探索勾股定理第一课时1探索勾股定理教案

合集下载

《探索勾股定理》教案设计有趣的勾股定理数学游戏

《探索勾股定理》教案设计有趣的勾股定理数学游戏

【前言】勾股定理是我们学习数学时最基础的知识之一。

作为一名优秀的数学老师,如何让学生在轻松愉快的氛围中掌握勾股定理呢?经过反复研究,我给大家带来了一个有趣的勾股定理数学游戏——《探索勾股定理》教案设计。

【教案设计】一、活动目的1.掌握勾股定理的基本概念和运用方法。

2.培养学生的逻辑思维和数学分析能力。

3.通过实践提高学生的空间想象能力。

二、活动准备1.游戏道具:带刻度的正方形模型和带刻度的平行四边形模型;固定长度的木棒。

2.活动环境:宽敞明亮的活动场地,大屏幕电视。

三、活动过程1.引导学生分工合作,每个小组从模型材料中制作出三角形。

2.学生在制作三角形之后,按照勾股定理的要求,测量并填写三角形每个角度及边长,同时对三角形面积进行计算。

3.根据已知数据(两个边长和一角度),学生利用勾股定理计算三角形第三边的长度。

4.通过比较计算结果和测量结果,验证勾股定理的正确性。

5.游戏深入:每个小组在制作好的三角形上,用木棒连成等腰直角三角形,并在最长的一边上刻度,计算出每个直角边的长度。

6.游戏拓展:将学生为每个直角边涂上颜色,并在屏幕上显示每个小组制作的三角形成品,让学生自己观察,看看是不是每组画出的直角三角形边长总和相等。

四、活动收获1.游戏过程中,学生通过制作三角形、计算量角器的角度、测量三角形的边长和面积,以及应用勾股定理和弦正切公式,增进了对勾股定理的理解。

2.在游戏深入环节中,学生动手制作、参与计算,强化了对勾股定理的记忆和运用能力。

3.在游戏拓展环节中,学生通过观察屏幕上的成品图形,巩固了对勾股定理的理解,并加强了对图形的空间想象力。

【总结】通过这个游戏,学生不仅能够更深刻地理解勾股定理,而且在游戏的实践中提高了自己的数学能力。

教师也可以通过观察学生的实践表现,及时发现和纠正学生的错误思考方式,减少学生的盲点和误区。

让我们一起来探索勾股定理,让数学就在有趣的游戏中学起来!。

探索勾股定理教案(第一课时).docx

探索勾股定理教案(第一课时).docx

探索勾股定理教案(第一课时)绍兴市袍江中学张清—、教材分析(一)教材所处的地位这节课是九年制义务教育浙教版课程标准教科书八年级第二章第六节探索勾股定理第一课时,勾股定理是几何屮几个重要定理之一,它揭示的是直角三角形屮三边的数量关系,把“形”的特征一一三角形屮一个角是直角,转化成数量关系一一三边之间满足/+沪二利用它可以解决直角三角形屮的许多计算问题,是解直角三角形的主要根据之一.它在数学的发展屮起过重要的作用,在现时世界屮也有着广泛的作用.学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解.(-)根据课程标准,制定本课的教学H标(1)知识与技能:掌握勾股定理,并能运用勾股定理解决一些实际问题.掌握用面积的方法来说明勾股定理的正确性.(2)过程与方法:经历探索勾股定理的过程,体验数学学习探究的方法.经历观察、归纳、猜想、概括等数学学习活动过程,发展合情推理能力,体会数形结合思想.(3)情感态度与价值观:进一步丰富数学学习的成功体验,认识到数学是解决实际问题的重要工具,初步形成积极参与数学活动的意识;通过追溯勾股定理的历史,增强学生的爱国情感.(三)本课教学重难点重点:勾股定理的发现及其简单应用.难点:勾般定理的探究采用面积法,这是学生从未体验过的,是本节教学的难点. 二、教法与学法教法分析:针对八年级学生的知识结构和心理特征,本节课选择引导探索法,由浅入深,由特殊到一般地提出问题.引导学生口主探索,合作交流,这种教学理念反映了吋代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性,基本教学流程是:创设情境,引发思考一一自主探索,合作交流一一追溯历史,激发情感一一应用拓展,能力提升一一冋顾反思,提炼升华一一布置作业,课堂延伸六部分.学法分析:在教师的组织引导下,采用自主探索、合作交流的研讨式学习方式,让学生思考问题,获取他识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体.三、教学过程(一)、创设情境,引发思考故事引入:相传两千多年前,古希腊著名的哲学家、数学家毕达哥拉斯去朋友家做客.在宴席上,其他的宾客都在尽情欢乐,只有毕达哥拉斯却看着朋友家的方砖地发起呆来•原来,朋友家的地是用一块块直角三角形形状的砖铺成的,黑白相间,非常美观大方. 主人看到毕达哥拉斯的样子非常奇怪,就想过去问他,谁知,毕达哥拉斯突然恍然大悟的样子,站起来,大笑着跑回家去了.原来,他发现了地砖上的三个正方形存在某种数学关系.图1 (黑白相间的地砖)教师与学生行为:教师给出一个历史小故事,设置悬念,引发学生思考.