【好题】初二数学下期中试题带答案

合集下载

重庆市渝中区巴蜀中学2023-2024学年八年级下学期期中数学试卷(含答案)

重庆市渝中区巴蜀中学2023-2024学年八年级下学期期中数学试卷(含答案)

2023-2024学年重庆市渝中区巴蜀中学八年级(下)期中数学试卷一、选择题(共12个题,每小题4分,共48分)1.(4分)以下国产电动汽车标志中,不是轴对称图形的是 A .B .C .D .2.(4分)下列各式计算正确的是 A .B.C .D3.(4分)从我校4月30日的春季运动会中,抽取了甲、乙、丙3位同学的跳远成绩进行分析,这3位同学三次跳远平均成绩大致相同,他们的方差分别是,,,则这3位同学三次跳远成绩发挥最稳定的是 A .甲B .乙C .丙D .无法确定4.(4分)用配方法解方程,配方结果正确的是 A .B .C .D .5.(4分)下列命题正确的是 A .对角线相等的平行四边形是菱形B .平行四边形的两条对角线互相垂直C .一组对边平行另一组对边相等的四边形是平行四边形D .有三个角为直角的四边形为矩形6.(4分)已知点、、在关于的一次函数的图象上,则,,的大小关系是 A .B .C .D .7.(4分)如图,点的坐标为,点在直线上运动,则线段的最短长度为 ()()222()a b a b -=-22211x x x -=--1|2|20--+=4÷=2 2.5s =甲21.0s =乙2 4.5s =丙()2470x x +-=()2(4)23x +=2(2)3x +=-2(2)11x +=2(4)9x +=()1(1,)y -2(3,)y 3(5,)y x 5y x m =-+1y 2y 3y ()123y y y >>123y y y <<213y y y <<132y y y >>A (1,0)-B y =+AB ()A .B .2C .D .38.(4分)甲、乙两人在同一条滨江健身步道上从同一起点沿同一方向匀速慢跑720米,到终点后则停止运动.已知甲先出发2分钟,在整个慢跑过程中,甲、乙两人的距离(米与甲出发的时间(分之间的函数关系如图所示,下列说法中错误的是 A .甲慢跑的速度为80米分B .乙跑完全程用了6分钟C .的值为9D .乙到达终点时,与甲的距离为75米9.(4分)如图,在渝中区的劳动技能课程中,小张同学将一张长,宽的矩形纸板,剪去两个全等的正方形和两个全等的矩形后,剩余部分恰好制作成底面积为的有盖的长方体工艺盒,则剪去的正方形的边长为 A .1.5B .2C .2.5D .310.(4分)正方形,正方形,正方形按如图方式排列,点、、在直线上,点、、在轴上,则正方形的边长为y )t )()/m 16cm 12cm 248cm ()111OA C B 1222A A C B 2333A A C B ⋯1B 2B 3B ⋯2y x =+1A 2A 3A ⋯x 2023202420242024A A C B ()A .B .C .D .11.(4分)如图,菱形的顶点、在直线上,点在轴上,点的坐标为,则点的坐标为 A .B .C .D .12.(4分)对于整式列,,第一次操作:将中相邻两个整式之和插入,之间,得到新整式列整式列,,;第二次操作:将中相邻两个整式之和依次插入,之间,得到新整式列,,,;类似的,第三次操作后得到新整式列,,,,;以此类推.现有以下结论:①第四次操作后的整式列,,,,,;②将整式列中相邻两个整式的乘积之和记为,当时,有;③若中所有整式之和记为,中所有整式之和记为,,中所有整式之和为记为,,若系数不大于1024,则所有符合条件的之和为10.其中正确的结论有 个.A .0B .1C .2D .3二、填空题(共8个题,每小题4分,共32分)20242202422-2023220252ABCD A D 36y x =--A x C (2,4)B ()3(4,)2-(4,2)-95(,)22-9(,2)2-:3A x 3m x -A 3x 3m x -1:3A x m 3m x -1A 3x 3m x -2:3A x 3x m +23m x -3m x -3:3A x 6x m +3m 36m x -3m x -⋯4:3A x 9x m +64x m +66m x -49m x -3m x -3A ()F x 2()14F x m =16x m =1A 1B 2A 2B ⋯n A n B 1231n n n T B B B B B -=⋅⋅⋅⋯⋅n T n ()13.(4分)若关于的函数是正比例函数,则的值为 .14.(4分)如果是方程的一个根,那么代数式的值为 .15.(4分)花园中学规定学生的学期体育成绩满分为100分,其中大课间自编操成绩占,体育模块化成绩占,期末体考项目成绩占,小桂同学三项体育成绩(百分制)依次95分、90分、88分,则小桂同学这学期的体育成绩是 分.16.(4分)如图,直线与直线相交于点,点的纵坐标为4,则关于的不等式的解集为 .17.(4分)如图,在中,,,点从点出发,沿射线运动,速度为,点从点出发,沿线段运动,速度为,连接.、两点同时出发,当点到达点时,点也停止运动,请问经过 后,的面积恰为.18.(4分)若关于的一元二次方程有两个不相等实数解,且关于的分式方程有整数解,那么满足条件的所有整数的和为 .19.(4分)如图,中,,为的中点,将沿折叠得,点的对应点为点,连接,与交于点,,则的长为 .x 73y x a =+-a m 2340x x --=226m m -20%30%50%1:3l y x =+2:l y kx b =+P P x 3kx b x ++…Rt ABC ∆30BAC ∠=︒5BC cm =E A AB 2/cm s F C CA 1/cm s EF E F F A E s AEF ∆212cm x 2(2)420m x x --+=x 3222my yy y+=---m ABC∆AC =D BC ABD ∆AD AED ∆B E CE AE BC F 135BAC AFC ∠=∠=︒AB20.(4分)若一个四位数的千位数字与个位数字之和为8,百位数字与十位数字之差为2,则称这个四位数为“乐蜀数”,则最大乐蜀数与最小乐蜀数之差为 ,若,,、、为整数,且,,且、均为“乐蜀数”,记,、的各个数位的数字之和分别记为、.当为整数,且取最小值时,的值为 .三、解答题(共7个题,22题8分,27题12分,其余每题10分,共70分)21.