(﹣p ﹣q ) 10.关于x 的不等式组0233(2)x m x x ->⎧⎨-≥-⎩恰有三个整数解,那么m 的取值范围为( ) A .10m -<≤ B .10m -≤<C .01m ≤<D .01m <≤ 二、填空题11.计算:m 2•m 5=_____.12.如图,直线//AB CD ,直线GE 交直线AB 于点E ,EF 平分AEG ∠.若∠1=58°,则AEF ∠的大小为____.13.根据不等式有基本性质,将()23m x -<变形为32x m >-,则m 的取值范围是__________. 14.每支圆珠笔3元,每本练习簿4元,买圆珠笔和练习簿共花了14元,则买了圆珠笔______支.15.将一张长方形纸片ABCD 沿EF 折叠后ED 与BC 的交点为G 、D 、C 分别在M 、N 的位置上,若52EFG ∠=︒,则21∠-∠=_____________︒.16.已知关于x 的不等式3()50a b x a b -+->的解集是1x <,则关于x 的不等式4ax b >的解集为_______.17.若a m =2,a n =3,则a m +n 的值是_____.18.已知21x y =⎧⎨=⎩是方程2x ﹣y +k =0的解,则k 的值是_____. 19.如图,两块三角板形状、大小完全相同,边//AB CD 的依据是_______________.20.甲乙两队进行篮球对抗赛,比赛规则规定每队胜一场得3分,平一场得1分,负一场得0分,两队一共比赛了10场,甲队保持不败,得分不低于24分,甲队至少胜了___________场.三、解答题21.已知关于x 、y 的二元一次方程组21322x y x y k +=⎧⎪⎨-=-⎪⎩(k 为常数). (1)求这个二元一次方程组的解(用含k 的代数式表示);(2)若()2421y x +=,求k 的值; (3)若14k ≤,设364m x y =+,且m 为正整数,求m 的值. 22.(1)填一填21-20=2( )22-21=2( )23-22=2( )⋯(2)探索(1)中式子的规律,试写出第n 个等式,并说明第n 个等式成立; (3)计算20+21+22+⋯+22019.23.如图,已知:点A C 、、B 不在同一条直线,AD BE . (1)求证:180B C A ∠+∠-∠=︒.(2)如图②,AQ BQ 、分别为DAC EBC ∠∠、的平分线所在直线,试探究C ∠与AQB ∠的数量关系;(3)如图③,在(2)的前提下,且有AC QB ,直线AQ BC 、交于点P ,QP PB ⊥,请直接写出::DAC ACB CBE ∠∠∠=______________.24.先化简后求值:224(2)(2)(2)x x y x y y x --+---,其中1x =-,2y =-.25.因式分解:(1)12abc ﹣9a 2b ;(2)a 2﹣25;(3)x 3﹣2x 2y +xy 2;(4)m 2(x ﹣y )﹣(x ﹣y ).26.(知识回顾):如图①,在△ABC 中,根据三角形内角和定理,我们知道∠A +∠B +∠C =180°.如图②,在△ABC 中,点D 为BC 延长线上一点,则∠ACD 为△ABC 的一个外角.请写出∠ACD 与∠A 、∠B 的关系,直接填空:∠ACD = .(初步运用):如图③,点D 、E 分别是△ABC 的边AB 、AC 延长线上一点.(1)若∠A =70°,∠DBC =150°,则∠ACB = °.(直接写出答案)(2)若∠A =70°,则∠DBC +∠ECB = °.(直接写出答案)(拓展延伸):如图④,点D 、E 分别是四边形ABPC 的边AB 、AC 延长线上一点. (1)若∠A =70°,∠P =150°,则∠DBP +∠ECP = °.(请说明理由)(2)分别作∠DBP 和∠ECP 的平分线,交于点O ,如图⑤,若∠O =40°,求出∠A 和∠P 之间的数量关系,并说明理由.(3)分别作∠DBP 和∠ECP 的平分线BM 、CN ,如图⑥,若∠A =∠P ,求证:BM ∥CN .27.因式分解:(1)16x 2-9y 2(2)(x 2+y 2)2-4x 2y 228.如图,在数轴上,点A 、B 分别表示数1、23x -+.(1)求x 的取值范围.(2)数轴上表示数2x -+的点应落在( )A .点A 的左边B .线段AB 上C .点B 的右边【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】分别表示出左上角阴影部分的面积S 1和右下角的阴影部分的面积S 2,两者求差,根据当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,即可求得a 与b 的数量关系.【详解】解:设左上角阴影部分的面积为1S ,右下角的阴影部分的面积为2S ,12S S S =-225315[()]AD AB a AD a AB a BC AB b BC AB b 225315()BC AB a BCa AB a BC ABb BC AB b 22(5)(3)15a b BC b a AB a b . AB 为定值,当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,50a b, 5b a .故选:A .【点睛】本题考查了整式的混合运算在几何图形问题中的应用,数形结合并根据题意正确表示出两部分阴影的面积之差是解题的关键.2.C解析:C【分析】根据同旁内角的定义可判断.【详解】∵∠1和∠2都在直线c 的下侧,且∠1和∠2在直线a 、b 之内∴∠1和∠2是同旁内角的关系故选:C .【点睛】本题考查同旁内角的理解,紧抓定义来判断.3.D解析:D【解析】A 选项:(﹣2a 3)2=4a 6,故是错误的;B 选项:(a ﹣b )2=a 2-2ab+b 2,故是错误的;C 选项:6123a a +=+13,故是错误的; 故选D .4.A解析:A【解析】已知多边形的每一个内角都等于108°,可得多边形的每一个外角都等于180°-108°=72°,所以多边形的边数n=360°÷72°=5.故选A.5.C解析:C【解析】【分析】在三角形中,任意两边之和大于第三边,任意两边之差小于第三边.【详解】∵5+8=13,8-5=3∴根据三角形三边关系,第三条边应在3cm~13cm 之间(不包含3和13).故选C【点睛】本题考查三角形三边关系,较为简单,熟练掌握三角形三边关系即可解题.6.A解析:A【分析】根据同底数幂相乘,底数不变,指数相加即可求解.【详解】解:∵23235x x x x +==,故选A .【点睛】本题考查同底数幂的运算性质,较容易,熟练掌握同底数幂的运算法则是解题的关键.7.A解析:A【分析】将已知等式代入22m+6n=22m×26n=(22)m•(23)2n=4m•82n=4m•(8n)2可得.【详解】解:∵4m=a,8n=b,∴22m+6n=22m×26n=(22)m•(23)2n=4m•82n=4m•(8n)2=ab2,故选:A.【点睛】本题主要考查幂的运算,解题的关键是熟练掌握幂的乘方与积的乘方的运算法则.8.B解析:B【详解】解:根据题意得:∠1=180°-60°=120°.故选:B【点睛】本题考查直角三角板中的角度的计算,难度不大.9.C解析:C【分析】利用完全平方公式和平方差公式对各选项进行判断.【详解】(p+q)(p+q)=(p+q)2=p2+2pq+q2;(p﹣q)(p﹣q)=(p﹣q)2=p2﹣2pq+q2;(p+q)(p﹣q)=p2﹣q2;(p+q)(﹣p﹣q)=﹣(p+q)2=﹣p2﹣2pq﹣q2.故选:C.【点睛】本题考查了完全平方公式和平方差公式,熟练掌握公式的结构及其运用是解答的关键.10.C解析:C【分析】首先解不等式组求得不等式组的解集,然后根据不等式组有三个整数解,即可确定整数解,然后得到关于m的不等式,求得m的范围.【详解】解:0233(2)x m x x ->⎧⎨-≥-⎩①② 解不等式①,得x>m.解不等式②,得x ≤3.∴不等式组得解集为m<x ≤3.∵不等式组有三个整数解,∴01m ≤<.故选C.【点睛】本题考查了不等式组的整数解,解不等式组应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.二、填空题11.m7【分析】根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,据此计算即可.【详解】解:m2•m5=m2+5=m7.故答案为:m7.【点睛】本题考查了同底数幂的乘法,熟练掌握同解析:m 7【分析】根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,据此计算即可.【详解】解:m 2•m 5=m 2+5=m 7.故答案为:m 7.【点睛】本题考查了同底数幂的乘法,熟练掌握同底数幂的乘法法则是解答本题的关键. 12.61°【分析】根据平行线的性质可得∠GEB 的度数,进而得的度数,再根据角平分线的定义即得答案.【详解】解:,,.EF平分,.故答案为:61°.【点睛】本题考查了平行线的性质、角解析:61°【分析】∠的度数,再根据角平分线的定义即得根据平行线的性质可得∠GEB的度数,进而得AEG答案.【详解】AB CD,解://∴∠=∠=︒,158GEB∴∠=︒-︒=︒.AEG18058122∠,EF平分AEG∴∠=︒.AEF61故答案为:61°.