教学效果预估与对策:学生对故事中的问题很感兴趣,能够激发学生的探究欲望.设计意图:由毕达哥拉斯在朋友家做客的偶然发现入手,引入本节课的课题一一勾股定理,学生 接受起来更自然,贴切.(二)、自主探索,合作交流 探究活动1猜一猜问题1:你能发现图2屮三个正方形面积之间有怎样的关系?问题3:你能用等腰直角三角形的边长表示止方形的面积吗?由此猜想等腰直角三角 形三边有怎样的关系?教师与学生行为:对于问题(2)、(3)教师给学生足够的思考时间,然后让学生交流合作,得出 结论.问题(3)可让学生在自己准备好的小方格上画出,并计算A 、B 、C 三个正方形的面积,用字母 表示三个正方形面积Z 间的数量关系,进而发现了等腰肓角三角形三边的特殊关系.并在小组内交流, 教师适当引导,深入学生当屮,倾听他们的想法.教学效果预估与对策:对等腰直角三角形三边性质的探索,学生们探究欲望会很强烈,小组交流 想法也会达成共识,对于验证三个正方形面积Z 间的关系.同时辅Z 多媒体的动态演示,使教学效果 更肓观,利于学生接受,顺利突破难点.设计意图:通过设计问题串,让探索过稈由浅入深,循序渐进.经历观察、猜想、归纳这一数学 学习过稈,符合学生认知规律.探索血积证法的多样性,体现数学解决问题的灵活性,发展学生的合2:如图3屮的各红I 图形面积之问都有丄述的结果吗?情推理能力.探究活动2 做一做问题4;请分别计算出图4小正方形A 、B 、C 的面积,看看能得出什么结论?问题5:如图5, a, b, c 分别表示三个止方形的边长,三者之间的面积关系如何表示? 由三个正方形所搭成的直角三角形三边存在怎样的关系? 教师与学生行为:教师观察学生活动,指导与合作,让学生充分发表自己的见解,暴露他们的思 维过程•计算正方形C 的面积不易求出,教师及时点拨,同时借助多媒体动态演示.教学效果预估与对策:根据探索等腰直角三角形三边关系过稈,学生在对探讨一•般肓角三角形三 边性质有了一定基础.计算正方形C 的面积利用分割法和把它看作边长是整数的大正方形面积的一半很 容易想到,但拼凑法会有一定困难,教师利用多媒体动态演示,从而化难为易,得出頁角边为整数的 直角三角形三边的特殊关系.设计意图:此环节设计让学生动手做一做,算一算,充分利用计算血积的不同方法,进一步体会 数形结合思想,让学生经历从特殊到一般的过稈,体会事物由特殊到-•般的变化规律,发展学生的合情 推理能力.探究活动3量一量问题6:,在纸上画出三个直角三角形,使其两条直角边长分别为3c 加和4czn, 1. 5cm 和2cm , 0. 8c/77和1・5肋,分别测量这三个直角三角形斜边的长,根据所测得的结果填写 下表:a b c a 2+b 2c 2 3 41.5 20.81.5观察表屮后两列的数据・JL 面所猜想的数量关系还成立吗? 教师与学生行为:学生动手在纸上逊育角三角形,测量斜边的长度,讲行计算,教师及时点拨. 教学效果预估与对策:由于直角边长不是報数,计算起来难度大.测量斜边长度,由于存在误差, 预计学生会出现思维障碍,此时教师及时点拨,借助儿何I 出i 板演示岚角边为任意长的育角三角形三边W 2C < 1 1 ♦ 1 个 ] ] ( ] / C■pH * E 主 b ・ .・ — ■・ …■ .■ ・'・・・* ■ “ .B* + • + ] • ・ +1 B 1 1 ■卜■] 厶 ] 彳/ 二' + 寸 • 十 (A 的面积+1 '的面积二4 的面积) ・■ ■丄 」.八 厶■・ -.关系,得出一般直角三角形两直角边的平方和等于斜边的平方,从而发现了勾股定理.勾股定理:如果直角三角形两直角边分别为a、b ,斜边为c,那么r+bJc?设计意图:通过上述两种探究活动,学生已初步探究出直角边为整数的直角三角形三边关系.设计让学生动T-MS角边是小数的情形而脱离网格纸,将探究活动进一步深化,从而扩展到更一般的情况.使学生体会数学探究由特殊到一般,再到更一般的过稈.探究活动4 验一验问题7:直角三角形的两条直角边长分别为“、b (b>a),斜边长为c (如图7-1),将四个全等的直角三角形按如图7・2位置放置.如何用图7・2來说明勾股定理的正确性?DB图7-1 图7-2教师与学生行为:动手剪出四个全等的育角三角形,并按图要求拼好.教师提示学生用不同的方法求大正方形的面积并进行化简•指出这就是著名的赵爽证明来说明勾股定理的正确性.教学效果预估与对策:利用面积法来说明勾股定理的正确性,这是学生从未经历过的,学生较难形成思路,因此,一开始学生不知从何做起,此时教师进行启发:①大正方形面积肓接如何求?②若分开又如何求?③两者求出的面积有何关系?化简后你发现了什么?等一系列问题进行提示.设计意图:通过上述三种探究活动,学生已经得到一般肓角三角形的三边关系,肓角三角形两肓角边的平方和等于斜边的平方一勾股定理.但都是通过猜想、测量、计算等方法而得到,缺少几何严谨的说理过程,而探究活动4则弥补了它的缺陷,使学生更加确信勾股定理的正确性.同时也符合学生接受新知识的认知过程.