(10分)解方程:(1);(2).22.(8分)学习了菱形的知识后,爱思考的小蜀同学发现,过平行四边形其中一条对鱼线中点且满足某个特殊条件的直线与平行四边形的一组对边相交于两点,顺次连接这两个交点与刚才那条对角线的两个端点,形成的图形恰好是一个菱形.根据他的思路,完成以下作图与填空.已知:在中,点为对角线上一点,且;(1)尺规作图:请用无刻度直尺和圆规,过点作的垂线,分别交、于点、,连接、;(保留作图痕迹)(2)求证:四边形为菱形.证明:在中,① ,,在和中,,,又,四边形为平行四边形,③ ,四边形为菱形.通过小蜀的上述探究过程,我们可以得出以下真命题:5M abc =1000100103N x m n x =++-(x m n 0m …9n …16)x ……M N 22(,)11M N b nF M N -+-=M N ()G M ()G N (,)F M N ()()G M G N M N +22(23)9(2)x x -=+261x x -=ABCD O BD OB OD =O BD AD BC E F BE DF BEDF ABCD EDO FBO ∴∠=∠EDO ∆FBO ∆EDO FBO EOD FOB ∠=∠⎧⎪⎨⎪∠=∠⎩②()EDO FBO ASA ∴∆≅∆OE OF ∴=OB OD = ∴BEDF ∴BEDF过平行四边形④ 的直线与平行四边形的一组对边相交于两点,顺次连接这两个交点与刚才那条对角线的两个端点形成的四边形为菱形.23.(10分)某校初二年级数学组为了解学生数学错题整理的效果,决定在全年级开展错题重做比赛,数学组选择了近一个月作业中部分易错题,制作了一张比赛测试卷,共100分,张老师为了解、两个班级的易错题整理效果,从、两个班级各随机抽取了10人的测试成绩数据,并对数据进行整理、描述和分析(测试成绩用表示,共分为四个等级:不合格:,合格:,良好:,优秀:,下面给出部分数据信息:班10名学生的测试成绩:72,60,64,80,86,80,90,98,100,80.班10名学生的测试成绩中,等级为“良好”的所有数据为:82,84,84.抽取两个班的学生测试成绩统计表:班级平均数中位数众数班8180班8184请根据以上信息,解答下列问题:(1)根据上述图表填空: , , ;(2)根据以上数据,你认为哪个班级的错题整理效果更好?请说明理由(写出一条理由即可);(3)根据抽取的两个班的学生测试成绩情况,估计该校初二年级840名同学中错题整理成绩为“优秀”的有多少名?24.(10分)如图,四边形中,,,,,连接,点从点出发,沿着折线运动,到点时停止运动,连接,设点的运动路程为,A B A B x 70x <7080x <…8090x <…90100)x ……A B A aB ba =b =m =ABCD //AD BC BC CD ⊥24BC AD ==3CD =AC P B B C D →→D AP P x ACP∆的面积为.(1)请直接写出关于的函数关系式并注明自变量的取值范围;(2)在给定的平面直角坐标系中画出的函数图象,并写出该函数的一条性质;(3)当的函数图象与直线有两个交点时,请直接写出的取值范围为 .25.(10分)某智能家电经销商销售、两种智能空调,其中一台种空调的销售价格比一台种空调的销售价格高1500元,已知4月份种空调的销量是种空调销量的,且4月份种空调的销售总额为120万元,种空调的销售总额为225万元.(1)请问、两种智能空调的销售单价分别为多少元?(2)5月份气温回升、该经销商对两种空调进行了降价促销活动,已知种空调降价元、种空调降价元.经销商发现5月的第一周内:种空调的销量就已经与4月份种空调的总销量相同,种空调的销量比4月份种空调的总销量增加了台,5月第一周内、两种空调的销售总额刚好和4月份、两种空调的销售总额相同,请求出的值.26.(10分)如图1,直线AB 交x 轴于点A (﹣4,0),交y 轴于点B ,且OA =OB ,直线BC :4交x 轴于点C ,点D 为AB 的中点.(1)求直线CD 的解析式;(2)如图2,点E 在线段CB 上,过E 作EF ∥y 轴交CD 于点F ,过E 作EG ∥x 轴交AB 于点G ,连接DE ,当时,求△BED 的面积;(3)点H (m ,1﹣2m )为平面内一点,且满足∠ABH =∠OBC ,请直接写出点H 的坐标.y y x x y y 12y x b =+b A B B A A B 45A B A B A 70a B 100a A A B B 20a A B A B a27.(12分)如图,等腰中,,,点是射线上一点,连接,过点作于点,.(1)如图1,点在上,,,求的长;(2)如图2,点在延长线上,点为的中点,过点作于点,连接,求证:;(3)如图3,点在的延长线上,,,点在的延长线上,点在的延长线上,且,连接、,当取得最小值时,请直接写出的面积.Rt ACB ∆90ACB ∠=︒AC BC =D CA BD C CF BD ⊥E //AF BD D AC 75CAF ∠=︒4BD =BC D CA F CE F FH BC ⊥HEH HB HF +=D CA 30CDB ∠=︒4AC =N BA M AC AM BN =BMDN BM AN -BDN ∆2023-2024学年重庆市渝中区巴蜀中学八年级(下)期中数学试卷参考答案与试题解析一、选择题(共12个题,每小题4分,共48分)1.(4分)以下国产电动汽车标志中,不是轴对称图形的是 A .B .C .D .【解答】解:根据轴对称图形的定义,选项、、中的图形都能沿着一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,故、、不符合题意;选项中的图形不是轴对称图形,符合题意,故选:.2.(4分)下列各式计算正确的是 A .B.C .D【解答】解:.故本选项不符合题意;.原式,故本选项符合题意;.,故本选项不符合题意;.原式,故本选项不符合题意;故选:.3.(4分)从我校4月30日的春季运动会中,抽取了甲、乙、丙3位同学的跳远成绩进行分析,这3位同学三次跳远平均成绩大致相同,他们的方差分别是,,,则这3位同学三次跳远成绩发挥最稳定的是 A .甲B .乙C .丙D .