二次电子和吸收电子检测器

合集下载

扫描电子显微镜的构造和工作原理

扫描电子显微镜的构造和工作原理

扫描电子显微镜的构造和工作原理扫描电子显微镜(Scanning Electron Microscope,SEM)是一种常用的高分辨率显微镜,它通过使用聚焦的电子束来替代传统显微镜中使用的光束,从而能够观察到非常小尺寸的物体或细节。

SEM的构造和工作原理如下:构造:1.电子源:SEM使用热电子发射或场致发射的方式产生电子束。

常用的电子源是热丝电子枪,其中一个被称为热阴极的钨丝加热电子产生材料,产生电子束。

2. 电子透镜系统:SEM中有两个电子透镜,分别称为透镜1(即准直透镜)和透镜2(即聚经透镜)。

透镜1和透镜2的作用是使电子束呈现较小的束斑(electron beam spot),从而提高分辨率和放大率。

3. 检测系统:SEM的检测系统包括两个主要部分,即二次电子检测器(Secondary Electron Detector,SED)和回散射电子检测器(Backscattered Electron Detector,BED)。

SED主要用于表面形貌观察,它能够检测到由扫描电子激发的二次电子。

BED则用于分析样品的成分和区分不同物质的特性。

4.微控样品台:SEM中的样品台可以精确调整样品位置,使其与电子束的路径重合,并且可以在不同的方向上转动,以便于观察不同角度的样品。

5.显示和控制系统:SEM使用计算机控制系统来控制电子束的扫描和样品台的移动,并将观察结果显示在计算机屏幕上。

工作原理:1.电子束的生成:SEM中的电子源产生高能电子束。

电子源加热电子发射材料,如钨丝,产生高速电子束。

2.电子透镜系统的聚焦:电子束经过透镜1和透镜2的聚焦,使其呈现出较小的束斑。

3.样品的扫描:样品台上的样品被置于电子束的路径中,并通过微控样品台控制样品的位置和方向。

电子束扫描过样品表面,通过电磁透镜和扫描线圈控制电子束的位置。

4.二次电子和回散射电子的检测:电子束与样品相互作用时,会产生二次电子和回散射电子。

二次电子是由电子束激发样品表面产生的电子,可以用来观察样品的表面形貌。

材料结构分析习题解析

材料结构分析习题解析

材料结构分析习题解析材料结构分析习题解析⼀、名词解释:球差:由于电⼦透镜中⼼区域和边缘区域对电⼦会聚能⼒不同⽽使得与光轴夹⾓不同的光线交于光轴不同位置,在像平⾯上形成⼀个圆形的弥散斑。

⾊差:是电⼦能量不同,从⽽波长不⼀造成的景深:在保持像清晰的前提下,试样在物平⾯上下沿镜轴可移动的距离或者说试样超过物平⾯所允许的厚度焦深:在保持像清晰的前提下,象平⾯沿镜轴可移动的距离或者说观察屏或照相底板沿镜轴所允许的移动距离分辨率:指所能分辨开来的物⾯上两点间的最⼩距离明场成像:只让中⼼透射束穿过物镜光栏形成的衍衬像称为明场镜。

暗场成像:只让某⼀衍射束通过物镜光栏形成的衍衬像称为暗场像。

中⼼暗场像:⼊射电⼦束相对衍射晶⾯倾斜⾓,此时衍射斑将移到透镜的中⼼位置,该衍射束通过物镜光栏形成的衍衬像称为中⼼暗场成像。

衬度:试样不同部位由于对⼊射电⼦作⽤不同,经成像放⼤系统后,在显⽰装置上显⽰的强度差异。

消光距离:电⼦束强度由极⼤到极⼩再到极⼤完成⼀个周期变化沿⼊射束⽅向所经历的距离菊池花样:平⾏⼊射束经单晶⾮弹性散射失去很少的能量随后⼜与⼀组反射⾯满⾜布拉格定律发⽣弹性散射产⽣的由亮暗平⾏线对组成的⼀种花样。