探究活动5 议一议问题8:观察图8并计算,判断锐角三角形,钝角三角形三边的长度是否满足aSb2=c2教师与学生行为:学生观察计算,教师多媒体动态演示.教学效果预估与对策:此环节在前探究的基础上,预计学生能大多数独立解决,从而进一步验证了有且只有直角三角形才满足a2+b2=c2.设计意图:经历从特殊到一般的探索过稈,学生以初步认识到直角三角形的特有性质,但学生已有的认知基础会不断地向学生提示锐角、钝角三角形迅否也具有这样的性质?此坏节的设计符合学生的认知特点,通过与锐角三角形、钝角三角形的对比,进一步强调育角三角形三边关系的特征.(三)、追溯历史,激发情感介绍勾股定理的历史,列举了东西文化中对勾股定理的发现,介绍了一些著名的人物、著作和学派.如商高、《周髀算经》、毕达哥拉斯……这些知识足以激发他们的兴趣,让学生更深刻的体会勾股定理所蕴涵的文化价值.教师与学生行为:老师介绍有关勾股定理的历史,学生认真对比屮西方文化,增强对勾股定理的进一步了解.教学效果预估与对策:教师利用多媒体辅助演示,使知识更系统.设计意图:介绍有关勾股定理的历史,使学生对屮国乃至世界的数学史产生浓厚的兴趣,为下一节的验证打好基础.(四)、应用拓展,能力提升(1)对勾股定理的直接应用问题9:①已知在厶ABC ZC=RtZ, BC = a,AC =b,AB = c.⑴若a = \,b = 2,求c ;(2)若a = 15,c = 17 ,求b・②已知在AABC 屮,ZC=RtZ, BC = a,AC=b,AB = c・(1)如果a =彳,b = ?,求c ;(2)如果a = 12,c = 13,求b ;(3)如果c = 34,a : b = 8:15,求 a,b.(2)利用勾股定理解决实际应用问题问题10:①如图9是一个长方形零件图,根据所给的尺寸(单位:mm),求两孔屮心A, B之间的距离.②某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6. 5 米长的云梯,如果梯子的底部离墙基的距离是2. 5米,请问消防队员能否进入三楼灭火?(3) 面积法说明勾股定理正确性的再次认识问题11: (1876年美国总统Garfield 用面积法说明勾股定理的正确性)以"、b 为直角边,以c 为斜边作两个全等的直角三角形,把这两个直角三角形拼成 如图10所示形状,使A 、E 、B 三点在-•条直线上•利用面积法来说明勾般定理的正确性.图10教师与学生行为:教师出示问题,学生解决问题•对于个别有困惑的同学,教师及时点拨.教学效果预估与对策:对于问题9学生很容易独立完成.问题10都是要把实际问题转化为用勾股 定理来进行解决,学生可能难度比较大,教师在讲解时要多提示.问题11是面积法的再次应用,可在教师 的指导下共同完成.设计意图:设计了一个层层深入的问题串,引导学生由浅入深地思考问题,悟出一类问题的解题 规律.另外,由于学生对知识的理解程度有所差异,因此,习题的设置体现层次性.在新知运用过程 屮,也设计小组合作交流,鼓励学生主动参与学习活动,尝试用白己的方式去解决问题,发表白己的 看法.(五) 、回顾反思,提炼升华问题12:通过本节课的学习,你有哪些收获与感悟?教师与学生行为:教师引导学生从知识、过程、方法、情感态度等方面发表看法,学生积极进行 H 我总结,相互补充,巩固探究成果.r 等腰直角三角形[一般直角三角形 j 锐角、钝角三角场 ——肓角三角形两育角边的平方和等于斜边的平方一一定理的应用与拓展教学效果预估与对策:预计学生总结的是木课知识方面的收获与探索过程屮的经验和教训,以及 在与他人合作中得到的快乐.教师要加以引导,师生之间相互加以完善.设计意图:学生通过对本节知识的提炼,归纳岀有关知识与技能方面的一般结论以及在做数学活 动屮所遇到的困惑,感悟到古代数学家在探索新知的领域屮所付出的艰辛,做学问有乐趣亦有苦趣, 培养学生良好的个性和思维品质.(六) 、布置作业,课堂延伸A 类:继续强化勾股定理的计算与应用书本作业题1、3、5及作业本(2) 1,2, 4, 5, 6.B 类:进一•步加深对“勾股定理”的理解及对勾股定理的灵活应用书本Row 作业题4、6、7及作业本(2)3, 7.C 类:如图11,在厶ABC 中,AB=AC=2,在BC 边上有10个不同的点 P, P 2> …Pg,记 Mi 二APj+RB • RC (i=l, 2,…,10)・(1) 求%的值; B(2) 求 M.W-+M.0的值. 教师与学生行为:教师布置作业,学生记录作业.教学效果预估与对策:预计90%以上的同学可以独立完成A 层作业,B 层作业具有一定的开放性, 多数同学对此会很感兴趣.C 层作业比较难,主要是为哪些学有余力的同学准备.设计意图:作业布置上尽量体现层次性及开放性,面向全体•让学生进一步体会勾股定理在解决 直角三故事引入——探索勾股定理 观察、计算 猜想、归纳CA b E a BA 图II角形边的计算方面的重要作川,提高学生分析问题、解决问题的能力,感受勾股定理的现实意义.。