无法确定【解答】解:,,,,()A B C A B C D D ()222()a b a b -=-22211x x x -=--1|2|20--+=4÷=A 222()2a b a ab b -=-+B 2(1)21x x -==-C 115|2|2222--+=+=D 2==B 2 2.5s =甲21.0s =乙2 4.5s =丙()22.5s = 甲21.0s =乙2 4.5s =丙222s s s ∴ 乙甲丙这3位同学三次跳远成绩发挥最稳定的是乙.故选:.4.(4分)用配方法解方程,配方结果正确的是 A .B .C .D .【解答】解:,,,,故选:.5.(4分)下列命题正确的是 A .对角线相等的平行四边形是菱形B .平行四边形的两条对角线互相垂直C .一组对边平行另一组对边相等的四边形是平行四边形D .有三个角为直角的四边形为矩形【解答】解:、对角线垂直的平行四边形是菱形,原命题是假命题;、平行四边形的两条对角线互相平分,原命题是假命题;、一组对边平行另一组对边相等的四边形不一定是平行四边形,原命题是假命题;、有三个角为直角的四边形为矩形,是真命题;故选:.6.(4分)已知点、、在关于的一次函数的图象上,则,,的大小关系是 A .B .C .D .【解答】解:对于一次函数,,随的增大而减小,,∴B 2470x x +-=()2(4)23x +=2(2)3x +=-2(2)11x +=2(4)9x +=2470x x +-=247x x +=24474x x ++=+2(2)11x +=C ()A B C D D 1(1,)y -2(3,)y 3(5,)y x 5y x m =-+1y 2y 3y ()123y y y >>123y y y <<213y y y <<132y y y >>5y x m =-+50k =-< y ∴x 531>>-故;故选:.7.(4分)如图,点的坐标为,点在直线上运动,则线段的最短长度为 A .B .2C .D .3【解答】解:点在直线上运动,最短线段所在直线解析式的,设最短线段所在直线解析式为,将坐标代入解析式得:直线的解析式为:.如图,两条直线的交点正好在轴上,即,最短线段.故选:.8.(4分)甲、乙两人在同一条滨江健身步道上从同一起点沿同一方向匀速慢跑720米,到终点后则停止运动.已知甲先出发2分钟,在整个慢跑过程中,甲、乙两人的距离(米与甲出发的时间(分之间的函数关系如图所示,下列说法中错误的是 321y yy <<AA (1,0)-B y =+AB () B y =+∴k y b =+(1,0)A -b =∴AB y y B 2AB ===B y )t )()A .甲慢跑的速度为80米分B .乙跑完全程用了6分钟C .的值为9D .乙到达终点时,与甲的距离为75米【解答】解:由题意可知,甲慢跑的速度为(米分),正确,不符合题意;设乙的速度为米分,当时乙追上甲,此时二人离起点距离相等,得,解得,则乙跑完全程用时(分,正确,不符合题意;甲到达终点用时(分,,正确,不符合题意;当乙到达终点时,甲离终点的距离为(米,乙到达终点时,与甲的距离为80米,错误,符合题意.故选:.9.(4分)如图,在渝中区的劳动技能课程中,小张同学将一张长,宽的矩形纸板,剪去两个全等的正方形和两个全等的矩形后,剩余部分恰好制作成底面积为的有盖的长方体工艺盒,则剪去的正方形的边长为 A .1.5B .2C .2.5D .3【解答】解:设剪去正方形的边长为 ,则长方体盒子的底面长为,宽为/m 160280÷=/A ∴v /6t =8064v ⨯=120v =7201206÷=)B ∴720809÷=)9m ∴=C ∴720(62)8080-+⨯=)∴D ∴D 16cm 12cm 248cm ()x cm (122)x cm -.依题意得:,整理得:,解得:,(不符合题意,舍去).答:剪去的正方形的边长为.故选:.10.(4分)正方形,正方形,正方形按如图方式排列,点、、在直线上,点、、在轴上,则正方形的边长为 A .B .C .D .【解答】解:直线与轴交于点,,,当时,,,,当时,,,,,的边长,故选:.11.(4分)如图,菱形的顶点、在直线上,点在轴上,点的坐标为,则点的坐标为 162(8)2x x cm -=-(122)(8)48x x --=222720x x -+=12x =212x =2cm B 111OA C B 1222A A C B 2333A A C B ⋯1B 2B 3B ⋯2y x =+1A 2A 3A ⋯x 2023202420242024A A C B ()20242202422-2023220252 2y x =+y 1B 1(0,2)B ∴1122OB ==2x =4y =2(2,4)B ∴21242A B ==6x =8y =3(6,8)B ∴32382A B ==⋅⋅⋅20232024A B 20242=A ABCD A D 36y x =--A x C (2,4)B ()A .B .C .D .【解答】解:四边形是菱形,,,直线的解析式为,,设直线的解析式为,点,,解得,直线的解析式为,设出,,,,,解得,,.故选:.12.(4分)对于整式列,,第一次操作:将中相邻两个整式之和插入,之间,得到新整式列整式列,,;第二次操作:将中相邻两个整式之和依次插入,3(4,)2-(4,2)-95(,)22-9(,2)2- ABCD //AD BC ∴AB BC = AD 36y x =--(2,0)A ∴-BC 3y x b =-+ (2,4)C 324b ∴-⨯+=10b =∴BC 310y x =-+(,310)B a a -+(2,0)A - (2,4)B AB BC =2222(2)(310)(2)(4310)a a a a ∴++-+=-++-4a =31012102a ∴-+=-+=-(4,2)B ∴-B :3A x 3m x -A 3x 3m x -1:3A x m 3m x -1A 3x 3m x-之间,得到新整式列,,,;类似的,第三次操作后得到新整式列,,,,;以此类推.现有以下结论:①第四次操作后的整式列,,,,,;②将整式列中相邻两个整式的乘积之和记为,当时,有;③若中所有整式之和记为,中所有整式之和记为,,中所有整式之和为记为,,若系数不大于1024,则所有符合条件的之和为10.其中正确的结论有 个.A .0B .1C .2D .3【解答】解:,,;,,,一30;,,,,,,,,,,故①正确;,,故,故②正确;,,,故的系数为而,若的系数不大于1024,则,.