衍射衬度:由于晶体薄膜的不同部位满⾜布拉格衍射条件的程度有差异以及结构振幅不同⽽形成电⼦图像反差。

双光束条件:电⼦束穿过样品后,除透射束外,只有⼀族晶⾯严格符合布拉格条件,其他⼤⼤偏离布拉格条件,结果衍射花样除了透射斑外,只有⼀个衍射斑强度较⼤,其他衍射斑强度基本忽略,这种情况为双光束条件电⼦背散射衍射:在扫描电⼦显微镜中,利⽤⾮弹性散射的背散射电⼦与晶体衍射后,在样品的背⾯得到的菊池衍射结果⼆次电⼦:⼊射电⼦轰击试样,试样表层5~50A深度内原⼦的外层电⼦受激发⽽发射出来的电⼦背散射电⼦:⼊射电⼦在试样内经过⼀次或⼏次⼤⾓度弹性散射或⾮弹性散射后离开试样表⾯的电⼦,具有较⾼的能量,可从试样较深部位射出。

⼆、简答1.透射电镜主要由⼏⼤系统构成? 各系统之间关系如何?答:四⼤系统:电⼦光学系统,真空系统,供电控制系统,附加仪器系统。

扫描电镜工作原理

扫描电镜工作原理

扫描电镜工作原理扫描电镜(Scanning Electron Microscope,SEM)是一种高分辨率的显微镜,常用于观察材料的表面形貌和结构。

它利用电子束与样品相互作用产生的信号来获取图象,具有较高的分辨率和深度。

扫描电镜的工作原理可以分为以下几个步骤:1. 电子源:扫描电镜使用的电子源通常是热阴极电子枪。

热阴极通过加热产生的热电子形成电子束。

2. 准直系统:电子束从电子源出射后,需要经过准直系统进行准直。

准直系统包括准直孔、准直磁场和偏转磁场等,用于控制电子束的方向和能量。

3. 样品台:样品台是放置待观察样品的平台。

样品通常需要进行预处理,如去除水分和表面氧化物等。

样品台还可以通过调节高低位置来调整电子束与样品的距离。

4. 扫描线圈:扫描线圈用来控制电子束的扫描范围。

通过改变扫描线圈的电流,可以控制电子束在样品表面的扫描速度和扫描范围。

5. 检测系统:扫描电镜的检测系统用于接收样品与电子束相互作用产生的信号。

常用的检测系统包括二次电子检测器和反射电子检测器。

6. 图象处理和显示:扫描电镜获取的信号经过放大、滤波和数字化处理后,可以通过显示器显示成图象。

图象处理可以增强图象的对照度和清晰度。

扫描电镜的工作原理基于电子与样品的相互作用。

当电子束与样品表面相互作用时,会发生多种物理过程,如电子-电子相互作用、电子-原子相互作用和电子-表面相互作用等。

这些相互作用会产生多种信号,如二次电子、反射电子、透射电子和荧光X射线等。

在扫描电镜中,最常用的信号是二次电子。

当电子束与样品表面相互作用时,一部份电子会被样品表面的原子或者份子吸收或者散射,从而形成二次电子。

二次电子的数量和能量与样品表面形貌和组成有关。

通过采集和检测二次电子,可以获取样品表面的形貌信息。

此外,扫描电镜还可以利用反射电子信号来观察样品的晶体结构和原子罗列等信息。

反射电子是指电子束与样品表面原子相互作用后,被散射回来的电子。

通过采集和检测反射电子,可以获得样品的晶体学信息。

13.扫描电子显微分析

13.扫描电子显微分析

第十三章扫描电子显微分析由于透射电镜是利用穿透样品的电子束进行成像的,这就要求样品的厚度必须保证在电子束可穿透的尺寸范围内。

为此需要通过各种较为繁琐的样品制备手段将大尺寸样品转变到透射电镜可以接受的程度。

能否直接利用样品表面材料的物质性能进行微观成像,成为科学家追求的目标。

经过努力,这种想法已成为现实-----扫描电子显微镜(Scanning Electronic Microscopy, SEM)。

扫描电镜是介于透射电镜和光学显微镜之间的一种微观性貌观察手段。

第一节扫描电镜的工作原理工作过程:由最上边电子枪发射出来的电子束,经栅极聚焦后,在加速电压作用下,经过二至三个电磁透镜所组成的电子光学系统,电子束会聚成一个细的电子束聚焦在样品表面。