八年级数学上册《探索勾股定理》教案、教学设计

八年级数学上册《探索勾股定理》教案、教学设计
-设计具有挑战性的延伸性问题,激发学生的探究欲望,为下一节课的学习打下基础。
四、教学内容与过程
(一)导入新课
1.教师通过多媒体展示勾股定理的历史背景,如古希腊数学家毕达哥拉斯发现勾股定理的故事,以及我国古代对勾股定理的研究成果,引发学生对勾股定理的好奇心。
2.提问学生:“同学们,你们知道直角三角形有什么特征吗?”让学生回忆直角三角形的定义和性质,为新课的学习做好铺垫。
3.教师提出问题:“在直角三角形中,斜边与直角边之间是否存在某种特殊的数量关系?今天我们就一起来探讨这个问题。”
(二)讲授新知
1.教师通过动画演示,引导学生观察直角三角形中斜边与直角边的关系,并提出勾股定理的猜想。
2.教师逐步引导学生,利用数学归纳法证明勾股定理,强调数学逻辑性和严谨性。
-首先,验证直角边长度为1的直角三角形,斜边长度是否满足勾股定理;
4.多元评价:采用口头提问、课堂练习、课后作业等多种形式,全面评价学生的学习效果。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发他们探索数学知识的热情;
2.培养学生严谨、细心的学习态度,提高他们的数学素养;
3.培养学生的团队协作意识,让他们在合作探究中学会倾听、交流、分享;
4.使学生认识到勾股定理在数学发展中的重要地位,以及数学在人类文明进步中的价值。
此外,学生在解决问题的过程中,可能存在以下问题:对勾股定理的理解不够深入,难以灵活运用;在解决实际问题时,容易忽略细节,导致计算错误。因此,在教学过程中,教师应关注学生的这些薄弱环节,有针对性地进行教学设计和指导。
在此基础上,教师要关注学生的兴趣和动机,通过生动有趣的教学手段,激发学生的学习兴趣,使他们愿意主动参与到勾股定理的探究过程中。同时,注重培养学生的团队合作精神,让他们在互动交流中共同提高,为学生的全面发展奠定基础。

探索勾股定理教学设计

探索勾股定理教学设计

《3.1探索勾股定理(第1课时)》教学设计教学内容:鲁教版七年级上册3.1《探索勾股定理》第一课时.教材分析:勾股定理是在学生已经掌握了直角三角形有关性质的基础上进行学习的.本节课的学习在教材中起到承上启下的作用,为下面学习勾股定理的逆定理作了铺垫,为以后学习“四边形”和“解直角三角形”奠定基础.学情分析:学生通过前面一般三角形的学习,初步掌握了三角形三边长的关系以及直角三角形两锐角之间的关系,但是学生在用割补法求图形面积方面还接触不多,证明也仅仅停留在比较简单的全等三角形的层面上。

因此,本节课为了降低难度,并不涉及勾股定理的验证过程。

素养目标:1.经历探索勾股定理的过程,了解我国勾股定理发展史,培养推理意识、主动探究习惯;2.掌握勾股定理,并能用勾股定理解决一些简单问题;3.体会分类讨论的思想方法,发展几何直观、模型观念.教学重点:掌握勾股定理,并能用勾股定理解决一些简单问题.教学难点:探索勾股定理.教学过程:一情境创设【设计意图】通过一段北斗导航系统的引入,一方面令学生感知它的重要性,另一方面通过将复杂模型简化出一个直角三角形引入课题,向学生灌输一种模型意识.真实情境的创设能提升学生的应用意识.二新课讲解(一)溯源求本【设计意图】本环节意在令学生感知勾股定理在中国的发展史,增加学生的民族自豪感,为后面培养其爱国奠定基础.(二)探究求真【初识】1.在方格纸上分别画出直角边为以下数值的直角三角形并度量斜边长.(1)3cm和4cm (2)6cm和8cm(3)1cm和3cm【设计意图】本环节通过设置两道整数边长的作图令学生先猜想出结论,再通过一道不能精确度量的作图能学生的思想引起冲突,进而思考原因是测量有误差,从而引出用图形-面积法探究直角三角形的三边关系. 【生惑】独立思考1分钟后,小组合作交流3分钟,并解决下列问题: 1..________,____,===C B A S S S 2.表示三个正方形面积之间的关系. 3.描述Rt △ DEF 三边的关系.【设计意图】令学生小组合作正方形面积的求法,从而引出网格中常用割补法求图形的面积. 【又惑】任意一个直角三角形的三边关系是否都满足上面的猜想呢? 【验证】【终获】勾股定理:直角三角形两直角边的_________等于斜边的平方.如果 用a ,b 和c 分别表示直角三角形的两直角边和斜边长,那么 . 符号语言:(三) 应用 求实例1求下图中字母所代表的正方形的面积.例2在Rt △ABC 中∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c . (1)a =6,b =8,求c . (2)b =40,c =41, 求a . (四) 变式 求深在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c . 1.若a =3,b =4,则c =______. 2.若c =5,b =4,则a =______.变式一:a :b =3:4,c =25,则a =_____,b =_____.变式二:其中两边长为3、4,则第三边的平方为_____.【设计意图】习题设计既有对勾股定理公式的直接应用,又有变式练习提升学生能力,其中变式二着重向学生灌输分类讨论的数学思想方法.abcac ba中国的“青朱出入图”青出青入朱入朱出青入青出cb青方朱方a225400A 81225B(五) 小结 求远【设计意图】从大单元角度令学生对直角三角形有整体认知,为后续学习奠定基础。