【点睛】本题考查了平行线的性质、角平分线和平角的定义,属于基础题型,熟练掌握平行线的性质是解题关键.13.m<2【分析】根据不等式的性质即可求解.【详解】依题意得m-2<0解得m<2故答案为:m<2.【点睛】此题主要考查不等式的求解,解题的关键是熟知不等式的性质.解析:m<2【分析】根据不等式的性质即可求解.【详解】依题意得m-2<0解得m<2故答案为:m <2.【点睛】此题主要考查不等式的求解,解题的关键是熟知不等式的性质.14.2【分析】设圆珠笔x 支,表示出练习簿的数量,根据圆珠笔和练习簿数量都是整数,求出x 的值即可.【详解】设圆珠笔x 支,则练习簿本,圆珠笔和练习簿数量都是整数,则x=2时,, 故答案为2.【点睛解析:2【分析】设圆珠笔x 支,表示出练习簿的数量,根据圆珠笔和练习簿数量都是整数,求出x 的值即可.【详解】设圆珠笔x 支,则练习簿1434x -本,圆珠笔和练习簿数量都是整数,则x=2时,14324x -=, 故答案为2.【点睛】明确圆珠笔和练习簿数量都是整数是本题的关键,难度较小.15.28°【分析】根据平行线的性质求出∠DEF 的度数,然后根据折叠的性质算出∠GED 的度数,根据补角的定义算出∠1的度数,然后求解计算即可.【详解】解:∵AD ∥BC ,∴∠DEF=∠EFG=52解析:28°【分析】根据平行线的性质求出∠DEF 的度数,然后根据折叠的性质算出∠GED 的度数,根据补角的定义算出∠1的度数,然后求解计算即可.【详解】解:∵AD ∥BC ,∴∠DEF=∠EFG=52°,∵EFNM 是由EFCD 折叠而来∴∠GEF=∠DEF=52°,即∠GED=104°,∴∠1=180°-104°=76°,∵∠2=∠GED=104°,∴∠2-∠1=104°-76°=28°.故答案为28°.【点睛】本题考查了平行线的性质和折叠的性质,解决本题的关键是正确理解题意,熟练掌握平行线的性质和折叠的性质,能够根据折叠的性质找到相等的角.16.【分析】根据已知不等式的解集,即可确定a,b 之间得关系以及b 的符号,从而解不等式.【详解】解:∵的解集是,∴=1,a-b<0,∴a=2b,b<0.则不等式可以化为2bx>4b.∵b<解析:2x <【分析】根据已知不等式的解集,即可确定a,b 之间得关系以及b 的符号,从而解不等式.【详解】解:∵3()50a b x a b -+->的解集是1x <,∴()53a b a b --=1,a-b<0, ∴a=2b,b<0.则不等式4ax b >可以化为2bx>4b.∵b<0.∴x<2.即关于x 的不等式4ax b >的解集为x<2.【点睛】本题考查了不等式的解法,正确确定b 的符号是关键.17.6【分析】逆运用同底数幂相乘,底数不变指数相加进行计算即可得解.【详解】解:am+n =am•an=2×3=6.故答案为:6.【点睛】本题主要考查了逆运用同底数幂相乘,底数不变指数相加,解析:6【分析】逆运用同底数幂相乘,底数不变指数相加进行计算即可得解.【详解】解:a m+n=a m•a n=2×3=6.故答案为:6.【点睛】本题主要考查了逆运用同底数幂相乘,底数不变指数相加,掌握a m+n=a m•a n是解题的关键;18.-3【分析】把x与y的值代入方程计算即可求出k的值.【详解】解:把代入方程得:4﹣1+k=0,解得:k=﹣3,则k的值是﹣3.故答案为:﹣3.【点睛】此题考查的是根据二元一次方程的解析:-3【分析】把x与y的值代入方程计算即可求出k的值.【详解】解:把21xy=⎧⎨=⎩代入方程得:4﹣1+k=0,解得:k=﹣3,则k的值是﹣3.故答案为:﹣3.【点睛】此题考查的是根据二元一次方程的解,求方程中的参数,掌握二元一次方程解的定义是解决此题的关键.19.内错角相等,两直线平行【分析】利用平行线的判定方法即可解决问题.【详解】解:由题意:,(内错角相等,两直线平行)故答案为:内错角相等,两直线平行.【点睛】本题考查平行线的判定,解题的解析:内错角相等,两直线平行【分析】利用平行线的判定方法即可解决问题.【详解】∠=∠,解:由题意:ABD CDB∴(内错角相等,两直线平行)AB CD//故答案为:内错角相等,两直线平行.【点睛】本题考查平行线的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.20.7【分析】设甲队胜了x场,则平了(10-x)场,根据胜一场得3分,平一场得1分,负一场得0分,比赛10场,得分24分,列出不等式,求出x的最小整数解.【详解】设甲队胜了x场,则平了(10-x解析:7【分析】设甲队胜了x场,则平了(10-x)场,根据胜一场得3分,平一场得1分,负一场得0分,比赛10场,得分24分,列出不等式,求出x的最小整数解.【详解】设甲队胜了x场,则平了(10-x)场,由题意得,3x+(10-x)≥24,解得:x≥7,即甲队至少胜了7场.故答案是:7.【点睛】考查了一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出不等关系,列出不等式求解.三、解答题21.(1)218524k x ky -⎧=⎪⎪⎨-⎪=⎪⎩;(2)52k =或12k =-;(3)1或2. 【分析】(1)根据题意直接利用加减消元法进行计算求解即可;(2)由题意根据01(0)a a =≠和11n =以及2(1)1n -=(n 为整数)得到三个关于k 的方程,求出k 即可;(3)根据题意用含m 的代数式表示出k ,根据14k ≤,确定m 的取值范围,由m 为正整数,求得m 的值即可.【详解】 解:(1)21322x y x y k ⎧+=⎪⎪⎨⎪-=-⎪⎩①②, ①+②得:3412x k =+-,解得:218k x -=, ①-②得:3212y k =-+,解得:524k y -=, ∴二元一次方程组的解为:218524k x ky -⎧=⎪⎪⎨-⎪=⎪⎩. (2)∵01(0)a a =≠,2(42)1y x +=,∴20y =,即52204k -⨯=,解得:52k =; ∵11n =,2(42)1y x +=,∴421x +=,即214218k -⨯+=,解得:12k =-; ∵2(1)1n -=(n 为正整数),2(42)1y x +=, ∴4212x y +=-,为偶数,即214218k -⨯+=-,解得:52k =-; 当52k =-时,3532115222y k =-+=++=,为奇数,不合题意,故舍去. 综上52k =或12k =-. (3)∵215213643647842k k m x y k --=+=⨯+⨯=+,即172m k =+,∴2114m k -=, ∵14k ≤, ∴211144m k -=≤,解得94m ≤, ∵m 为正整数,∴m=1或2.【点睛】本题考查解二元一次方程组以及解一元一次不等式,根据题意列出不等式是解题的关键.22.(1)0,1,2(2)11222n n n ---=(3)22020-1【分析】(1)根据乘方的运算法则计算即可;(2)根据式子规律可得11222n n n ---=,然后利用提公因式法12n -可以证明这个等式成立;(3)设题中的表达式为a ,再根据同底数幂的乘法得出2a 的表达式相减即可.【详解】(1)10022212-=-=,21122422-=-=,32222842-=-=,故答案为:0,1,2;(2)第n 个等式为:11222n n n ---=,∵左边=()111222212n n n n ----=-=,右边=12n -,∴左边=右边,∴11222n n n ---=;(3)20+21+22+⋅⋅⋅⋅⋅⋅+22019=21-20+22-21+⋅⋅⋅⋅⋅⋅+22020-22019=22020-1∴01220192020222221++++=-….【点睛】此题主要考察了探寻数列规律问题,认真观察,总结出规律,并能正确的应用规律是解答此题的关键.23.(1)见详解;(2)2180C AQB ∠+∠=︒;(3)1:2:2【分析】(1)过点C 作CF AD ,则//BE CF ,再利用平行线的性质求解即可; (2)过点Q 作QM AD ,则//BE QM ,再利用平行线的性质以及角平分线的性质得出1()2AQE CBE CAD ∠=∠-∠,再结合(1)的结论即可得出答案; (3)由(2)的结论可得出12CAD CBE ∠=∠,又因为QP PB ⊥,因此180CBE CAD ∠+∠=︒,联立即可求出两角的度数,再结合(1)的结论可得出ACB ∠的度数,再求答案即可.【详解】解:(1)过点C 作CF AD ,则//BE CF ,∵//CF AD BE∴,180,ACF A BCF B ACF BCF C ∠=∠∠=︒-∠∠+∠=∠∴180180180B C A BCF C ACF C C ∠+∠-∠=︒-∠+∠-∠=-∠+∠=︒(2)过点Q 作QM AD ,则//BE QM ,∵QM AD ,//BE QM∴,AQM NAD BQM EBQ ∠=∠∠=∠∵AQ BQ 、分别为DAC EBC ∠∠、的平分线所在直线 ∴11,22NAD CAD EBQ CBE ∠=∠∠=∠ ∴1()2ABQ BQM AQM CBE CAD ∠=∠-∠=∠-∠ ∵180()1802C CBE AD AQB ∠=︒-∠-∠=︒-∠ ∴2180C AQB ∠+∠=︒(3)∵//AC QB ∴11,22AQB CAP CAD ACP PBQ CBE ∠=∠=∠∠=∠=∠ ∴11801802ACB ACP CBE ∠=︒-∠=︒-∠ ∵2180C AQB ∠+∠=︒∴12CAD CBE ∠=∠ ∵QP PB ⊥∴180CBE CAD ∠+∠=︒∴60,120CAD CBE ∠=︒∠=︒ ∴11801202ACB CBE ∠=︒-∠=︒ ∴::60:120:1201:2:2DAC ACB CBE ∠∠∠=︒︒︒=.