解得:,又为正整数,符合条件的有:1,2,3,4;,故③正确;2:3A x 3x m +23m x -3m x -3:3A x 6x m +3m 36m x -3m x -⋯4:3A x 9x m +64x m +66m x -49m x -3m x -3A ()F x 2()14F x m =16x m =1A 1B 2A 2B ⋯n A n B 1231n n n T B B B B B -=⋅⋅⋅⋯⋅n T n ()1:3A x m 3m x -12B m=2:3A x 32m +230m -m 24B m=3:3A x 6x m +3m 36m x -33:8m x B m-=4:3A x 9x m +64x m +66m x -49m x -43:16m x B m -=()3(6)(6)33(36)(36)F x x x m x m m m m x m x =++++-+-(3)m x -22236151214x m xm m =+-=2236120x xm m ∴-+=2(62)0m ∴-=16x m =12B m =222B m =332B m =2nn B m=n T ∴2312345..(1)2.2.2 (212345222)n n n n++++++=+++++=1010242=n T (1)102n n+…2200n n +-…(4)(5)0n n -+…54n -……n ∴n 123410+++=故选:.二、填空题(共8个题,每小题4分,共32分)13.(4分)若关于的函数是正比例函数,则的值为 3 .【解答】解:是关于的正比例函数,,即故答案为:3.14.(4分)如果是方程的一个根,那么代数式的值为 8 .【解答】解:把代入方程,得到,所以代数式;故答案为:8.15.(4分)花园中学规定学生的学期体育成绩满分为100分,其中大课间自编操成绩占,体育模块化成绩占,期末体考项目成绩占,小桂同学三项体育成绩(百分制)依次95分、90分、88分,则小桂同学这学期的体育成绩是 90 分.【解答】解:根据题意得:(分,小桂同学这学期的体育成绩是90分.故答案为:90.16.(4分)如图,直线与直线相交于点,点的纵坐标为4,则关于的不等式的解集为 .【解答】解:点代入,,D x 73y x a =+-a 73y x a =+- x 30a ∴-=3a =m 2340x x --=226m m -m 2340x x --=234m m -=22262(3)248m m m m -=-=⨯=20%30%50%9520%9030%8850%⨯+⨯+⨯192744=++90=)∴1:3l y x =+2:l y kx b =+P P x 3kx b x ++…1x …(,4)P m 3y x =+1m ∴=,结合图象可知关于的不等式的解集为;故答案为:.17.(4分)如图,在中,,,点从点出发,沿射线运动,速度为,点从点出发,沿线段运动,速度为,连接.、两点同时出发,当点到达点时,点也停止运动,请问经过 4或6 后,的面积恰为.【解答】解:过作于,如图:设运动时间为,中,,,,根据题意得: ,,, ,的面积恰为,,解得或,经过或后,的面积恰为.故答案为:4或6.(1,4)P ∴x 3kx b x ++…1x …1x …Rt ABC ∆30BAC ∠=︒5BC cm =E A AB 2/cm s F C CA 1/cm s EF E F F A E s AEF ∆212cm E EH AC ⊥H ts Rt ABC ∆ 30BAC ∠=︒5BC cm =210AC BC cm ∴==2AE t =cm CF tcm =(10)AF t cm ∴=-12EH AE t ==cm AEF ∆ 212cm ∴1(10)122t t -=4t =6t =∴4s 6s AEF ∆212cm18.(4分)若关于的一元二次方程有两个不相等实数解,且关于的分式方程有整数解,那么满足条件的所有整数的和为 .【解答】解:关于的一元二次方程有两个不相等实数解,,且,即且,解关于的分式方程,可得且,且,,,为整数,,,,足条件的所有整数的和为:.故答案为:.19.(4分)如图,中,,为的中点,将沿折叠得,点的对应点为点,连接,与交于点,,则的长为 .【解答】延长,作,垂足为,,,,由折叠的性质得:,,是中点,.设,x 2(2)420m x x --+=x 3222my y y y+=---m 4- x 2(2)420m x x --+=2(4)4(2)20m ∴--⨯-⨯>20m -≠4m <2m ≠y 3222my y y y +=---41y m =-2y ≠4m < 3m ≠2m ≠1m ≠y 0m ∴=1-3-∴m 0134--=-4-ABC ∆AC =D BC ABD ∆AD AED ∆B E CE AE BC F 135BAC AFC ∠=∠=︒AB 2-BA CM BA ⊥M 135BAC AFC ∠=∠=︒ ACF BCA ∠=∠1ABC ∴∠=∠BD ED =21ABC ∠=∠=∠D BC BD CD ED ∴==3α∠=,,,,,由折叠的性质得,,,,,,,,在中,是等腰直角三角形,,在中,,,设,,,,或(合去),,故答案为:.20.(4分)若一个四位数的千位数字与个位数字之和为8,百位数字与十位数字之差为2,则称这个四位数为“乐蜀数”,则最大乐蜀数与最小乐蜀数之差为 7943 ,若,,、、为整数,且,,且、均为“乐蜀数”,记,、的各个数位的数字之和分别记为、.当为整数,且取最小值时,的值为 .180319022DEC DCE α︒-∠∴∠=∠==︒-18045AFD AFC ∠=︒-∠=︒ 2345AFD ∴∠=∠+∠=︒2145ABC α∴∠=∠=∠=︒-1803180BDE α∠=︒-∠=︒- 36019022BDE ADB ADE C ︒-∠∠=∠==︒+12∠=∠ //AC DE ∴43α∴∠=∠=14902CAD BDA ∴∠=∠-∠=︒-13902ADC ADE α∠=∠-∠=︒-CAD ADC ∴∠=∠CD AC BD ∴===Rt ACM ∆18045CAM BAC ∠=︒-∠=︒ACM ∴∆2CM AM ∴===Rt BCM ∆BC BD CD =+=2CM =AB x =2BM x =+222(2)2x ∴++=24240x x ∴+-=2x ∴=-2x =--2AB ∴=25M abc =1000100103N x m n x =++-(x m n 0m …9n …16)x ……M N 22(,)11M N b n F M N -+-=M N ()G M ()G N (,)F M N ()()G M G N M N +【解答】解:一个四位数的千位数字与个位数字之和为8,百位数字与十位数字之差为2,则最大乐蜀数是8970,最小乐蜀数是1027,则最大乐蜀数与最小乐蜀数之差为:;,,、、为整数,且,,且、均为“乐蜀数”,,,且、均为“乐蜀数”,,,,所以的取值范围是到,即2.68到24.19.