1.1探索勾股定理(第1课时)教学设计.doc

1.1探索勾股定理(第1课时)教学设计.doc

第一章勾股定理1.探索勾股定理(第1课时)一、学生起点分析二、教学任务分析本节课是义务教育课程标准实验教科书北师大版八年级(上)第一章《勾股定理》第一节第1课时.勾股定理揭示了直角三角形三边之间的一种美妙关系,将形与数密切联系起来,在数学的发展和现实世界中有着广泛的作用.本节是直角三角形相关知识的延续,同时也是学生认识无理数的基础,充分体现了数学知识承前启后的紧密相关性、连续性.此外,历史上勾股定理的发现反映了人类杰出的智慧,其中蕴涵着丰富的科学与人文价值.为此本节课的教学目标是:1.用数格子(或割、补、拼等)的办法体验勾股定理的探索过程并理解勾股定理反映的直角三角形的三边之间的数量关系,会初步运用勾股定理进行简单的计算和实际运用.2.让学生经历观察一猜想一归纳一验证”的数学思想,并体会数形结合和特殊到一般的思想方法.3.进一步发展学生的说理和简单推理的意识及能力;进一步体会数学与现实生活的紧密联系.4.在探索勾股定理的过程中,体验获得成功的快乐;通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化历史,激励学生发奋学习.三、教学过程设计本节课设计了五个教学环节:第一环节:创设情境,引入新课;第二环节:探索发现勾股定理;第三环节:勾股定理的简单应用;第四环节:课堂小结;第五环节:布置作业.第一环节:创设情境,弓I入新课内容:2002年世界数学家大会在我国北京召开,投影显示本届世界数学家大会的会标:第1页第2页会标中央的图案是一个与 勾股定理”有关的图形,数学家曾建议 用 勾股定理”的图来作为与 外星人”联系的信号.今天我们就来一同 探索勾股定理.(板书课题)意图:紧扣课题,自然引入,同时渗透爱国主义教育 效果:激发起学生的求知欲和爱国热情.第二环节:探索发现勾股定理1. 探究活动一内容:投影显示如下地板砖示意图,引导学生从面积角度观察图形:问:你能发现各图中三个正方形的面积之间有何关系吗? 学生通过观察,归纳发现:结论1以等腰直角三角形两直角边为边长的小正方形的面积的和, 长的正方形的面积.意图:从观察实际生活中常见的地板砖入手,让学生感受到数学就在我们身边.通过 对特殊情形的探究得到结论1,为探究活动二作铺垫.效果:1.探究活动一让学生独立观察,自主探究,培养独立思考的习惯和能力; 2•通过探索发现,让学生得到成功体验,激发进一步探究的热情和愿望 .2. 探究活动二内容:由结论1我们自然产生联想:一般的直角三角形是否也具有该性质呢? (1)观察下面两幅图:等于以斜边为边(2)填表:师应给予充分肯定.)学生的方法可能有:方法一: A的面积(单位面积)B的面积(单位面积)C的面积(单位面积)左图右图(3)你是怎样得到正方形C的面积的?与同伴交流. 去四个直角三角形的面积, (学生可能会做出多种方法,教如图1 ,将正方形C分割为四个全等的直角三角形和一个小正方形,第4页效果:学生通过充分讨论探究,在突破正方形 C 的面积计算这一难点后得出结论 2. 3. 议一议内容:(1)你能用直角三角形的边长a ,b ,c 来表示上图中正方形的面积吗? (2)你能发现直角三角形三边长度之间存在什么关系吗?(3)分别以5厘米、12厘米为直角边作出一个直角三角形,并测量斜边的长度.2中发现的规律对这个三角形仍然成立吗?勾股定理:直角三角形两直角边的平方和等于斜边的平方 .如果用a ,b ,c 分别表示 直角三角形的两直角边和斜边,那么 a 2+b 2=c 2.数学小史:勾股定理是我国最早发现的,中国古代把直角三角形 中较短的直角边称为勾,较长的直角边称为股,斜边称为弦,勾股定 理”因此而得名.(在西方文献中又称为毕达哥拉斯定理)意图:议一议意在让学生在结论2的基础上,进一步发现直角三 角形三边关系,得到勾股定理.效果:1.让学生归纳表述结论,可培养学生的抽象概括能力及语言表达能力; 过作图培养学生的动手实践能力.第三环节:勾股定理的简单应用内容:例题 如图所示,一棵大树在一次强烈台风中于离地面 10m 处折断倒下,树顶落在离树根24m 处.大树在折断之前高多少?(教师板演解题过程) 练习:1基础巩固练习:求下列图形中未知正方形的面积或未知边的长度(口答):2.生活中的应用:2.通2.观察下图,探究图中三角形的三边长是否满足a 2 +b 2 =c 2 ?小明妈妈买了一部29 in (74 cm )的电视机.小明量了电视机的屏幕后,发现屏幕只有 58 cm 长和46 cm 宽,他觉得一定是售货员搞错了.你同意他的想法吗?你能解释这是为什 么吗?意图:练习第1题是勾股定理的直接运用,意在巩固基础知识.效果:例题和练习第2题是实际应用问题,体现了数学来源于生活,又服务于生活, 意在培养学生用数学”的意识.运用数学知识解决实际问题是数学教学的重要内容第四环节:课堂小结内容: 教师提问:1.这一节课我们一起学习了哪些知识和思想方法?2.对这些内容你有什么体会?与同伴进行交流. 在学生自由发言的基础上,师生共同总结:1.知识:勾股定理:直角三角形两直角边的平方和等于斜边的平方.如果用 a ,b ,c分别表示直角三角形的两直角边和斜边,那么a 2 +b 2 =c 22.方法:(1)观察一探索一猜想一验证一归纳一应用;(2) 割、补、拼、接”法.3.思想:(1) 特殊一一般一特殊; 意图: 效果: 结的意识.数形结合思想.鼓励学生积极大胆发言,可增进师生、生生之间的交流、互动.通过畅谈收获和体会,意在培养学生口头表达和交流的能力,增强不断反思总 第五环节:布置作业内容:布置作业:1.教科书习题1.1.意图:课后作业设计包括了三个层面:作业1是为了巩固基础知识而设计;作业2是为了扩展学生的知识面;作业3是为了拓广知识,进行课后探究而设计,通过此题可让学生进步认识勾股定理的前提条件.效果:学生进一步加强对本课知识的理解和掌握.五、教学设计反思(一)设计理念依据学生是学习的主体”这一理念,在探索勾股定理的整个过程中,本节课始终采用学生自主探索和与同伴合作交流相结合的方式进行主动学习.教师只在学生遇到困难时, 进行引导或组织学生通过讨论来突破难点.(二)突出重点、突破难点的策略为了让学生在学习过程中自我发现勾股定理,本节课首先情景创设激发兴趣,再通过几个探究活动引导学生从探究等腰直角三角形这一特殊情形入手,自然过渡到探究一般直角三角形,学生通过观察图形,计算面积,分析数据,发现直角三角形三边的关系,进而得到勾股定理.少年智则国智,少年富则国富,少年强则国强,少年独立则国独立,少年自由则国自由,少年进步则国进步,少年胜于欧洲,贝恫胜于欧洲,少年雄于地球,则国雄于地球。