故答案为:1:2:2.【点睛】本题考查的知识点有平行线的性质、角平分线的性质.解此题的关键是作出合适的辅助线,找准角与角之间的关系.24.2243x xy y -++,19【分析】根据整式的乘法运算法则,将多项式乘积展开,再合并同类项,即可化简,再代入x ,y 即可求值.【详解】解:原式2222222=44424243x x xy y xy x y xy x xy y -+---++=-++,将1x =-,2y =-代入,则原代数式的值为: 2243=x xy y -++()()()()22141232=1812=19--+⋅-⋅-+⋅--++.【点睛】本题考查整式的乘法,难度一般,是中考的常考点,熟练掌握多项式与多项式相乘的法则,即可顺利解题.25.(1)3ab (4c ﹣3a );(2)(a +5)(a ﹣5);(3)x (x ﹣y )2;(4)(x ﹣y )(m +1)(m ﹣1)【分析】(1)由题意原式直接提取公因式即可;(2)根据题意原式利用平方差公式分解即可;(3)由题意原式提取公因式,再利用完全平方公式分解即可;(4)根据题意原式提取公因式,再利用平方差公式分解即可.【详解】解:(1)12abc ﹣9a 2b =3ab (4c ﹣3a );(2)a 2﹣25=(a +5)(a ﹣5);(3)x 3﹣2x 2y +xy 2=x (x 2﹣2xy +y 2)=x (x ﹣y )2;(4)m 2(x ﹣y )﹣(x ﹣y )=(x﹣y)(m2﹣1)=(x﹣y)(m+1)(m﹣1).【点睛】本题考查提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解答本题的关键.26.知识回顾:∠A+∠B;初步运用:(1)80;(2)250;拓展延伸:(1)220;(2)∠A和∠P之间的数量关系是:∠P=∠A+80°,理由见解析;(3)见解析.【分析】知识回顾:根据三角形内角和即可求解.初步运用:(1)根据知识与回顾可求出∠DBC度数,进而求得∠ACB度数;(2)已知∠A度数,即可求得∠ABC+∠ACB度数,进而求得∠DBC+∠ECB度数.拓展延伸:(1)连接AP,根据三角形外角性质,∠DBP=∠BAP+∠APB,∠ECP=∠CAP+∠APC,得到∠DBP+∠ECP=∠BAC+∠BPC,已知∠BAC=70°,∠BPC=150°,即可求得∠DBP+∠ECP度数;(2)如图⑤,设∠DBO=x,∠OCE=y,则∠OBP=∠DBO=x,∠PCO=∠OCE=y,由(1)同理得:x+y=∠A+∠O,2x+2y=∠A+∠P,即可求出∠A和∠P之间的数量关系;(3)如图,延长BP交CN于点Q,根据角平分线定义,∠DBP=2∠MBP,∠ECP=2∠NCP,且∠DBP+∠ECP=∠A+∠BPC,∠A=∠BPC,得到∠BPC=∠MBP+∠NCP,因为∠BPC=∠PQC+∠NCP,证得∠MBP=∠PQC,进而得到BM∥CN.【详解】知识回顾:∵∠ACD+∠ACB=180°,∠A+∠B+∠ACB=180°,∴∠ACD=∠A+∠B;故答案为:∠A+∠B;初步运用:(1)∵∠DBC=∠A+∠ACB,∠A=70°,∠DBC=150°,∴∠ACB=∠DBC﹣∠A=150°﹣70°=80°;故答案为:80;(2)∵∠A=70°,∴∠ABC+∠ACB=110°,∴∠DBC+∠ECB=360°﹣110°=250°,故答案为:250;拓展延伸:(1)如图④,连接AP,∵∠DBP=∠BAP+∠APB,∠ECP=∠CAP+∠APC,∴∠DBP+∠ECP=∠BAP+∠APB+∠CAP+∠APC=∠BAC+∠BPC,∵∠BAC=70°,∠BPC=150°,∴∠DBP+∠ECP=∠BAC+∠BPC=70°+150°=220°,故答案为:220;(2)∠A和∠P之间的数量关系是:∠P=∠A+80°,理由是:如图⑤,设∠DBO=x,∠OCE=y,则∠OBP=∠DBO=x,∠PCO=∠OCE=y,由(1)同理得:x+y=∠A+∠O,2x+2y=∠A+∠P,2∠A+2∠O=∠A+∠P,∵∠O=40°,∴∠P=∠A+80°;(3)证明:如图,延长BP交CN于点Q,∵BM平分∠DBP,CN平分∠ECP,∴∠DBP=2∠MBP,∠ECP=2∠NCP,∵∠DBP+∠ECP=∠A+∠BPC,∠A=∠BPC,∴2∠MBP+2∠NCP=∠A+∠BPC=2∠BPC,∴∠BPC=∠MBP+∠NCP,∵∠BPC=∠PQC+∠NCP,∴∠MBP=∠PQC,∴BM∥CN.【点睛】本题考查了三角形内角和定理,三角形内角和为360°;三角形外角性质定理,三角形的任一外角等于不相邻的两个内角和;角平分线定义,根据角平分线定义证明;以及平行线的判定,内错角相等两直线平行.27.(1)(43)(4-3)x y x y +;(2)22()(-y)x y x +.【分析】(1)直接利用平方差公式22()()a b a b a b +-=-分解即可;(2)先利用平方差公式,再利用完全平方公式222()2a b a ab b ±=±+即可.【详解】(1)原式2243))((x y =-(43)(43)x y x y =+-;(2)原式2222)()(2x y xy =-+2222(2)(2)x y x y xy y x ++=+-22()()x y x y =+-.【点睛】本题考查了利用平方差公式和完全平方公式进行因式分解,熟记公式是解题关键.28.(1)1x <.(2)B.【解析】分析:(1)根据点B 在点A 的右侧列出不等式即可求出;(2)利用(1)的结果可判断-x+2的位置.详解:(1)根据题意,得231x -+>.解得1x <.(2)B.点睛:本题考查了数轴的运用.关键是利用数轴,数形结合求出答案.。
广州市初一下学期数学期末试卷带答案

广州市初一下学期数学期末试卷带答案一、选择题1.如图,能判断AB ∥CE 的条件是( )A .∠A =∠ECDB .∠A =∠ACEC .∠B =∠BCAD .∠B =∠ACE 2.要使(4x ﹣a )(x+1)的积中不含有x 的一次项,则a 等于( )A .﹣4B .2C .3D .4 3.已知方程组5430x y x y k -=⎧⎨-+=⎩的解也是方程3x -2y=0的解,则k 的值是( ) A .k=-5 B .k=5 C .k=-10 D .k=104.若正方形边长增加1,得到的新正方形面积比原正方形面积增加6,则原正方形的边长是( )A .2B .52C .3D .725.如图,∠1=50°,如果AB ∥DE ,那么∠D=( )A .40°B .50°C .130°D .140°6.下列图案中,可以看成是由图案自身的一部分经平移后得到的是( ) A . B . C . D .7.计算a 2•a 3,结果正确的是( )A .a 5B .a 6C .a 8D .a 9 8.若多项式224a kab b ++是完全平方式,则k 的值为( ) A .4B .2±C .4±D .8± 9.若25a=,23b =,则232a b -等于( ) A .2725 B .109 C .35 D .252710.若关于x 的二次三项式x 2-ax +36是一个完全平方式,那么a 的值是( ) A .12 B .12± C .6 D .6±二、填空题11.用简便方法计算:10.12﹣2×10.1×0.1+0.01=_____.12.分解因式:29a -=__________.13.计算:32(2)xy -=___________.14.已知关于x ,y 的方程组2133411x y m x y m+=+⎧⎨-=-⎩(m 为大于0的常数),且在x ,y 之间(不包含x ,y )有且只有3个整数,则m 取值范围______.15.二元一次方程7x+y =15的正整数解为_____.16.计算:x (x ﹣2)=_____17.分解因式:x 2﹣4x=__.18.如图,//PQ MN ,A 、B 分别为直线MN 、PQ 上两点,且45BAN ∠=︒,若射线AM 绕点顺时针旋转至AN 后立即回转,射线BQ 绕点B 逆时针旋转至BP 后立即回转,两射线分别绕点A 、点B 不停地旋转,若射线AM 转动的速度是a ︒/秒,射线BQ 转动的速度是b ︒/秒,且a 、b 满足()2510a b -+-=.若射线AM 绕点A 顺时针先转动18秒,射线BQ 才开始绕点B 逆时针旋转,在射线BQ 到达BA 之前,问射线AM 再转动_______秒时,射线AM 与射线BQ 互相平行.19.已知一个多边形的每一个外角都等于,则这个多边形的边数是 .20.把长和宽分别为a 和b 的四个相同的小长方形拼成如图的图形,若图中每个小长方形的面积均为3,大正方形的面积为20,则()2a b -的值为_____.三、解答题21.(1)如图,用四块完全相同的长方形拼成正方形,用不同的方法,计算图中阴影部分的面积,你能发现什么?(用含有x 、y 的等式表示) ;(2)若2(32)5x y -=,2(32)9x y +=,求xy 的值;(3)若25,2x y xy +==,求2x y -的值.22.