因为是整数,所以的可能取值是3、4、4、6、7,2.68到24.19因为是整数,所以的可能取值是3、4、4、6、73、9、11、13、15、17、19、21、23:第四步,因为:因为的定义是””,所以的结果是干位和十位99数字的差乘以100,然后相减,所以千位和百位数字的和等于十位和个位数字的和;第五步,因为和都是小于10的正整数,最小值为,所以和的取值范围是1到9;第六步,因为,的取值范围是4到8,所以;第七步,因为是“中庸数”,百位数字是8,个位数字是0.故答案为:7943;5040.三、解答题(共7个题,22题8分,27题12分,其余每题10分,共70分)21.(10分)解方程:(1);(2).【解答】解:(1),,,,,或,8970102747943-=5M abc =1000100103N x m n x =++-(x m n 0m …9n …16)x ……M N 5M abc =1000100103N x m n x =++-M N 3c ∴=8m n +=22229220921978x x +=k 2442:90921978909-k k k k 18()72x P n +=()P n n n '-x y 10811107882x x -=-x x y >y 5x =n 22(23)9(2)x x -=+261x x -=22(23)9(2)x x -=+22(23)9(2)0x x --+=[(23)3(2)][(23)3(2)]0x x x x -++--+=(53)(9)0x x +--=530x ∴+=90x --=,;(2),,即,,,22.(8分)学习了菱形的知识后,爱思考的小蜀同学发现,过平行四边形其中一条对鱼线中点且满足某个特殊条件的直线与平行四边形的一组对边相交于两点,顺次连接这两个交点与刚才那条对角线的两个端点,形成的图形恰好是一个菱形.根据他的思路,完成以下作图与填空.已知:在中,点为对角线上一点,且;(1)尺规作图:请用无刻度直尺和圆规,过点作的垂线,分别交、于点、,连接、;(保留作图痕迹)(2)求证:四边形为菱形.证明:在中,① , ,,在和中,,,又,四边形为平行四边形,③ ,四边形为菱形.通过小蜀的上述探究过程,我们可以得出以下真命题:过平行四边形④ 的直线与平行四边形的一组对边相交于两点,顺次连接这两个交点与刚才那条对角线的两个端点形成的四边形为菱形.135x ∴=-29x =-261x x -=26919x x -+=+2(3)10x -=3x ∴-=13x ∴=23x =ABCD O BD OB OD =O BD AD BC E F BE DF BEDF ABCD //AD BC OD OB =EDO FBO ∴∠=∠EDO ∆FBO ∆EDO FBO EOD FOB ∠=∠⎧⎪⎨⎪∠=∠⎩②()EDO FBO ASA ∴∆≅∆OE OF ∴=OB OD = ∴BEDF ∴BEDF【解答】(1)解:图形如图所示:(2)证明:在中,,,,在和中,,,又,四边形为平行四边形,,四边形为菱形.过平行四边形对角线的交点与一条对角线垂直的直线与平行四边形的一组对边相交于两点,顺次连接这两个交点与刚才那条对角线的两个端点形成的四边形为菱形.故答案为:,;;,对角线的交点与一条对角线垂直.23.(10分)某校初二年级数学组为了解学生数学错题整理的效果,决定在全年级开展错题重做比赛,数学组选择了近一个月作业中部分易错题,制作了一张比赛测试卷,共100分,张老师为了解、两个班级的易错题整理效果,从、两个班级各随机抽取了10人的测试成绩数据,并对数据进行整理、描述和分析(测试成绩用表示,共分为四个等级:不合格:,合格:,良好:,优秀:,下面给出部分数据信息:ABCD //AD BC OD OB =EDO FBO ∴∠=∠EDO ∆FBO ∆EDO FBO OD OBEOD FOB ∠=∠⎧⎪=⎨⎪∠=∠⎩()EDO FBO ASA ∴∆≅∆OE OF ∴=OB OD = ∴BEDF EB ED = ∴BEDF //AD BC OD OB =OD OB =EB ED =A B A B x 70x <7080x <…8090x <…90100)x ……班10名学生的测试成绩:72,60,64,80,86,80,90,98,100,80.班10名学生的测试成绩中,等级为“良好”的所有数据为:82,84,84.抽取两个班的学生测试成绩统计表:班级平均数中位数众数班8180班8184请根据以上信息,解答下列问题:(1)根据上述图表填空: 80 , , ;(2)根据以上数据,你认为哪个班级的错题整理效果更好?请说明理由(写出一条理由即可);(3)根据抽取的两个班的学生测试成绩情况,估计该校初二年级840名同学中错题整理成绩为“优秀”的有多少名?【解答】解:(1)班成绩出现次数最多的是80,因此众数是,班不合格和合格的人数为(人,所以班的中位数是,班良好所占的百分比为,,;故答案为:80,83,30;(2)班级的错题整理效果更好,理由:两个班的平均数一样,但班的中位数、众数都比班的大,所以班级的错题整理效果更好;(3)(名,答:估计该校初二年级840名同学中错题整理成绩为“优秀”的有252名.24.(10分)如图,四边形中,,,,,连接,点A B A a B b a =b =m =A 80a =B 10(20%20%)4⨯+=)B 8284832b +==B 3100%30%10⨯=%120%20%30%30%m ∴=---=30m ∴=B B A B 338402521010+⨯=+)ABCD //AD BC BC CD ⊥24BC AD ==3CD =AC P从点出发,沿着折线运动,到点时停止运动,连接,设点的运动路程为,的面积为.