八年级数学优质教案《探索勾股定理》第一课时教学设计及教学反思(1)

八年级数学优质教案《探索勾股定理》第一课时教学设计及教学反思(1)

八年级数学优质教案《探索勾股定理》第一课时教学设计及教学反思(1)《探索勾股定理》第一课时教学设计教材分析教材地位本节课是九年制义务教育课程标准实验教科书八年级第一章第一节《探索勾股定理》第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。

它在数学的发展中有着重要的地位,在现时世界中也有着广泛的作用。

学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解,对今后学习和解决与直角三角形有关的问题起着很重要的作用。

教学目标及依据1.学生通过经历探索勾股定理的过程,发展合情推理能力,体会数形结合的思想;掌握勾股定理,了解利用拼图验证勾股定理的方法。

2.充分发挥学生的想象力,提高学生的动手操作能力,培养他们自主、合作、探究的能力。

3.让学生在培养数学学习的兴趣的同时,通过自己动手解决实际问题,增强学好数学的信心,掌握现代技术条件下学习数学的一些方法。

确定目标的依据:课程标准和教材特点重点让学生经历探索中所蕴含的数学关系(勾股定理)难点自主学习中“以直角三角形为边的正方形面积的计算”部分同学理解有困难关键探索勾股定理要着重于“探”,不要以“讲”代“探”。

教学准备1.制作有关的导学网页;2.整个教学过程在电脑室进行教法学法从开放性、主体性学习的角度来设计和组织教学,采用Frontpage网页形式设置了学习平台,学生可进入勾股定理学习网页(虚拟),按内容提示自主学习。

通过设置虚拟网页学习平台,试图让学生借助网络形式,利用网络学习资源,在学习伙伴和教师的合作帮助下,自主学习"勾股定理"的内容,体现在"做"中学,主动学,提高学生的学习兴趣和求知欲望,锻炼学生的实际操作能力(包括搜索信息、选择信息、运用信息解决问题的能力),培养学生的科学探究精神和合作意识。

教学过程分成5个学习活动板块,每个板块都由固定的两人小组(组内异质,组间同质)为单位完成。

北师大版-数学-八年级上册-第一章第1节探索勾股定理(1) 教案

北师大版-数学-八年级上册-第一章第1节探索勾股定理(1) 教案

北师大版八年级上第一章第1节探索勾股定理(1)教案教学目标:(一)教学知识点1. 经历用计算和数格子的办法探索勾股定理的过程,进一步发展学生的合情推理意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。

.2.掌握勾股定理的内容,能应用勾股定理解决简单的实际问题.(二)能力训练要求通过探索直角三角形的三边之间的数量关系,进一步发展学生的说理和简单的推理的意识及能力。

(三)情感与价值观通过自主学习的发展体验获取数学知识的感受;了解勾股勾股定理的历史,体会它的重大意义和文化价值教学重点:了解勾股定理的由来并能用它解决一些简单问题。

教学难点:勾股定理中数量关系的发现的发现课堂导入:我们生活的这个世界,蕴涵着无穷的秘密,人们不断去发现它,探索它,促使人类社会不断发展进步,可以说,人类不断发展的历史就是我们不断认识自然、发现自然规律的过程,其中有一些重要的发现对人类的历史进程产生了重大的影响。