在末级透镜上边装有扫描线圈。

在它的作用下使电子束在样品表面扫描。

由于高能电子束与样品物质的交互作用,结果产生了各种信息:二次电子、背反射电子、吸收电了、X射线、俄歇电子、阴极发光和透射电子等。

这些信号被相应的接收器接收,经放大后送到显像管的栅极上,调制显像管的亮度。

由于经过扫描线圈上的电流是与显像管相应的亮度一一对应,也就是说,电子束打到样品上一点时,在显像管荧光屏上就出现一个亮点。

扫描电镜就是这样采用逐点成像的方法,把样品表面不同的特征,按顺序、成比例地转换为视频信号,完成一帧图像。

从而使我们在荧光屏上观察到样品表面的各种特征图像。

第二节扫描电镜的结构扫描电镜包含以下部分:1. 电子光学部分该系统由电子枪、电磁透镜、光阑、样品室等部件组成。

它的作用与透射电镜不同,仅仅用来获得扫描电子束。

显然,扫描电子束应具有较高的亮度和尽可能小的束斑直径。

(1)电子枪目前使用中的扫描电镜大多为普通热阴极电子枪,由于受到钨丝阴极发射率较低的限制,需要较大的发射截面,才能获得足够的电子束强度。

其优点是灯丝价格较便宜,对真空度要求不高,缺点是钨丝热电子发射效率低,发射源直径较大,即使经过二级或三级聚光镜,在样品表面上的电子束斑直径也在5~7nm,因此仪器分辨率受到限制。

俄歇电子能谱

俄歇电子能谱
1896
1920
1987
2006
俄歇电子能谱(AES)
一、方法原理 二、仪器结构 三、数据分析与表征 CO N TA N T S
四、AES的应用
历史与现状
1925年,法国科学家俄歇在威尔逊云室中首次观察到了俄歇电子的轨
迹,并且他正确的解释了俄歇电子产生的过程,为了纪念他,就用他的
名字命名了这种物理现象。 1953年,兰德从二次电子能量分布曲线中第一次辨识出这种电子的电
2.激发源
样品原子的激发可以用不同的方式完成。作为常规分析 用的激发源都为具有一定能量的电子束,其原因是电子 束易实现聚焦和偏转,另外它不破坏真空度。 某些特殊场合也可使用光子束作为激发源。其优点是二 次电子背景可大大减少,辐射损伤小于电子束。 另外,离子轰击也可以激发俄歇电子。
(1)电子源
电子源目前有两种:热电子发射源和场发射电子源。 热电子发射源,是通过对发射体(阴极)加热,使垫子 获得足够能量以克服表面势垒(称功函数或逸出功)而 逸出,电子流密度与发射体的功函数和温度有关。 场发射电子源,其原理是发射体外施加一强电场,是发 射体的表面势垒降低,宽度变窄,从而电子得以逸出。
俄歇电子从入口位置进入两圆 筒夹层,因外筒加有偏转电压 ,最后使电子从出口进入检测 器。若连续的改变外筒上的偏 转电压,就可在检测器上依次 接收到具有不同能量的俄歇电 子。 从能量分析器输出的电子经电 子倍增器、前置放大器后进入 脉冲计数器,最后由x-y记录 仪或荧光屏显示俄歇谱。
不同能量的电子通过分析器后最大限度的被分离,以便 选出某种能量的电子(色散特性——获得高分辨率) 具有相同能量、不同发射角的电子尽可能会聚于一点( 聚焦特性——获得高灵敏度) 上述两方面要求相互矛盾,应根据具体问题,做折中选 择。