(1)请直接写出关于的函数关系式并注明自变量的取值范围;(2)在给定的平面直角坐标系中画出的函数图象,并写出该函数的一条性质;(3)当的函数图象与直线有两个交点时,请直接写出的取值范围为  .【解答】解:(1)当时,;当时,;综上所述,;(2)函数图形如图所示;,当时,随的增大而减小;(3)的函数图象与直线有两个交点,当直线经过时,即,当直线经过时,即,B B C D →→D AP P x ACP ∆y y x x y y 12y x b =+b 122b -<<-04x ……113(4)36222y PC CD x x =⋅=-⨯=-47x <…11(4)2422y CP AD x x =⋅=-⨯=-36(04)24(47)x x y x x ⎧-⎪=⎨⎪-<⎩………04x ……y x y 12y x b =+∴12y x b =+(4,0)2b =-12y x b =+(7,3)1372b =⨯+,当的函数图象与直线有两个交点时,的取值范围为,故答案为:.25.(10分)某智能家电经销商销售、两种智能空调,其中一台种空调的销售价格比一台种空调的销售价格高1500元,已知4月份种空调的销量是种空调销量的,且4月份种空调的销售总额为120万元,种空调的销售总额为225万元.(1)请问、两种智能空调的销售单价分别为多少元?(2)5月份气温回升、该经销商对两种空调进行了降价促销活动,已知种空调降价元、种空调降价元.经销商发现5月的第一周内:种空调的销量就已经与4月份种空调的总销量相同,种空调的销量比4月份种空调的总销量增加了台,5月第一周内、两种空调的销售总额刚好和4月份、两种空调的销售总额相同,请求出的值.【解答】解:(1)设种智能空调的销售单价分为元,则种智能空调的销售单价为元,根据题意得:,解得,经检验,是原方程的解,也符合题意,,种智能空调的销售单价分为3000元,种智能空调的销售单价为4500元;(2)由(1)知,4月份种空调的总销量为(台,种空调的总销量为(台,月第一周内、两种空调的销售总额刚好和4月份、两种空调的销售总额相同,,解得(舍去)或,的值为6.26.(10分)如图1,直线AB 交x 轴于点A (﹣4,0),交y 轴于点B ,且OA =OB ,直线BC :4交x 轴于点C ,点D 为AB 的中点.(1)求直线CD 的解析式;12b ∴=-∴y 12y x b =+b 122b -<<-122b -<<-A B B A A B 45A B A B A 70a B 100a A A B B 20a A B A B a A m B (1500)m +12000002250000415005m m =⨯+3000m =3000m =1500300015004500m ∴+=+=A ∴B A 12000004003000=)B 22500005004500=)5 A B A B 400(300070)(50020)(4500100)12000002250000a a a ∴-++-=+0a =6a =a ∴(2)如图2,点E在线段CB上,过E作EF∥y轴交CD于点F,过E作EG∥x轴交AB于点G,连接DE,当时,求△BED的面积;(3)点H(m,1﹣2m)为平面内一点,且满足∠ABH=∠OBC,请直接写出点H的坐标.【解答】解:(1)∵OA=OB,A(﹣4,0),∴B(0,4),当﹣x+4=0时,x=3,∴C(3,0),∵A(﹣4,0),D为AB中点,∴D(﹣2,2),设CD解析式为y=kx+b,∴,解得,∴CD的解析式为y=﹣x+.(2)∵A(﹣4,0),B(0,4),∴直线AB的解析式为:y=x+4,设E(m,﹣m+4),F(m,﹣m+),G(﹣m,﹣m+4),∴EF=﹣m+4﹣(﹣m+)=﹣m+,EG=m,∵EF+EG=,∴﹣m++m=,解得m=2,此时E(2,),如图,作EQ∥y轴交AB于点Q.则Q(2,6),∴EQ=,∴S△BDE=EQ•(x B﹣x D)=××2=.(3)∵点H坐标是(m,1﹣2m),∴点H在直线y=﹣2x+1上,①当点H在AB左侧时,如图所示作∠ABM=∠OBC,AM⊥BM于点H,过M作GN∥y轴交x轴于点N,过B作BG∥x轴交GN于点G,∴△BAM∽△BCO,∵OC=3,OB=4,∴,易证△BGM∽△MNA,∴,∵OB=OA=4,∴MN=,BG=,∴M(﹣,)∵B(0,4)∴直线BM的解析式为y=x+4,∵点H坐标是(m,1﹣2m),∴1﹣2m=m+4,解得m=﹣,此时H的坐标为(﹣,);②当点H在AB右侧时,同理可得H(﹣,).综上,H 1(﹣,),H 2(﹣,).27.(12分)如图,等腰中,,,点是射线上一点,连接,过点作于点,.(1)如图1,点在上,,,求的长;(2)如图2,点在延长线上,点为的中点,过点作于点,连接,求证:;(3)如图3,点在的延长线上,,,点在的延长线上,点在的延长线上,且,连接、,当取得最小值时,请直接写出的面积.【解答】解:(1)如图1,过点作于点,Rt ACB ∆90ACB ∠=︒AC BC =D CA BD C CF BD ⊥E //AF BD D AC 75CAF ∠=︒4BD =BC D CA F CE F FH BC ⊥HEH HB HF +=D CA 30CDB ∠=︒4AC =N BA M AC AM BN =BMDN BM AN -BDN ∆D DH AB ⊥H,,,,,,在中,,在中,,在中,(2)如图2,过点作交延长线于点,,,,,,,,,,,是的中点,,,//AF BD 75CDB CAF ∴∠=∠=︒90ACB ∠=︒ AC BC =45DAB ∴∠=︒30DBA ∠=︒Rt ADH ∆2AH DH ==Rt BDH ∆BH =2AB ∴=+∴Rt ABC ∆BC AB ==+E EM EH ⊥CB M //AF BD CE BD ⊥90AFC CEB ∴∠=∠=︒90ACB ∠=︒ 90ACF BCE CBE BCE ∴∠+∠=∠+∠=︒ACF CBE ∴∠=∠AC BC = 90AFC CEB ∠=∠=︒()AFC CEB AAS ∴∆≅∆BE CF ∴=F CE CF EF BE ∴==90FEH BEH BEM BEH ∠+∠=∠+∠=︒,,,,,,,,,,即.(3)如图3,取,作,.,,,,,,,,,,,,FEH BEM ∴∠=∠FH BC ⊥ 90FHC ∴∠=︒90FCH CFH FCH CBE ∴∠+∠=∠+∠=︒CFH CBE ∴∠=∠HFE MBE ∴∠=∠()FEH BEM ASA ∴∆≅∆HE ME ∴=FH BM =∴HM HB BM HB HF ==+=+HB HF +=BG AB =NI BG ⊥AH NI ⊥AC BC = BAM NBG ∴∠=∠AM BN = AB BG =()ABM BGN SAS ∴∆≅∆BM GN ∴=NG BI ⊥ 45BNI NBI ∴∠=∠=︒AH NH ⊥ 45ANH HAN ∴∠=∠=︒NH ∴=BM AN NG NH HI ∴-=…如图4,当,重合时,取最小值,此时,过作于点,,,I G BG BA ==8BN =D DK BN ⊥K 8BD = DK ∴=-12BDN S BN DK ∆∴=⋅=-。