我们今天所要研究的就是这样一个伟大的发现,无论是我国古代科技所代表的东方文明还是毕达哥拉斯学派所代表的西方文明,先后都发现了这个规律,有的科学家建议把这个规律作为地球人和外星文明交流的工具。

教学过程:1、知识准备谁能有办法得到下面几个格点图形的面积在网格图形中,简单的图形可以通过数格子的方法得到面积,复杂的图形总可以利用长方形和直角三角形的和或差得到面积。

1观察图1,正方形A中有_______个小方格,即A的面积为______个单位。

正方形B中有_______个小方格,即A的面积为______个单位。

正方形C 中有_______个小方格,即A 的面积为______个单位。

1、 你是怎样得出上面的结果的?在学生交流回答的基础上教师直接发问:2、 图2中,A,B,C 之间的面积之间有什么关系?学生交流后形成共识,教师板书,A+B=C 。

2、做一做出示投影提问:1、图3中,A,B,C 之间有什么关系?2、图4中,A,B,C 之间有什么关系?1、 从图1, 2, 3, 4中你发现什么?学生讨论、交流形成共识后,教师总结:以三角形两直角边为边的正方形的面积和,等于以斜边的正方形面积。

探索勾股定理(第一课时)教案

探索勾股定理(第一课时)教案

课题:1、1探索勾股定理(第一课时)教学目标1、知识与技能目标用数格子(或割、补、拼等)的办法体验勾股定理的探索过程并理解勾股定理反映的直角三角形的三边之间的数量关系,会初步使用勾股定理实行简单的计算和实际使用.让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法.进一步发展学生的说理和简单推理的意识及水平;进一步体会数学与现实生活的紧密联系.3、情感态度与价值观在探索勾股定理的过程中,体验获得成功的快乐;通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化的思想,激励学生发奋学习.教学重点:了结勾股定理的由来,并能用它来解决一些简单的问题。

教学难点:勾股定理的发现教学准备:多媒体课件教学过程:第一环节:创设情境,引入新课(3分钟,学生观察、欣赏)内容:2002年世界数学家大会在我国北京召开,投影显示本届世界数学家大会的会标:会标中央的图案是一个与“勾股定理”相关的图形,数学家曾建议用“勾股定理”的图来作为与“外星人”联系的信号.今天我们就来一同探索勾股定理.(板书课题)第二环节:探索发现勾股定理(15分钟,学生独立观察,自主探究)1.探究活动一:内容:(1)投影显示如下地板砖示意图,让学生初步观察:(2)引导学生从面积角度观察图形:问:你能发现各图中三个正方形的面积之间有何关系吗? 学生通过观察,归纳发现:结论1 以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积. 2.探究活动二:由结论1我们自然产生联想:一般的直角三角形是否也具有该性质呢? (1)观察下面两幅图:(2)填表:A 的面积(单位面积)B 的面积(单位面积)C 的面积(单位面积)左图 右图(3)你是怎样得到正方形C 的面积的?与同伴交流.(学生可能会做出多种方法,教师应给予充分肯定.)(4)分析填表的数据,你发现了什么? 学生通过度析数据,归纳出:结论2 以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积. 3.议一议:内容:(1)你能用直角三角形的边长a 、b 、c 来表示上图中正方形的面积吗?AB CC BA(2)你能发现直角三角形三边长度之间存有什么关系吗?(3)分别以5厘米、12厘米为直角边作出一个直角三角形,并测量斜边的长度.2中发现的规律对这个三角形仍然成立吗?勾股定理(gou-gu theorem ):如果直角三角形两直角边长分别为a 、b ,斜边长为c ,那么222c b a =+.即直角三角形两直角边的平方和等于斜边的平方.数学小史:勾股定理是我国最早发现的,中国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦,“勾股定理”所以而得名. (在西方称为毕达哥拉斯定理)第三环节:勾股定理的简单应用(7分钟,学生合作探究)内容:例 如图所示,一棵大树在一次强烈台风中于离 地面10m 处折断倒下,树顶落在离树根24m 处. 大树在折断之前高多少?(教师板演解题过程)第四环节:巩固练习(10分钟,学生先独立完成,后全班交流) 1、列图形中未知正方形的面积或未知边的长度:2、生活中的应用:小明妈妈买了一部29英寸(74厘米)的电视机. 小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了.你同意他的想法吗?你能解释这是为什么吗?第五环节:课堂小结(3分钟,师生对答,共同总结)内容:教师提问:弦股勾?225100x15171.这个节课我们一起学习了哪些知识和思想方法? 2.对这些内容你有什么体会?请与你的同伴交流. 在学生自由发言的基础上,师生共同总结:1.知识:勾股定理:如果直角三角形两直角边长分别为a 、b ,斜边长为c ,那么222c b a =+. 2.方法:① 观察—探索—猜想—验证—归纳—应用; ② 面积法;③ “割、补、拼、接”法.3.思想:① 特殊—一般—特殊; ② 数形结合思想.第六 环节:布置作业(2分钟,学生分别记录)内容:作业:1.教科书习题1.1; 2.阅读《读一读》——勾股世界;3.观察下图,探究图中三角形的三边长是否满足222c b a =+.要求:A 组(学优生):1、2、3 B 组(中等生):1、2 C 组(后三分之一生):1a bcabc。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1探索勾股定理
教学目标
1、经历用数格子的办法探索勾股定理的过程,进一步发展学生的合情推理意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。