已知关于x 、y 的方程组354526x y ax by -=⎧⎨+=-⎩与2348x y ax by +=-⎧⎨-=⎩有相同的解,求a 、b 的值.23.己知关于,x y 的方程组4325x y a x y a -=-⎧⎨+=-⎩, (1)请用a 的代数式表示y ;(2)若,x y 互为相反数,求a 的值.24.先化简,再求值:(a -1)(2a +1)+(1+a )(1-a ),其中a =2.25.已知a ,b ,c 是△ABC 的三边,若a ,b ,c 满足a 2+c 2=2ab +2bc -2b 2,请你判断△ABC 的形状,并说明理由.26.仔细阅读下列解题过程:若2222690a ab b b ++-+=,求a b 、的值.解:2222690a ab b b ++-+=222222690()(3)003033a ab b b b a b b a b b a b ∴+++-+=∴++-=∴+=-=∴=-=,,根据以上解题过程,试探究下列问题:(1)已知2222210x xy y y -+-+=,求2x y +的值;(2)已知2254210a b ab b +--+=,求a b 、的值;(3)若248200m n mn t t =++-+=,,求2m t n -的值.27.因式分解:(1)16x 2-9y 2(2)(x 2+y 2)2-4x 2y 228.如图所示,A (2,0),点 B 在 y 轴上,将三角形 OAB 沿 x 轴负方向平移,平移后的图形为三角形 DEC ,且点 C 的坐标为(-6,4) .(1)直接写出点 E 的坐标 ;(2)在四边形 ABCD 中,点 P 从点 B 出发,沿“BC →CD ”移动.若点 P 的速度为每秒 2 个单位长度,运动时间为t 秒,回答下列问题:①求点P 在运动过程中的坐标,(用含t 的式子表示,写出过程);②当 3 秒<t<5 秒时,设∠CBP=x°,∠PAD=y°,∠BPA=z°,试问x,y,z 之间的数量关系能否确定?若能,请用含x,y 的式子表示z,写出过程;若不能,说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据平行线的判定方法:内错角相等两直线平行,即可判断AB∥CE.【详解】解:∵∠A=∠ACE,∴AB∥CE(内错角相等,两直线平行).故选:B.【点睛】此题考查了平行线的判定,平行线的判定方法有:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行,熟练掌握平行线的判定是解本题的关键.2.D解析:D【分析】先运用多项式的乘法法则计算,再合并同类项,因积中不含x的一次项,所以让一次项的系数等于0,得a的等式,再求解.【详解】解:(4x-a)(x+1),=4x2+4x-ax-a,=4x2+(4-a)x-a,∵积中不含x的一次项,∴4-a=0,解得a=4.故选D .【点睛】本题考查了多项式乘多项式法则,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.3.A解析:A【分析】根据方程组5430x y x y k -=⎧⎨-+=⎩的解也是方程3x -2y=0的解,可得方程组5320x y x y -=⎧⎨-=⎩ ,解方程组求得x 、y 的值,再代入4x-3y+k=0即可求得k 的值.【详解】∵方程组5430x y x y k -=⎧⎨-+=⎩的解也是方程3x -2y=0的解, ∴5320x y x y -=⎧⎨-=⎩, 解得,1015x y =-⎧⎨=-⎩; 把1015x y =-⎧⎨=-⎩代入4x-3y+k=0得, -40+45+k=0,∴k=-5.故选A.【点睛】本题考查了解一元二次方程,根据题意得出方程组5320x y x y -=⎧⎨-=⎩,解方程组求得x 、y 的值是解决问题的关键.4.B解析:B【分析】设原正方形的边长为x ,则新正方形的边长为(1)x +,根据题意列出方程求解即可.【详解】解:设原正方形的边长为x ,则新正方形的边长为(1)x +,根据题意可列方程为22(1)6x x +-=, 解得52x =,∴原正方形的边长为52. 故选:B .【点睛】 此题考查了完全平方公式,找到等量关系列方程为解题关键.5.C解析:C【解析】试题分析:∵∠1与∠2为对顶角,∴∠1=∠2=50°,∵AB ∥DE ,∴∠2+∠D=180°,则∠D=130°,故选C .考点:平行线的性质.6.A解析:A【分析】根据平移的定义,逐一判断即可.【详解】解:A 、是平移;B 、轴对称变换,不是平移;C 、是旋转变换,不是平移.D 、图形的大小发生了变化,不是平移.故选:A .【点睛】本题考查平移变换,判断图形是否由平移得到,要把握两个“不变”,图形的形状和大小不变;一个“变”,位置改变.7.A解析:A【分析】此题目考查的知识点是同底数幂相乘.把握同底数幂相乘,底数不变,指数相加的规律就可以解答..【详解】同底数幂相乘,底数不变,指数相加.m n m n a a a +⋅=所以23235.a a a a +⋅==故选A.【点睛】此题重点考察学生对于同底数幂相乘的计算,熟悉计算法则是解本题的关键.8.C解析:C【分析】根据完全平方式的特征解答即可.【详解】∵224a kab b ++是一个完全平方式,∴224a kab b ++=(a ±2b )2,而(a ±2b )2=a 2±4ab+24b ,∴k=±4,故选C .【点睛】本题考查了完全平方式,根据完全平方式的特点得到k=±4是解决问题的关键.9.D解析:D【分析】根据同底数幂的除法的逆运算法则及幂的乘方运算法则,进行代数式的运算即可求解.【详解】222233332(2)5252=2(2)327a a ab b b -=== 故选:D【点睛】 本题考查了同底数幂的除法的逆运算法,一般地,(0mm nn a a a a-=≠,m ,n 都是正整数,并且m >n),还考查了幂的乘方运算法则,(a m )n =a mn (m ,n 都是正整数).10.B 解析:B【解析】【分析】利用完全平方公式的结构特征判断即可确定出a 的值.【详解】解:∵x 2-ax+36是一个完全平方式,∴a=±12,故选:B .【点睛】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.二、填空题11.100【分析】利用完全平方公式解答.【详解】解:原式=(10.1﹣0.1)2=102=100.故答案是:100.【点睛】本题考查了完全平方公式,能够把已知式子变成完全平方的形式,求得( 解析:100【分析】利用完全平方公式解答.【详解】解:原式=(10.1﹣0.1)2=102=100.故答案是:100.【点睛】本题考查了完全平方公式,能够把已知式子变成完全平方的形式,求得(10.1-0.1)的值.12.【解析】试题分析:本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.先把式子写成a2-32,符合平方差公式的特点解析:()()33a a +-【解析】试题分析:本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.先把式子写成a 2-32,符合平方差公式的特点,再利用平方差公式分解因式.a 2-9=a 2-32=(a+3)(a-3).故答案为(a+3)(a-3).考点:因式分解-运用公式法.13.【分析】根据积的乘方进行计算即可.【详解】解:,故答案为:.【点睛】此题考查积的乘方.积的乘方,先把积中的每一个乘数分别乘方,再把所得的幂相乘.解析:264x y【分析】根据积的乘方进行计算即可.【详解】解:3226(2)4xy x y -=,故答案为:264x y .【点睛】此题考查积的乘方.积的乘方,先把积中的每一个乘数分别乘方,再把所得的幂相乘. 14.【分析】由中的上式加下式乘以2得到,由中的上式乘以3减下式得到,则可得,再由题意为大于0的常数,在,之间(不包含,)有且只有3个整数得到,计算即可得到答案.【详解】由中的上式加下式乘以2得到解析:04m <<【分析】由2133411x y m x y m +=+⎧⎨-=-⎩中的上式加下式乘以2得到33x m =-,由2133411x y m x y m+=+⎧⎨-=-⎩中的上式乘以3减下式得到52y m =+,则可得3352x m y m =-⎧⎨=+⎩,再由题意m 为大于0的常数,在x ,y 之间(不包含x ,y )有且只有3个整数得到33(52)x y m m -=--+,计算即可得到答案.【详解】由2133411x y m x y m +=+⎧⎨-=-⎩中的上式加下式乘以2得到33x m =-,由2133411x y m x y m +=+⎧⎨-=-⎩中的上式乘以3减下式得到52y m =+,则可得3352x m y m =-⎧⎨=+⎩,因为在x ,y 之间(不包含x ,y )有且只有3个整数,而33(52)25x y m m m -=--+=--,又由于m 为大于0的常数,则x ,y 之差可以为-7,-12-17,即m 的值为1、2或者3,所以可得04m <<.【点睛】本题考查二元一次方程组和不等式,解题的关键是掌握解二元一次方程组.15.或【分析】将x看做已知数求出y,即可确定出正整数解.【详解】解:方程7x+y=15,解得:y=﹣7x+15,x=1,y=8;x=2,y=1,则方程的正整数解为或.故答案为:或.