北京市丰台第二中学教育集团2023-2024学年八年级下学期期中数学试题(含答案)

北京市丰台第二中学教育集团2023-2024学年八年级下学期期中数学试题(含答案)

丰台二中教育集团2023~2024学年度第二学期期中考试初二年级数学试题一、选择题(本题共24分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的1)A.B .C .D .2.以下列长度的三条线段为边长,能组成直角三角形的是( )A .2、3、4B .3、4、6C .6、7、8D .6、8、103.如图,在△ABC 中,∠ACB =90°,点D 为AB 的中点,若AB =4,则CD 的长为()第3题图A .2B .3C .4D .54.如图,在菱形ABCD 中,AB =4,∠ABC =60°,则菱形的面积为()第4题图A .16B .C .D .85.正方形ABCD 的对角线AC 的长是12cm ,则边长AB 的长是()A .B .C .6D .86.矩形、菱形、正方形都具有的性质是()A .对角线相等B .对角线互相平分C .对角线互相垂直D .对角线平分对角7.如图,一只蚂蚁从棱长为1的正方体纸箱的A 点沿纸箱表面爬到B 点,那么它所爬行的最短路线的长是( )第7题图ABCD .8.如图,“赵爽弦图”是由四个全等的直角三角形与一个小正方形拼成的大正方形,若小正方形的边长为3,大正方形边长为15,则一个直角三角形的周长是( )第8题图A .45B .36C .25D .18二、填空题(本题共24分,每小题3分)9______.10.在△ABC 中,D 、E 分别为AB 、AC 的中点,若BC =10,则DE 的长为______.11.如图,在平面直角坐标系xOy 中,若A 点的坐标为,则OA 的长为______.第11题图12.如图,菱形ABCD 中,对角线AC 、BD 相交于点O ,H 为AD 边中点,OH =4,则菱形ABCD 的周长等于______.=(第12题图13.一帆船从某处出发时受风向影响,先向正西航行8千米,然后向正南航行15千米,这时它离出发点有______千米.14.若有一个三角形的三边长分别为2、5、n的结果为______.15.《九章算术》卷九“勾股”中记载:今有立木,系索其末,委地三尺.引索却行,去本八尺而索尽,问索长几何?译文:今有一竖立着的木柱,在木柱的上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺.牵着绳索(绳索头与地面接触)退行,在距木根部8尺处时绳索用尽.问绳索长是多少?设绳索长为x 尺,可列方程为______.16.如图,△ABC 中,线段AD是BC 边上的高,已知BD =1,AD =CD =2,BC 上方有一动点P ,且点P到A 、D 两点的距离相等,则△BCP周长的最小值为______.第16题图三、解答题(本题共36分,每小题6分)17.计算:1819.如图,中,E 、F 是直线BD 上两点,且BE =DF ,连接AF 、CE .求证:AF =CE .20.如图,中,以B 为圆心,BA 的长为半径画弧,交BC 于点F ,作∠ABF 的角平分线,交AD 于n -))2221++ABCD ABCD点E ,连接EF .①依题意补全图形(尺规作图,保留作图痕迹);②求证:四边形ABFE 是菱形.21.如图,正方形ABCD 的对角线交于点O ,点E 、F 分别在AB 、BC 上(AE <BE ),且∠EOF =90°,OE 、DA 的延长线交于点M ,OF 、AB 的延长线交于点N ,连接MN .求证:OM =ON .22.如图,已知,延长AD 到C ,使得AD =DC ,若AB =BC ,连接BC 、CE ,BC 交DE 于点F .求证:①四边形BECD 是矩形;②连接AE ,若∠BAC =60°,AB =4,求AE 的长.四、解答题(本题共16分,第23题5分,第24题6分,第25题5分)23.如图,在5×4的方形网格中,每个小格的顶点叫做格点,设小正方形的边长为1,以格点为顶点按下列要求画图.ABED(1)在图①中画一条线段AB ,使,线段AB 的端点在格点上;(2)在图②中画一个斜边长为的等腰直角三角形DCE ,其中∠DCE =90°,三角形的顶点均在格点上.24.已知在等腰直角△ABC 中,∠BAC =90°,点D 是BC 的中点,作正方形DEFG .(1)若点A 、C 分别在DG 和DE 上,如图1,连接AE 、BG .试猜想线段BG 和AE 的数量关系是______;(不要求证明,直接写答案)(2)将正方形DEFG 绕点D 逆时针方向旋转α(0°<α≤360°)角度,①请判断(1)中的结论是否仍然成立?请利用图2证明你的结论.②若BC =DE =4,当AE 取到最大值时,求此时AF 的值.25.在平面直角坐标系xOy 中,A (0,2),B (4,2),C (4,0).若P 为矩形ABCO 内(不包括边界)一点,过点P 分别作x 轴和y 轴的平行线,这两条平行线分矩形ABCO 为四个小矩形,若这四个小矩形中有一个矩形的周长等于OA 的长,则称P 点为矩形ABCO 的矩宽点.例如:下图中的点为矩形ABCO的一个矩宽点.AB=32,55P ⎛⎫ ⎪⎝⎭(1)在点,E (2,1),中,矩形ABCO 的矩宽点是______;(2)若点为矩形ABCO 的矩宽点,求m 的值.初二期中考试答案一、选择题BDACABCB二、填空题910.5 11.2 12.32 13.17 14.5 15. 