第一章电镜的基本原理电镜

第一章电镜的基本原理电镜
二次电子由于作用区最小因而像的分辨率最高,接近 电子束斑直径。其他如背散射电子、X射线以及阴极 荧光等作用区较大因而像的分辨率较低
放大倍数
SEM的放大倍数与屏幕分辨率有关
屏幕的分辨率 放大倍数= 电子束直径
• 扫描电镜像的放大倍率(M)由屏的大小(某边长乚)与电子 束在样品上扫描区域的大小(对应边长l)的比例决定: M=l/L。通常显像管屏的大小是固定的,而电子束扫描区 域大小很容易通过改变偏转线圈的交变电流的大小来控制。 因此扫描电镜的放大倍数很容易从几倍一直达到几十万倍, 而且可以连续地迅速地改变,这相当于从放大镜到透射电 镜的放大范围。这是扫描电镜的一大优点。
• 工作距离的选择:
从物镜对样品的距离称为工作距离(WD),一般扫描电镜 的工作距离是在5~40mm之间。在高分辨率工作时, 希望提高分辨率,要求获得较小的束斑,就必须使用短焦 距的强磁物镜。因为强磁透镜像差小,从而能获得较小的 束斑。而强透镜的焦距小,就要求小的工作距离,如 WD=5mm。在低倍观察时,样品凹凸不平,要求图像 有较大的焦深,则要使用大的工作距离,如WD=40mm。
二次电子像衬度的特点:
• (1)分辨率高 • (2)景深大,立体感强 • (3)主要反应形貌衬度。
2.背散射电子像衬度及特点
• • • • 影响背散射电子产额的因素有: (1)原子序数Z (2)入射电子能量E0 (3)样品倾斜角
图22-6 背散射系数与原子序数的关系
背散射电子衬度有以下几类:
边缘效应:
• 在样品表面凹凸变化大的边缘区域,散射区域与样品表面 接近的面积异常增大,结果使边缘区域二次电子发射异常 地增加。在图像中这些区域特别亮,造成不自然的反差, 这称为“边缘效应”。 边缘效应主要减少方法是降低加速电压,它可以使边缘 效应相对减轻。

扫描电镜知识汇总

扫描电镜知识汇总

扫描电镜(SEM)超全知识汇总真空技术扫描电子显微镜,是自上世纪60年代作为商用电镜面世以来迅速发展起来的一种新型的电子光学仪器,被广泛地应用于化学、生物、医学、冶金、材料、半导体制造、微电路检查等各个研究领域和工业部门。

如图1所示,是扫描电子显微镜的外观图。

▲图1. 扫描电子显微镜特点制样简单、放大倍数可调范围宽、图像的分辨率高、景深大、保真度高、有真实的三维效应等,对于导电材料,可直接放入样品室进行分析,对于导电性差或绝缘的样品则需要喷镀导电层。

基本结构从结构上看,如图2所示,扫描电镜主要由七大系统组成,即电子光学系统、信号探测处理和显示系统、图像记录系统、样品室、真空系统、冷却循环水系统、电源供给系统。

电磁透镜:热发射电子需要电磁透镜来成束,所以在用热发射电子枪的扫描电镜上,电磁透镜必不可少。

通常会装配两组:汇聚透镜和物镜,汇聚透镜仅仅用于汇聚电子束,与成象会焦无关;物镜负责将电子束的焦点汇聚到样品表面。

扫描线圈的作用是使电子束偏转,并在样品表面作有规则的扫动,电子束在样品上的扫描动作和显像管上的扫描动作保持严格同步,因为它们是由同一扫描发生器控制的。

样品室内除放置样品外,还安置信号探测器。

2、信号探测处理和显示系统电子经过一系列电磁透镜成束后,打到样品上与样品相互作用,会产生二次电子、背散射电子、俄歇电子以及X射线等一系列信号。

所以需要不同的探测器譬如二次电子探测器、X射线能谱分析仪等来区分这些信号以获得所需要的信息。

虽然X射线信号不能用于成象,但习惯上,仍然将X射线分析系统划分到成象系统中。

有些探测器造价昂贵,比如Robinsons式背散射电子探测器,这时,可以使用二次电子探测器代替,但需要设定一个偏压电场以筛除二次电子。

3、真空系统真空系统主要包括真空泵和真空柱两部分。

真空柱是一个密封的柱形容器。

真空泵用来在真空柱内产生真空。

有机械泵、油扩散泵以及涡轮分子泵三大类,机械泵加油扩散泵的组合可以满足配置钨灯丝枪的扫描电镜的真空要求,但对于装置了场致发射枪或六硼化镧及六硼化铈枪的扫描电镜,则需要机械泵加涡轮分子泵的组合。