【点解析:18xy=⎧⎨=⎩或21xy=⎧⎨=⎩【分析】将x看做已知数求出y,即可确定出正整数解.【详解】解:方程7x+y=15,解得:y=﹣7x+15,x=1,y=8;x=2,y=1,则方程的正整数解为18xy=⎧⎨=⎩或21xy=⎧⎨=⎩.故答案为:18xy=⎧⎨=⎩或21xy=⎧⎨=⎩.【点睛】此题考查了解二元一次方程,熟练掌握运算法则是解本题的关键.16.x2﹣2x【分析】根据单项式乘多项式法则即可求出答案.【详解】解:原式=x2﹣2x故答案为:x2﹣2x.【点睛】此题考查的是整式的运算,掌握单项式乘多项式法则是解决此题的关键.解析:x2﹣2x【分析】根据单项式乘多项式法则即可求出答案.【详解】解:原式=x2﹣2x故答案为:x2﹣2x.此题考查的是整式的运算,掌握单项式乘多项式法则是解决此题的关键.17.x (x ﹣4)【详解】解:x2﹣4x=x (x ﹣4).故答案为:x (x ﹣4).解析:x (x ﹣4)【详解】解:x 2﹣4x=x (x ﹣4).故答案为:x (x ﹣4).18.15或22.5【分析】先由题意得出a ,b 的值,再推出射线AM 绕点A 顺时针先转动18秒后,AM 转动至AM 的位置,∠MAM=18°×5=90°,然后分情况讨论即可.【详解】∵,∴a=5,b=1解析:15或22.5【分析】先由题意得出a ,b 的值,再推出射线AM 绕点A 顺时针先转动18秒后,AM 转动至AM '的位置,∠MAM '=18°×5=90°,然后分情况讨论即可.【详解】 ∵()2510a b -+-=,∴a=5,b=1,设射线AM 再转动t 秒时,射线AM 、射线BQ 互相平行,如图,射线AM 绕点A 顺时针先转动18秒后,AM 转动至AM '的位置,∠MAM '=18°×5=90°,分两种情况:①当9<t <18时,如图,∠QBQ '=t °,∠M 'AM"=5t °,∵∠BAN=45°=∠ABQ ,∴∠ABQ '=45°-t °,∠BAM"=5t-45°,当∠ABQ '=∠BAM"时,BQ '//AM",此时,45°-t °=5t-45°,②当18<t<27时,如图∠QBQ'=t°,∠NAM"=5t°-90°,∵∠BAN=45°=∠ABQ,∴∠ABQ'=45°-t°,∠BAM"=45°-(5t°-90°)=135°-5t°,当∠ABQ'=∠BAM"时,BQ'//AM",此时,45°-t°=135°-5t,解得t=22.5;综上所述,射线AM再转动15秒或22.5秒时,射线AM射线BQ互相平行.故答案为:15或22.5【点睛】本题考查了非负数的性质,平行线的判定,完全平方公式,掌握知识点是解题关键.19.5【详解】∵多边形的每个外角都等于72°,∵多边形的外角和为360°,∴360°÷72°=5,∴这个多边形的边数为5.故答案为5.解析:5【详解】∵多边形的每个外角都等于72°,∵多边形的外角和为360°,∴360°÷72°=5,∴这个多边形的边数为5.故答案为5.20.8【解析】【分析】根据阴影部分的面积等于大正方形的面积减去中间小正方形的面积,即可写出等式.【详解】阴影部分的面积是:.故答案为8【点睛】本题主要考查问题推理能力,解答本题关键是根解析:8【解析】【分析】根据阴影部分的面积等于大正方形的面积减去中间小正方形的面积,即可写出等式.【详解】阴影部分的面积是:()22(4)a b a b ab +-=-. ()22()204384a b a b ab ∴+-==-⨯=-故答案为8【点睛】本题主要考查问题推理能力,解答本题关键是根据图示找出大正方形,长方形,小正方形之间的关键. 三、解答题21.(1)224()()xy x y x y =+--;(2)16xy =;(3)23x y -=±. 【分析】(1)阴影部分的面积可以由边长为x+y 的大正方形的面积减去边长为x-y 的小正方形面积求出,也可以由4个长为x ,宽为y 的矩形面积之和求出,表示出即可;(2)先利用完全平方公式展开,然后两个式子相减,即可求出答案;(3)利用完全平方变形求值,即可得到答案.【详解】解:(1)图中阴影部分的面积为: 224()()xy x y x y =+--;故答案为:224()()xy x y x y =+--;(2)∵2(32)5x y -=, ∴2291245x xy y -+=①,∵2(32)9x y +=,∴2291249x xy y ++=②,∴由②-①,得 24954xy =-=, ∴16xy =;(3)∵25,2x y xy +==,∴222(2)4425x y x xy y +=++=,∴224254217x y +=-⨯=,∴222(2)4417429x y x y xy -=+-=-⨯=;∴23x y -=±;【点睛】本题考查了完全平方公式的几何背景,准确识图,以及完全平方公式变形求值,根据阴影部分的面积的两种不同表示方法得到的代数式的值相等列式是解题的关键. 22.149299a b ⎧=⎪⎪⎨⎪=⎪⎩【分析】因为两个方程组有相同的解,故只需把两个方程组中不含未知数和含未知数的方程分别组成方程组,求出未知数的值,再代入另一组方程组即可.【详解】354526x y ax by -=⎧⎨+=-⎩①③ 和2348x y ax by +=-⎧⎨-=⎩②④ 解:联立①②得:35234x y x y -=⎧⎨+=-⎩解得:12x y =⎧⎨=-⎩ 将12x y =⎧⎨=-⎩代入③④得:4102628a b a b -=-⎧⎨+=⎩解得:149299a b ⎧=⎪⎪⎨⎪=⎪⎩【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.23.(1)31y a =-+;(2)12a =-. 【分析】(1)通过消元的方法,消去x ,即可用a 的代数式表示y ;(2)令y x =-,再将x 、x -代入方程组,即可求解.【详解】解:(1)由43x y a -=-得:43x a y =-+,将其代入25x y a +=-得:4325a y y a -++=-,整理得:393y a =-+,即31y a =-+.故答案为31y a =-+.(2)若x 、y 互为相反数,则y x =-再将x 、y 代入方程组:4325x x a x x a +=-⎧⎨-=-⎩, 解得12a =-. 故答案为12a =-. 【点睛】 本题考查次二元一次方程组的运用,难度一般,熟练掌握消元法是顺利解题的关键. 24.a 2-a ,2【分析】分别根据多项式的乘法法则和平方差公式计算每一项,再合并同类项,然后把a 的值代入化简后的式子计算即可.【详解】解:(a -1)(2a +1)+(1+a )(1-a )=2a 2-a -1+1-a 2= a 2-a ,当a =2时,原式=22-2=2.【点睛】本题考查了整式的混合运算和代数式求值,属于基本题型,熟练掌握多项式的乘法法则是解题的关键.25.△ABC 是等边三角形,理由见解析.【分析】运用完全平方公式将等式化简,可求a=b=c ,则△ABC 是等边三角形.【详解】解:△ABC 是等边三角形,理由如下:∵a 2+c 2=2ab +2bc -2b 2∴a 2-2ab+ b 2+ b 2- 2bc +c 2=0∴(a-b )2+(b-c )2=0∴a-b=0,b-c=0,∴a=b ,b=c ,∴a=b=c∴△ABC 是等边三角形.【点睛】本题考查了因式分解的应用,整式的混合运算,熟练运用完全平方公式解决问题是本题的关键.26.(1)23x y +=;(2)21a b ==,;(3)21m t n -=.【分析】(1)首先把第3项22y 裂项,拆成22y y +,再用完全平方公式因式分解,利用非负数的性质求得x y 、代入求得数值;(2)首先把第2项25b 裂项,拆成224b b +,再用完全平方公式因式分解,利用非负数的性质求得a b 、代入求得数值;(3)先把4m n =+代入28200mn t t +-+=,得到关于n 和 t 的式子,再仿照(1)(2)题.【详解】解:(1)2222210x xy y y -+-+=2222210x xy y y y ∴-++-+=22()(1)0x y y ∴-+-=010x y y ∴-=-=,,11x y ∴==,,23x y ∴+=;(2)2254210a b ab b +--+=22244210a b ab b b ∴+-+-+=22(2)(1)0a b b ∴-+-=2010a b b ∴-=-=,21a b ∴==,;(3)4m n =+,2(4)8200n n t t ∴++-+=22448160n n t t ∴+++-+=22(2)(4)0n t ∴++-=2040n t ∴+=-=,24n t ∴=-=,42m n ∴=+=20(2)1m t n -∴=-=【点睛】本题考查的分组分解法、配方法和非负数的性质,对于项数较多的多项式因式分解,分组分解法是一个常用的方法. 首先要观察各项特征,寻找熟悉的式子,熟练掌握平方差公式和完全平方公式是基础.27.(1)(43)(4-3)x y x y +;(2)22()(-y)x y x +.【分析】(1)直接利用平方差公式22()()a b a b a b +-=-分解即可; (2)先利用平方差公式,再利用完全平方公式222()2a b a ab b ±=±+即可.【详解】(1)原式2243))((x y =-(43)(43)x y x y =+-;(2)原式2222)()(2x y xy =-+2222(2)(2)x y x y xy y x ++=+-22()()x y x y =+-.【点睛】本题考查了利用平方差公式和完全平方公式进行因式分解,熟记公式是解题关键.28.(1)()4,0- (2)1)点P 在线段BC 上时, (),4P t -,2)点P 在线段CD 上时, ()6,10P t --; (3)能确定,z x y =+,证明见解析【分析】(1)根据平移的性质即可得到结论;(2)①分两种情况:1)点P 在线段BC 上时,2)点P 在线段CD 上时;②如图,作P 作//PE BC 交于AB 于E ,则//PE AD ,根据平行线的性质即可得到结论.【详解】(1)∵点B 的横坐标为0,点C 的横坐标为-6,∴将A (2,0)向左平移6个单位长度得到点E∴()4,0E -;(2)①∵6,4BC CD ==∴1)点P 在线段BC 上时,PB t =(),4P t -;2)点P 在线段CD 上时,()4610PD t t =--=-()6,10P t --;②能确定如图,作P 作//PE BC 交于AB 于E ,则//PE AD∴1,2CBP x DAP y ==︒==︒∠∠∠∠ ∴1+2BPA x y z ==︒+︒=︒∠∠∠ ∴z x y =+.【点睛】本题考查了平行线的问题,掌握平移的性质、代数式的用法、平行线的性质以及判定定理是解题的关键.。