2、探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单推理的意识及能力。

3、掌握勾股定理和它的简单应用。

重点、难点
重点:
1、了解勾股定理的由来并能用它解决一些简单问题。

2、能熟练应用拼图法证明勾股定理.
难点:勾股定理的发现;用面积证勾股定理.
教学过程
一、创设问题的情境,激发学生的学习热情:
我们知道,任意三角形的三条边必须满足定理:三角形的两边之和大于第三边。

对于等腰三角形和等边三角形的边,除满足三边关系定理外,它们还分别存在着两边相等和三边相等的特殊关系。

那么对于直角三角形的边,除满足三边关系定理外,它们之间也存在着特殊的关系,这就是我们这一节要研究的问题:勾股定理。

出示投影1
我国是最早了解勾股定理的国家之一,介绍商高(三千多年前周期数学家)。

出示投影2,并回答:
2
一1图1 一1图
1、观察图1一2,正方形A中有个小方格,即A的面积为个面积单位。

正方形 B 中有个小方格.即B的面积为个面积单位。

正方形 C 中有个小方格,即C的面积为个面积单位。

2、你是怎样得出上面结果的?在学生交流回答的基础上教师接着发问。

3、图 l一2 中,A、B、C之间的面积之间有什么关系?
在学生交流后形成共识老师板书。

A + B=C ,接着提出图1一1中A、B、C的关系呢?
二、做一做
出示投影3
图1一 3 图1一 4
提问: 1、图1一 3中,A 、B、C之间有什么关系?
2、图1 一 4中,A 、 B 、C 之间有什么关系?
3、从图 1一l 、 1一2 、1一3 、l一4中你发现了什么?
在学生讨论、交流形成共识后,老师总结:
以直角三角形两直角边为边的正方形面积和,等于以斜边为边的正方形面积。

三、议一议
1、图1一1、1一
2、1一
3、1一4中,你能用三角边的边长表示正方形的面积吗?
2、你能发现直角三角形三边长度之间的关系吗?在同学的交流基础上,老师板书:
直角三角边的两直角边的平方和等于斜边的平方。

这就是著名的“勾股定理”。

222a?b?c c。

那么,斜边为、也就是说:如果直角三角形的两直角边为ab我国古代称直角三角形的较短的直角边为勾,较长的直角边为股,斜边为弦,这就是勾股定理的由
来.
3、分别以5厘米和12厘米为直角边作出一个直角三角形,并测量斜边的长度(学生测量后回答斜边为13)请大家想一想(2)中的规律对这个三角形仍然成立吗?(回答是肯定的:成立。

)4,(想一想):这里的29英寸(74厘米)的申视机,指的是屏幕的长吗?指的屏幕的宽吗?那它指的是什么呢?
四、巩固练习精选练习,掌握应用:
勾股定理的应用是本节教学的重点,一定要让学生熟练地掌握在直角三角形中已知两边求第三边的方法,为此,可设计下列三组具有梯度性的练习:
练习1(填空题)
已知在Rt△ABC中,∠C=90°。

①若a=3,b=4,则c=________;
②若a=40,b=9,则c=________;
③若a=6,c=10,则b=_______;
④若c=25,b=15,则a=________。

练习2(填空题)
已知在Rt△ABC中,∠C=90°,AB=10。

①若∠A=30°,则BC=______,AC=_______;
AC=_______。

°,则BC=______,②若∠A=453
练习。

求:ABC的边长是6cm已知等边三角形的长;高AD(1)S。

的面积(2)△ABC ABC
本节内容重在探索与发现,要给充分的时间让学生讨论与交流。

适当的练习五、教学反思:以巩固所学也是必要的,当然,这些内容还需在后面的教学内容在加深加广。

(二)是否具有普遍究竟是几个实例,我们已经通过数格子的方法发现了直角三角形三边的关系,下边请大家画四个全等的直角三还需要加以论证,下面就是今天所要研究的内容,的意义,看看能否得到一个含有以斜边并把它剪下来,用这四个直角三角形拼一拼、摆一摆,角形,1 c 为边长的正方形,并与同学们交流。

在同学操作的过程中,教师展示投影
122ab)(2接着提问:大正方形的面积可表示为什么?同学们回答有两种可能:(1)(a+b)2?4+c 在同学交流形成共识后教师把这两种表示大正方形面积的式子用等号连接起来。

122cab?4(a?b)??
2
请同学们对上式进行化简,得到:222222c??2ab?c?aab?2ab?b即这就可以从理论上说明了勾股定理存在。

请同学们回去用别的拼图方法说明勾股定理。

)利用拼合三角形的方法,如下:(1b a b a
c
a a
b b a a a
c c
b b
c b b c
a c
b a a b
)2 ((1)
122cabc??S?4?2ab?正2 1)由(22?2aab?bS?由(2)正222?2ab?c?a?b?2ab
222?a?b?c
(2)如图: c
a
2c?S a b 正S?4S?S c c b b ?小正正b
1a a 2)?aab??(b?42c
22?2a?ab?2ab?b22b?a?222b??c?a
议一议
观察书中的图1—6,应用数格子的方法判断图中的三角形的三边长是否满足222c?a?b
同学在议论交流形成共识之后,老师总结。


勾股定理存在于直角三角形中,不是直角三角形就不能使用勾股定理。

.。

相关文档
最新文档