扫描电镜SEM简介-文字版

扫描电镜SEM简介-文字版

2. 背散射电子
背散射电子是固体样品中原子核“反射”回来的一部分入射电子,分 弹性散射电子和非弹性散射电子。背散射电子的产生深度 100nm~1μm。 背散射电子的产额随原子序数 Z 的增加而增加,大致 I∝Z2/3~3/4。利用背 散射电子作为成像信号不仅能分析形貌特征,还可以作为原子序数程度, 进行定性成分分析。
4. 俄歇电子
如果在原子内层电子能级跃迁过程中释放出来的能量并不以 X 射线 的形式发射出去,而是用这部分能量把空位层内的另—个电子发射出去, 这个被电离出来的电子称为俄歇电子。俄歇电子能量各有特征值(壳层), 能量很低,一般为 50-1500eV。俄歇电子的平均白由程很小(~1nm)。只有 在距离表面层 1nm 左右范围内(即几个原子层厚度)逸出的俄歇电子才具 备特征能量,俄歇电子产生的几率随原子序数增加而减少,因此,特别 适合作表层轻元素成分分析。
图 10 样品室
信号收集系统用于信号收集,包括二次电子和背散射电子收集器 、吸收 电子检测器、X 射线检测器 (波谱仪和能谱仪),如图 11(a)。
图 1 现代化的扫描电子显微镜
二、 SEM 的产生
1. 光学显微镜(Optical Microscope,OM)的分辨率极限 一个理想的点光源,通过会聚透镜成像,得到的并不是一个像点,
而是一个亮斑,称为艾里斑,光能量的 84%集中在中央。如果物体上两 个点所成的两个像斑发生了重叠,两圆心间距恰好是圆的半径时,恰好
电子束进入轻元素内部之后会造 成一个液滴状的作用体积。入射电子 束在被样品吸收或者散射出样品表面 之前将在这个体积内活动。如果是原 子序数较大的金属,形成的是一个类 似半球状的作用体积。
图 6 电子束的液滴作用体积示意图
表 1 各种信号的空间分辨率 (nm)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.直接谱与微分谱


直接谱:俄歇电子强度[密度(电 子数)]N(E)对其能量E的分布 [N(E)-E]。 微分谱:由直接谱微分而来, 是dN(E)/dE对E的分布[dN(E)/dE -E]。
图2-11 俄歇电子能谱示例 (银原子的俄歇能谱)
3.化学位移与伴峰




原子“化学环境”变化,不仅可能引起俄歇峰的位移(称化学位移), 也可能引起其强度的变化,这两种变化的交叠,则将引起俄歇峰(图) 形状的改变。 原子“化学环境”指原子的价态或在形成化合物时,与该(元素)原子 相结合的其它(元素)原子的电负性等情况 如:原子发生电荷转移(如价态变化)引起内层能级变化,从而改变俄 歇跃迁能量,导致俄歇峰位移; 又如:不仅引起价电子的变化(导致俄歇峰位移),还造成新的化学键 (或带结构)形成以致电子重新排布的化学环境改变,将导致谱图形状 的改变(称为价电子谱)等。

第一节 俄歇电子能谱法

俄歇电子能谱法是用具有一定能量的电子束(或X射线)激发样品俄歇 效应,通过检测俄歇电子的能量和强度,从而获得有关材料表面化学 成分和结构的信息的方法。
一、基本原理



光谱分析中已描述了原子中的电子跃迁及其俄歇电子的发射过程。 俄歇电子的激发方式虽然有多种(如X射线、电子束等),但通常主 要采用一次电子激发。 因为电子便于产生高束流,容易聚焦和偏转。俄歇电子的能量和入射 电子的能量无关,只依赖于原子的能级结构和俄歇电子发射前它所处 的能级位置。
第二十四章 电子能谱分析法
什么是电子能谱分析法?

电子能谱分析法是采用单色光源(如X射线、紫外光)或电子束去照 射样品,使样品中电子受到激发而发射出来,然后测量这些电子的产 额(强度)对其能量的分布,从中获得有关信息的一类分析方法。 本章主要介绍 俄歇电子能谱法(AES) X射线光电子能谱法(XPS) 紫外光电子能谱法(UPS)
二、俄歇电子能谱仪


主要组成部分:电子枪、能量 分析器、二次电子探测器、 (样品)分析室、溅射离子枪 和信号处理与记录系统等。 样品和电子枪装置需置于107~10-8Pa的超高真空分析室中。
图13-3 俄歇谱仪示意图
俄歇电子能谱仪发展