广东省广州市七年级下学期数学期末考试试卷

广东省广州市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2020八上·自贡期末) 下列运算正确是A .B .C .D .2. (2分) (2018九下·湛江月考) 下面的计算正确的是()A . a3+a3=a6B . (a3)2=a5C . a2+a2=2a2D . 6a÷a=5a3. (2分)下列各式从左边到右边的变形,属于因式分解的是()A . (x+y)2=x2+2xy+y2B . 2x2﹣8=2(x+2)(x﹣2)C . 2x2﹣2x+1=2x(x﹣1)+1D . (x+1)(x﹣1)=x2﹣14. (2分) (2015八上·武汉期中) 如图,在四边形ABCD中,对角线AC平分∠BAD,AB>AD,下列结论中正确的是()A . AB﹣AD>CB﹣CDB . AB﹣AD=CB﹣CDC . AB﹣AD<CB﹣CDD . AB﹣AD与CB﹣CD的大小关系不确定5. (2分)下列命题的逆命题不正确的是()A . 同旁内角互补,两直线平行B . 如果两个角是直角,那么它们相等C . 两个全等三角形的对应边相等D . 如果两个实数的平方相等,那么它们相等6. (2分) (2017八下·鹿城期中) 如果,下列各式中正确的是()A .B .C .D .7. (2分)下面去括号正确的是()A . a3-(-a2+a)=a3+a2+aB . x2-2(x-1)=x2-2x+1C . x2-(x-2y+3z)=x2-x+2y-3zD . -(u-v)+(x-y)= -u-v+x+y8. (2分)小新原有50元,表格中记录了他今天所支出各项费用,其中饼干支出的金额被涂黑,若每包饼干的售价为3元,则小明可能剩下的金额数是()支出金额(元)早餐5午餐9晚餐12饼干▇A . 7元B . 8元C . 9元D . 10元9. (2分)(2018·宁晋模拟) 不等式0≤ax+5≤4的整数解是1,2,3,4,则a的取值范围是()A .B . a≤C . ≤a<﹣1D . a≥10. (2分) (2017七下·南京期末) 如图,、BD、CD分别平分的外角、内角、外角.以下结论:① :② :③ :④ .其中正确的结论有()A . 1个B . 2个C . 3个D . 4个二、填空题 (共8题;共8分)11. (1分) (2019七上·松江期末) 将0.000025用科学记数法表示为________.12. (1分)如图,已知在△ABC中,∠ACB=90°,AC=6,点G为重心,GH⊥BC,垂足为点H,那么GH=________ .13. (1分)(2019·澄海模拟) 如果正n边形的一个内角等于与其相邻外角的2倍,那么n的值为________.14. (1分) (2017九上·临海期末) 当x=m或x=n(m≠n)时,代数式x2-2x的值相等,则当x=m+n时,代数式x2-2x的值为________.15. (1分) (2017八下·萧山开学考) 证明命题“两个锐角的和是锐角”是假命题,举的反例是________.16. (1分) (2019七下·余姚月考) 请写出方程2x-y=3的一个解________.17. (1分)(2017·平顶山模拟) 如图,在矩形纸片ABCD中,AB=5,AD=2,点P在线段AB上运动,设AP=x,现将纸片折叠,使点D与点P重合,得折痕EF(点E、F为折痕与矩形边的交点),再将纸片还原,则四边形EPFD 为菱形时,x的取值范围是________.18. (1分) (2016九下·农安期中) 如图,在矩形ABCD中,BC=2AB.以点B为圆心,BC长为半径作弧交AD 于点E,连结BE.若AB=1,则DE的长为________.三、解答题 (共10题;共91分)19. (5分)(2018·惠山模拟) 计算:(1)()2-|-6|+(-2)0;(2)化简:20. (10分) (2018八上·许昌期末)(1)计算:(2)因式分解: .21. (10分)(2018·宜昌) 解不等式组,并把它的解集在数轴上表示出来.22. (10分) (2019七下·潜江月考) △ABC在网格中的位置如图所示,请根据下列要求作图:①过点C作AB的平行线;②过点A作BC的垂线段,垂足为D;③将△ABC先向下平移3格,再向右平移2格得到△EFG(点A的对应点为点E,点B的对应点为点F,点C的对应点为点G).23. (10分) (2017·南开模拟) 如图,已知在△ABC中,∠ABC=30°,BC=8,sin∠A= ,BD是AC边上的中线.求:(1)△ABC的面积;(2)∠ABD的余切值.24. (5分) (2019八上·铁西期末) 某校八年级师生共368人准备参加社会实践活动,现已预备了A、B两种型号的客车,除司机外A型号客车有49个座,B型号客车有37个座,两种客车共8辆,刚好坐满,求A、B两种型号的客车各用了多少辆?25. (10分)(2017·合川模拟) 综合题:探索发现(1)自主阅读:在三角形的学习过程,我们知道三角形一边上的中线将三角形分成了两个面积相等三角形,原因是两个三角形的底边和底边上的高都相等,在此基础上我们可以继续研究:如图1,AD∥BC,连接AB,AC,BD,CD,则S△ABC=S△BCD.证明:分别过点A和D,作AF⊥BC于F.DE⊥BC于E,由AD∥BC,可得AF=DE,又因为S△ABC= ×BC×AF,S△BCD= .所以S△ABC=S△BCD由此我们可以得到以下的结论:像图1这样________(2)问题解决:如图2,四边形ABCD中,AB∥DC,连接AC,过点B作BE∥AC,交DC延长线于点E,连接点A和DE的中点P,请你运用上面的结论证明:S▱ABCD=S△APD(3)应用拓展:如图3,按此方式将大小不同的两个正方形放在一起,连接AF,CF,若大正方形的面积是80cm2,则图中阴影三角形的面积是________cm2.26. (10分) (2019七下·新田期中) 提出问题:你能把多项式因式分解吗?探究问题:如图1所示,设,为常数,由面积相等可得:,将该式从右到左使用,就可以对形如的多项式进行进行因式分解即.观察多项式的特征是二次项系数为1,常数项为两数之积,一次项为两数之和.解决问题:运用结论:(1)基础运用:把多项式进行因式分解.(2)知识迁移:对于多项式进行因式分解还可以这样思考:将二次项分解成图2中的两个的积,再将常数项-15分解成-5与3的乘积,图中的对角线上的乘积的和为 ,就是的一次项,所以有 .这种分解因式的方法叫做“十字相乘法”.请用十字相乘法进行因式分解:(3)综合运用:灵活运用知识进行因式分解:27. (10分) (2017七下·鄂州期末) 若关于x、y的二元一次方程组的解都为正数.(1)求a的取值范围;(2)化简|a+1|﹣|a﹣1|;(3)若上述二元一次方程组的解是一个等腰三角形的一条腰和一条底边的长,且这个等腰三角形的周长为9,求a的值.28. (11分) (2018九下·江都月考) 如图1,经过原点O的抛物线y=ax2+bx(a≠0)与x轴交于另一点A(,0),在第一象限内与直线y=x交于点B(2,t).(1)求这条抛物线的表达式;(2)在第四象限内的抛物线上有一点C,满足以B,O,C为顶点的三角形的面积为2,求点C的坐标;(3)如图2,若点M在这条抛物线上,且∠MBO=∠ABO,在(2)的条件下,是否存在点P,使得△POC∽△MOB?若存在,求出点P的坐标;若不存在,请说明理由.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共10题;共91分)19-1、19-2、20-1、20-2、21-1、22-1、23-1、23-2、24-1、25-1、25-2、25-3、26-1、26-2、26-3、27-1、27-2、27-3、28-1、28-2、。
广东省广州市七年级下学期数学期末考试试卷