初期的俄歇谱仪只能做定点的成分分析。 70年代中,把细聚焦扫描入射电子束与俄歇能谱仪结合构成扫描俄歇 微探针(SAM),可实现样品成分的点、线、面分析和深度剖面分析。 由于配备有二次电子和吸收电子检测器及能谱探头,使这种仪器兼有 扫描电镜和电子探针的功能。
局限性



①不能分析氢和氦元素; ②定量分析的准确度不高; ③对多数元素的探测灵敏度为原子摩尔分数0.1%~1.0%; ④电子束轰击损伤和电荷积累问题限制其在有机材料、生物样品和某 些陶瓷材料中的应用; ⑤对样品要求高,表面必须清洁(最好光滑)等。
第二节 X射线光电子能谱法

X射线光电子能谱法(XPS),因最初以化学领域应用为主要目标, 故又称为化学分析用电子能谱法(ESCA)。 技术基础:X射线激发物质光电离、光电子发射过程及其能量关系等 见第二章。
图13-8 氧分子O1s多重分裂 (a)氧原子O1s峰; (b)氧分子中O1s峰分裂
自旋-轨道分裂


一个处于基态的闭壳层(闭壳层 指不存在未成对电子的电子壳 层)原子光电离后,生成的离子 中必有一个未成对电子。若此 未成对电子角量子数l>0,则 必然会产生自旋-轨道偶合(相 互作用),使未考虑此作用时的 能级发生能级分裂(对应于内量 子数j的取值j=l+1/2和j=l1/2形成双层能级),从而导致 光电子谱峰分裂;此称为自旋轨道分裂。 图2-8所示Ag的光电子谱峰图 除3S峰外,其余各峰均发生自 旋-轨道分裂,表现为双峰结构 (如3P1/2与3P3/2)。
图13-11 X射线光电 子标准谱图示例
应用实例


图13-12为已标识的 (C3H7)4NS2PF2的X射线光电子 谱图。 由图可知,除氢以外,其它元 素的谱峰均清晰可见。图中氧 峰可能是杂质峰,或说明该化 合物已部分氧化。
ห้องสมุดไป่ตู้图13-12
(C3H7)4NS2PF2的XPS谱图
注意

定性分析时,必须注意识别伴峰和杂质、污染峰(如样品被CO2、水分 和尘埃等沾污,谱图中出现C、O、Si等的特征峰)。 定性分析时一般利用元素的主峰(该元素最强最尖锐的特征峰)。 显然,自旋-轨道分裂形成的双峰结构情况有助于识别元素。特别是 当样品中含量少的元素的主峰与含量多的另一元素非主峰相重叠时, 双峰结构是识别元素的重要依据。
俄歇电子能谱在材料科学研究中的应用



①材料表面偏析、表面杂质分布、晶界元素分析; ②金属、半导体、复合材料等界面研究; ③薄膜、多层膜生长机理的研究; ④表面的力学性质(如摩擦、磨损、粘着、断裂等)研究; ⑤表面化学过程(如腐蚀、钝化、催化、晶间腐蚀、氢脆、氧化等)研 究; ⑥集成电路掺杂的三维微区分析; ⑦固体表面吸附、清洁度、沾染物鉴定等。
图13-5 俄歇电子能量图
主要俄歇峰的能量用空心 圆圈表示, 实心圆圈代表每个元素的 强峰
定性分析的一般步骤:


(1)利用“主要俄歇电子能量图”,确定实测谱中最强峰可能对应的几 种(一般为2、3种)元素; (2)实测谱与可能的几种元素的标淮谱对照,确定最强峰对应元素的所 有峰; (3)反复重复上述步骤识别实测谱中尚未标识的其余峰。 注意:化学环境对俄歇谱的影响造成定性分析的困难(但又为研究样 品表面状况提供了有益的信息),应注意识别。
谱峰分裂


能谱峰分裂有多重态分裂与自旋轨道分裂等。 如果原子、分子或离子价(壳)层有 未成对电子存在,则内层芯能级电 离后会发生能级分裂从而导致光电 子谱峰分裂,称之为多重分裂。 图13-8所示为O2分子X射线光电 子谱多重分裂。电离前O2分子价壳 层有两个未成对电子,内层能级 (O1s)电离后谱峰发生分裂(即多 重分裂),分裂间隔为1.1eV。
线荧光产额增加,而俄歇电子产额下降。 Z<33时,俄歇发射占优势。
俄歇分析的选择