广东省广州市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2019·临海模拟) 如图所示的图案中,有2条对称轴的轴对称图形是()A .B .C .D .2. (2分) (2019九下·象山月考) “367 人中有 2 人同月同日生”这一事件是()A . 随机事件B . 必然事件C . 不可能事件D . 确定事件3. (2分) (2019八上·桐梓期中) 下列说法:①全等三角形的形状相同、大小相等;②全等三角形的对应边相等;③全等三角形的对应角相等;④全等三角形的周长相等,面积不相等,其中正确的为()A . ①②③④B . ①②③C . ①②④D . ①③④4. (2分) (2019七上·湖州期末) 下列各图中, 1和 2是对顶角的是()A .B .C .D .5. (2分)如果等腰三角形两边长是6cm和3cm,那么它的周长是()A . 9cmB . 12cmC . 15cmD . 12cm或15cm6. (2分)学习了平行线后,小敏想出了过己知直线外一点画这条直线的平行线的新方法,她是通过折一张半透明的纸得到的(如图(1)~(4)),从图中可知,小敏画平行线的依据有()①两直线平行,同位角相等;②两直线平行,内错角相等;③同位角相等,两直线平行;④内错角相等,两直线平行.A . ①②B . ②③C . ③④D . ①④7. (2分)(2017·咸宁) 下列算式中,结果等于a5的是()A . a2+a3B . a2•a3C . a5÷aD . (a2)38. (2分) (2016八上·西昌期末) 已知∠ACB的角平分线CE,O是CE上一点,OP∥BC,PO=2,OD⊥CB于D,∠ACE=15°,则OD的长是()A .B . 1C . 2D . 39. (2分)在四张质地、大小相同的卡片上,分别画有如图所示的四个图形,在看不到图形的情况下从中任意抽出一张卡片,则抽出的卡片上的图形是中心对称图形的概率为()A . 1B .C .D .10. (2分)(2018·萧山模拟) 如图1,在矩形ABCD中,动点E从A出发,沿A→B→C方向运动,当点E到达点C时停止运动,过点E作EF⊥AE交CD于点F,设点E运动路程为x,CF=y,如图2所表示的是y与x的函数关系的大致图象,给出下列结论:①a=3;②当CF= 时,点E的运动路程为或或,则下列判断正确的是()A . ①②都对B . ①②都错C . ①对②错D . ①错②对二、填空题 (共6题;共6分)11. (1分)林老师骑摩托车到加油站加油,发现每个加油器上都有三个量,其中一个表示“元/升”其数值固定不变的,另外两个量分别表示“数量”、“金额”,数值一直在变化,在这三个量当中元/升是常量,________是变量。
2022-2023学年广东省广州市花都区七年级(下)期末数学试卷及答案解析

2022-2023学年广东省广州市花都区七年级(下)期末数学试卷一、选择题(本大题共10小题,每小题3分,满分30分。
在每小题给出的四个选项中,只有一项是符合题目要求的).1.(3分)2的相反数是()A.﹣2B.2C.﹣D.2.(3分)下列调查适合做抽样调查的是()A.对搭乘高铁的乘客进行安全检查B.审核书稿中的错别字C.调查一批LED节能灯管的使用寿命D.对七(1)班同学的视力情况进行调查3.(3分)在平面直角坐标系中,点M(2,﹣2)在()A.第一象限B.第二象限C.第三象限D.第四象限4.(3分)如图,在三角形ABC中,∠C=90°,AC=5,点P是边BC上的动点,则AP 的长不可能是()A.4.8B.5C.6D.75.(3分)二元一次方程组的解是()A.B.C.D.6.(3分)已知a<b,则下列式子中错误的是()A.a﹣1<b﹣1B.a+2<b+2C.﹣4a<﹣4b D.7.(3分)如图,把一块含有45°角的直角三角板的两个顶点放在直尺的一组对边上,如果∠2=25°,那么∠1的度数是()A.15°B.20°C.25°D.30°8.(3分)下列计算正确的是()A.B.C.D.9.(3分)文具店的铅笔数比圆珠笔数的2倍多30支,铅笔数与圆珠笔数的比是5:2,求两种笔各有多少支?若设铅笔有x支,圆珠笔有y支,依题意,得到的方程组是()A.B.C.D.10.(3分)在平面直角坐标系中,对于点A(x,y),若点A′坐标为(ax+y,x+ay)(其中a为常数,且a≠0),则称点A′是点A的“a属派生点”.例如,点P(4,3)的“2属派生点”为P'(2×4+3,4+2×3),即P'(11,10)若点Q的“3属派生点’是点Q'(﹣7,﹣5),则点Q的坐标为()A.(﹣26,﹣22)B.(﹣22,﹣26)C.(﹣2,﹣1)D.(﹣1,﹣2)二、填空题(本题有6个小题,每小题3分,共18分.)11.(3分)命题“对顶角相等”是命题(选填“真”或“假”).12.(3分)计算:25的平方根是.13.(3分)写出一个3到4之间的无理数.14.(3分)在平面直角坐标系中,若点P(a﹣1,2a)在y轴上,则a=.15.(3分)已知关于xy的方程组的解满足x+y>0,则m的取值范围是.16.(3分)如图,在平面直角坐标系中,从点P1(0,﹣1),P2(1,﹣1),P3(11,1),P4(﹣1,1),P5(﹣1,﹣2),P6(2,﹣2)…依次扩展下去,则点P2023的坐标为______三、解答题(本题有9个小题,共72分。
广东省广州市七年级下学期数学期末试卷

广东省广州市七年级下学期数学期末试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019八上·偃师期中) 在实数3.14159,,1.010010001,p,中,无理数有()A . 1个B . 2个C . 3个D . 4个2. (2分) (2020七下·思明月考) 下列说法错误的是()A . 1的平方根是1B . 0的平方根是0C . 1的算术平方根是1D . -1的立方根是-13. (2分) (2017七下·平南期中) 方程x﹣2y=3,﹣6xy﹣5=0,x﹣ =4,3x﹣5z=4y,x2+y=1中是二元一次方程的有()A . 1个B . 2个C . 3个D . 4个4. (2分)如图,AB∥EF∥CD,∠ABC=46°,∠CEF=154°,则∠BCE等于()A . 23°B . 16°C . 20°D . 26°5. (2分) (2017·宁津模拟) 下列说法中正确的是()A . “打开电视,正在播放《新闻联播》”是必然事件B . “x2<0(x是实数)”是随机事件C . 掷一枚质地均匀的硬币10次,可能有5次正面向上D . 为了了解夏季冷饮市场上冰淇淋的质量情况,宜采用普查方式调查6. (2分)(2020·金华模拟) 在如图所示的网格中有M,N,P,Q四个点,鹏鹏在该网格中建立了一个平面直角坐标系,然后得到点M的坐标为(﹣3,﹣1),点P的坐标为(0,﹣2),则点N和点Q的坐标分别为()A . (2,1),(1,﹣2)B . (1,1),(2,﹣2)C . (2,1),(﹣1,2)D . (1,1),(﹣2,2)7. (2分)若a>b,则下列不等式一定成立的是()A . a﹣b<0B . <C . 1﹣a<1﹣bD . ﹣1+a<﹣1+b8. (2分) (2019七下·邓州期中) 不等式组的解集在数轴上表示为()A .B .C .D .9. (2分)代入法解方程组有以下步骤:(1)由①,得2y=7x-3③;(2)把③代入①,得7x-7x-3=3;(3)整理,得3=3;(4)∴x可取一切有理数,原方程组有无数组解.以上解法造成错误步骤是()A . 第(1)步B . 第(2)步C . 第(3)步D . 第(4)步10. (2分) (2020七上·无为期末) 在时刻8:30,时钟上的时针和分针之间的夹角为()A . 85°B . 75°C . 70°D . 60°二、填空题 (共7题;共7分)11. (1分) (2020八上·东丽期末) 在平面直角坐标系中,点P(5,﹣3)关于y轴的对称点在第________象限.12. (1分)若 +|b2﹣16|=0,则ab=________.13. (1分)要调查下列问题:①市场上某种食品的某种添加剂含量是否符合国家标准;②杭州地区空气质量;③杭州市区常住人口总数,适合抽样调查的是________ (填序号)14. (1分) (2020七下·常德期末) 已知是方程组的解,则 =________15. (1分) (2017七下·马龙期末) 关于x,y的二元一次方程组的解满足x+y>2,则a的范围为________.16. (1分) (2020七上·福田期末) 如图,点O是直线上一点,平分,,则________°.17. (1分) (2019七上·东城期中) 在数学小组探究活动中,小月请同学想一个数,然后将这个数按以下步骤操作:小月就能说出同学最初想的那个数,如果小红想了一个数,并告诉小月操作后的结果是-1,那么小红所想的数是________.三、解答题 (共8题;共85分)18. (5分) (2019八上·达县期中) 化简计算:(1);(2)19. (5分) (2019七下·北流期末) 解不等式组并写出它的所有整数解.20. (10分)(2019·上饶模拟) 如图,矩形的边,点,分别在轴,轴上,反比例函数的图象经过点,且与边交于点 .(1)求反比例函数的解析式;(2)求点的坐标.21. (10分) (2020八下·哈尔滨月考) 图1、图2分别是8×8的网格,网格中每个小正方形的边长均为1,请按要求画出下列图形,所画图形的各个顶点均在所给小正方形的顶点上.(1)在图1中画一个周长为的菱形.(2)在图2中画出周长为18,面积为16的平行四边形.22. (10分) (2019八上·泰州月考) 已知y-1与x+2成正比例,且x=-1时,y=3.(1)求y与x之间的关系式;(2)它的图象经过点(m-1,m+1),求m的值.23. (15分)(2019·永康模拟) 永康市某校在课改中,开设的选修课有:篮球,足球,排球,羽毛球,乒乓球,学生可根据自己的爱好选修一门,李老师对九(1)班全班同学的选课情况进行调查统计,制成了两幅不完整的统计图(如图).(1)该班共有学生多少人?并补全条形统计图;(2)求“篮球”所在扇形圆心角的度数;(3)九(1)班班委4人中,甲选修篮球,乙和丙选修足球,丁选修排球,从这4人中任选2人,请你用列表或画树状图的方法,求选出的2人中恰好为1人选修篮球,1人选修足球的概率.24. (15分)(2019·江陵模拟) 已知,如图在平面直角坐标系中,过点A(0,2)的直线与⊙O相切于点C,与x轴交于点B且半径为 .(1)求∠BAO的度数.(2)求直线AB的解析式.25. (15分)如图,在每一个四边形ABCD中,均有AD∥BC,CD⊥BC,∠ABC=60°,AD=8,BC=12.(1)如图①,点M是四边形ABCD边AD上的一点,则△BMC的面积为________(2)如图②,点N是四边形ABCD边AD上的任意一点,请你求出△BNC周长的最小值(3)如图③,在四边形ABCD的边AD上,是否存在一点P,使得cos∠BPC的值最小?若存在,求出此时cos∠BPC 的值;若不存在,请说明理由.参考答案一、单选题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共7题;共7分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:三、解答题 (共8题;共85分)答案:18-1、答案:18-2、考点:解析:答案:19-1、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、答案:23-3、考点:解析:答案:24-1、答案:24-2、考点:解析:答案:25-1、答案:25-2、答案:25-3、考点:解析:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广州市七年级下学期数学期末考试试卷
姓名:________ 班级:________ 成绩:________
一、选择题 (共10题;共20分)
1. (2分)(2018·重庆模拟) 函数y= 中,自变量x的取值范围是()
A . x>0
B . x>1
C . x>0且x≠1
D . x≥0且x≠1
2. (2分)(2018·潮南模拟) 如图,BE平分∠DBC,点A是BD上一点,过点A作AE∥BC交BE于点E,∠DAE=56°,则∠E的度数为()
A . 56°
B . 36°
C . 26°
D . 28°
3. (2分)(2020·新泰模拟) 下列运算正确的是()
A . x²+x²=x4
B . 3a3·2a²=6a6
C . (-a2)3÷a3=-a2
D . -2x-²=
4. (2分)若x2+kx﹣15能分解为(x+5)(x﹣3),则k的值是()
A . -2
B . 2
C . -8
D . 8
5. (2分) (2018九下·游仙模拟) 我国雾霾天气多发,PM2.5颗粒物被称为大气污染的元凶PM2.5是指直径小于或等于2.5×10-3毫米的颗粒物,用科学记数法表示数2.5×10-3 ,它应该等于()
A . 0.25
B . 0.025
C . 0.0025
D . 0.00025
6. (2分)在数字69669966699966669999中,数字“6”出现的频数、频率分别是()
A . 10,10
B . 0.5,10
C . 10,0.5
D . 0.5,0.5
7. (2分) (2019八上·江汉期中) 若x2+kx + 4是一个完全平方式,则k的值是()
A . 4
B . ±4
C . 8
D . ±8
8. (2分)(2018·海陵模拟) 下列各运算中,计算正确的是()
A . 4a2﹣2a2=2
B . (a2)3=a5
C . a3•a6=a9
D . (3a)2=6a2
9. (2分)中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则与2个球体相等质量的正方体的个数为()
A . 5
B . 4
C . 3
D . 2
10. (2分)(2017·平顶山模拟) 下列计算正确的是()
A . x3•x4=x12
B . 3x2y﹣5xy2=﹣2x2y
C . (﹣x3)2÷x5=1
D . (﹣3a﹣2)(3a﹣2)=4﹣9a2
二、填空题 (共6题;共8分)
11. (2分)(2017·盐城模拟) 若a2﹣3b=5,则6b﹣2a2+2017=________.
12. (1分) (2018七下·大庆开学考) 如图,直线m∥n,△ABC为等腰直角三角形,∠BAC=90°,则∠1=________度.
13. (1分)因式分解:x2﹣49=________ .
14. (1分)计算:++=________
15. (2分)已知﹣=3,则分式的值为________.
16. (1分)若(x+9)﹣3有意义,则x________;若(a﹣b)0=1有意义,则应满足的条件是________.
三、解答题 (共8题;共87分)
17. (10分)已知x=4,y= ,求代数式xy2•14(xy)2• x5的值.
18. (15分)(2020·西安模拟) 为了解某种电动汽车的性能,对这种电动汽车进行了抽检,将一次充电后行驶的里程数分为A,B,C,D四个等级,其中相应等级的里程依次为200千米,210千米,220千米,230千米,获得如下不完整的统计图,根据信息解答下列问题:
(1)问这次被抽检的电动汽车共有几辆?并补全条形统计图:
(2)求电动汽车一次充电后行驶里程数的中位数、众数:
(3)一次充电后行驶里程数220千米以上(含220千米)为优质等级,若全市有这种电动汽车1200辆,估计优质等级的电动汽车约为多少辆?
19. (10分)把下面各式分解因式:
(1) ax3-9ax;
(2) x2+2x(x-3y)+(x-3y)2.
20. (10分) (2019七下·肥城期末) 解下列方程组:
(1)
(2)
21. (10分) (2020八下·偃师期末) 解方程: .
22. (10分)(2019·鹿城模拟) 小王准备给家中长为3米的正方形ABCD电视墙铺设大理石,按图中所示的方案分成9块区域分别铺设甲,乙,丙三种大理石(正方形EFGH是由四块全等的直角三角形围成),
(1)已知甲大理石的单价为150元/m2 ,乙大理石的单价为200元/m2 ,丙大理石的单价为300元/m2 ,整个电视墙大理石总价为1700元.
①当铺设甲,乙大理石区域面积相等时,求铺设丙大理石区域的面积.
②设铺设甲,乙大理石区域面积分别为xm2 , ym2 ,当丙的面积不低于1m2时,求出y关于x的函数关系式,并写出y的最大值.
(2)若要求AE:AF=1:2,EQ:FQ=1:3,甲,乙大理石单价之和为300元/m2 ,丙大理石的单价不低于300元/m2 ,铺设三种大理石总价为1620元,求甲的单价取值范围.
23. (12分)综合题。
(1)(﹣3x2y3)2•(﹣4y3)÷(6xy)2
(2)+ =3.
24. (10分) (2017九上·宣化期末) 问题提出
平面内不在同一条直线上的三点确定一个面,那么平面内的四点(任意三点均不在同一直线上),能否在同一个面上呢?
初步思考
设不在同一条直线上的三点A、B、C确定的圆为⊙O.
(1)当C、D在线段AB的同侧时.
如图①,若点D在⊙O上,此时有∠ACB=∠ADB,理由是________.
如图②,若点D在⊙O内,此时有∠ACB________∠ADB;
如图③,若点D在⊙O外,此时有∠ACB________∠ADB(填“=”、“>”、“<”)
由上面的探究,请直接写出A、B、C、D四点在同一个圆上的条件:________.
类比学习
(2)仿照上面的探究思路,请探究:当C、D在线段AB的异侧时的情形.
由上面的探究,请用文字语言直接写出A、B、C、D四点在同一个圆上的条件:________.拓展延伸
(3)如何过圆上一点,仅用没有刻度的直尺,作出已知直径的垂线?
已知:如图,AB是⊙O的直径,点C在⊙O上,求作:CN⊥AB
作法:①连接CA、CB
②在CB上任取异于B、C的一点D,连接DA,DB;
③DA与CB相交于E点,延长AC、BD,交于F点;
④连接F、E并延长,交直径AB与M;
⑤连接D、M并延长,交⊙O于N,连接CN,则CN⊥AB.
请安上述作法在图④中作图,并说明CN⊥AB的理由.(提示:可以利用(2)中的结论)
参考答案一、选择题 (共10题;共20分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
二、填空题 (共6题;共8分)
11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
三、解答题 (共8题;共87分)
17-1、
18-1、18-2、
18-3、19-1、19-2、
20-1、
20-2、
21-1、
22-1、
22-2、23-1、
23-2、
24-1、24-2、
24-3、
第11 页共11 页。