通常 对于Z≤14的元素,采用KLL俄歇电子分析; 14<Z<42的元素,采用LMM俄歇电子较合适; Z>42时,以采用MNN和MNO俄歇电子为佳。
为什么说俄歇电子能谱分析是一种表面分析方法且空间分辨 率高?
1.俄歇电子产额

K
俄歇电子产额或俄歇跃迁几率 决定俄歇谱峰强度,直接关系 到元素的定量分析。俄歇电子 与特征X射线是两个互相关联和 竞争的发射过程。对同一K层空 穴,退激发过程中荧光X射线与 俄歇电子的相对发射几率,即 图13-1 俄歇电子产额与原子序数的关系 荧光产额(K)和俄歇电子产额 由图可知,对于K层空穴Z<19,发射俄歇 ( K )满足 电子的几率在90%以上;随Z的增加,X射 =1-K (13-1)
图13-13 1,2,4,5-苯四甲酸;1,2苯二甲酸和苯甲酸钠的C1s光电子谱图

由图可知,与聚乙烯相比,聚 氟乙烯C1s对应于不同的基团 CFH-与-CH2-成为两个部分分开 且等面积的峰。
图13-14 两种聚合物的C1s电子谱图 (a)聚乙烯 (b)聚氟乙烯
在固体研究方面的应用


对于固体样品,X射线光电子平均自由程只有0.5~2.5nm(对于金属及 其氧化物)或4~10nm(对于有机物和聚合材料),因而X射线光电子能谱 法是一种表面分析方法。 以表面元素定性分析、定量分析、表面化学结构分析等基本应用为基 础,可以广泛应用于表面科学与工程领域的分析、研究工作,如表面 氧化(硅片氧化层厚度的测定等)、表面涂层、表面催化机理等的研究, 表面能带结构分析(半导体能带结构测定等)以及高聚物的摩擦带电现 象分析等。



大多数元素在50~1000eV能量范围内都有产额较高的俄歇电子,它们 的有效激发体积(空间分辨率)取决于入射电子束的束斑直径和俄歇 电子的发射深度。 能够保持特征能量(没有能量损失)而逸出表面的俄歇电子,发射深 度仅限于表面以下大约2nm以内,约相当于表面几个原子层,且发射 (逸出)深度与俄歇电子的能量以及样品材料有关。 在这样浅的表层内逸出俄歇电子时,入射电子束的侧向扩展几乎尚未 开始,故其空间分辨率直接由入射电子束的直径决定。
图2-8 Ag的光电子能谱图 (Mg K激发)
二、X射线光电子能谱仪

主要组成部分:X光源(激发源), 样品室,电子能量分析器和信 息放大、记录(显示)系统等组 成。
图13-9 (X射线)光电子能谱仪方框图
三、X射线光电子能谱分析与应用





1.元素(及其化学状态)定性分析 方法:以实测光电子谱图与标准谱图相对照,根据元素特征峰位置 (及其化学位移)确定样品(固态样品表面)中存在哪些元素(及这些元素 存在于何种化合物中)。 常用Perkin-Elmer公司的X射线光电子谱手册 定性分析原则上可以鉴定除氢、氦以外的所有元素。 分析时首先通过对样品(在整个光电子能量范围)进行全扫描,以确定 样品中存在的元素;然后再对所选择的峰峰进行窄扫描,以确定化学 状态。
一、基本原理

能谱中表征样品芯层电子结合 能的一系列光电子谱峰称为元 素的特征峰(参见图2-8)。
图2-8 Ag的光电子能谱图(MgK激发)
1.化学位移


因原子所处化学环境不同,使 原子芯层电子结合能发生变化, 则X射线光电子谱谱峰位置发生 移动,称之为谱峰的化学位移。 图13-7所示为带有氧化物钝化 层的Al的2p光电子能谱图 由图可知,原子价态的变化导 致A1的2p峰位移。
3.化学结构分析

通过谱峰化学位移的分析不仅可以确定元素原子存在于何种化合物中, 还可以研究样品的化学结构。
相关文档
最新文档