16.三、解答题17.18.19.得到∠FDA =∠EBC得到全等再给3分,最后得出结论1分20.画出图形2分;证出ABFE 是平行四边形2分证出平行四边形ABFE 是菱形再给2分21.(1)证明:∵四边形ABCD 是正方形,∴OA =OB ,∠DAO =45°,∠OBA =45°,∴∠OAM =∠OBN =135°,∵∠EOF =90°,∠AOB =90°,∵∠AOM =∠BON ,11,22D ⎛⎫⎪⎝⎭137,44F ⎛⎫ ⎪⎝⎭2,3G m ⎛⎫ ⎪⎝⎭()22283x x +-=35-在△OAM 和△OBN 中,∴△OAM ≌△OBN (ASA ),∴OM =ON .22.四、解答题23.①②24.【解答】解:(1).理由:如图1,是等腰直角三角形,,.四边形DEFG 是正方形,.在和中,,.故答案为:;(2)①成立.理由:如图2,连接AD,OAM OBN OA OBAOM BON ∠=∠⎧⎪=⎨⎪∠=∠⎩BG AE =ABC △,AD BC BD CD ∴⊥=90ADB ADC ∴∠=∠=︒ DE DG ∴=BDG △ADE △,BD AD BDG ADE GD ED =⎧⎪∠=∠⎨⎪=⎩(SAS)ADE BDG ∴≌△△BG AE ∴=BG AE =BG AE =在中,为斜边BC 中点,,.四边形EFGD 为正方形,,且,∴,∴.在和中,,;(2),当BG 取得最大值时,AE 取得最大值.如图3,当旋转角为时,.,..在中,由勾股定理,得.25.(1),点是矩形ABCO 的矩宽点,,点是矩形ABCO的矩宽点.故答案为:和; Rt BAC △D ,AD BD AD BC ∴=⊥90ADG GDB ∴∠+∠=︒ DE DG ∴=90GDE ∠=︒90ADG ADE ∠+∠=︒BDG ADE ∠=∠BDG △ADE △,BD AD BDG ADE GD ED =⎧⎪∠=∠⎨⎪=⎩(SAS)BDG ADE ∴≌△△BG AE ∴=BG AE = ∴270︒BG AE =4BC DE == 246BG ∴=+=6AE ∴=Rt AEF △AF ==AF ∴=11122+= ∴D 137314214444⎛⎫⎛⎫-+-=+= ⎪ ⎪⎝⎭⎝⎭ ∴F D F(2)若为矩形ABCO 的矩宽点,或或或,解得或或,因为为矩形内的点,和不合题意,舍去,的值为或.2,3G m ⎛⎫ ⎪⎝⎭22223m ∴+⨯=222223m ⎛⎫+⨯-= ⎪⎝⎭22(4)223m -+⨯=22(4)2223m ⎛⎫-+⨯-= ⎪⎝⎭13m =±113133G 13m ∴=-133m =m ∴13113。

【典型题】初二数学下期中试卷及答案

【典型题】初二数学下期中试卷及答案

【典型题】初二数学下期中试卷及答案一、选择题1.如图,四边形ABCD是长方形,AB=3,AD=4.已知A(﹣32,﹣1),则点C的坐标是()A.(﹣3,32)B.(32,﹣3)C.(3,32)D.(32,3)2.如图,在矩形ABCD中,AB=2,BC=3.若点E是边CD的中点,连接AE,过点B作BF ⊥AE交AE于点F,则BF的长为()A.3102B.310C.105D.3553.如图,在菱形ABCD中,AB=6,∠ABC=60°,M为AD中点,P为对角线BD上一动点,连接PA和PM,则PA+PM的最小值是( )A.3 B.2C.3D.64.已知P(x,y)是直线y=1322x 上的点,则4y﹣2x+3的值为()A.3B.﹣3C.1D.05.为了让市民享受到更多的优惠,相关部门拟确定一个折扣线,计划使50%左右的人获得折扣优惠.某市针对乘坐地铁的人群进行了调查.调查小组在各地铁站随机调查了该市1000人上一年乘坐地铁的月均花费(单位:元),绘制了频数分布直方图,如图所示.下列说法正确的是()①每人乘坐地铁的月均花费最集中的区域在80~100元范围内;②每人乘坐地铁的月均花费的平均数范围是40~60元范围内;③每人乘坐地铁的月均花费的中位数在60~100元范围内;④乘坐地铁的月均花费达到80元以上的人可以享受折扣.A.①②④B.①③④C.③④D.①②6.李老师为了了解学生暑期在家的阅读情况,随机调查了20名学生某一天的阅读小时数,具体情况统计如下:阅读时间(小时)2 2.53 3.54学生人数(名)12863则关于这20名学生阅读小时数的说法正确的是()A.众数是8B.中位数是3C.平均数是3D.方差是0.347.如图,在菱形ABCD中,BE⊥CD于E,AD=5,DE=1,则AE=()A.4B.5C.34D.418.下列各组数据中能作为直角三角形的三边长的是()A.1,2,2B.1,1,3C.4,5,6D.1,3,2 9.如图,要测量被池塘隔开的A,B两点的距离,小明在AB外选一点C,连接AC,BC,并分别找出它们的中点D,E,并分别找出它们的中点D,E,连接DE,现测得DE =45米,那么AB等于()A .90米B .88米C .86米D .84米10.如图,在正方形ABCD 外侧,作等边三角形ADE ,AC 、BE 相交于点F ,则∠CFE 为()A .150°B .145°C .135°D .120°11.下列运算正确的是( ) A .532-= B .822-=C .114293= D .()22525-=-12.下列二次根式中,最简二次根式是( ) A .10B .12C .12D .8二、填空题13.菱形ABCD 中,边长为10,对角线AC =12.则菱形的面积为__________. 14.若由你选择一个喜欢的数值m ,使一次函数()2y m x m =-+的图象经过第一、二、四象限,则m 的值可以是___________.15.在Rt ABC ∆中,a ,b ,c 分别为A ∠,B Ð,C ∠的对边,90C ∠=︒,若:2:3a b =,52c =,则a 的长为_______.16.如图,在△ABC 中,AB =6,AC =10,点D ,E ,F 分别是AB ,BC ,AC 的中点,则四边形ADEF 的周长为_____.17.如图,在ABC ∆中,D 、E 分别为AB 、AC 的中点,点F 在DE 上,且AF CF ⊥,若3AC =,5BC =,则DF =__________.18.211a aa a--=,则a 的取值范围是________ 19.已知矩形ABCD 如图,AB =4,BC =3P 是矩形内一点,则ABP CDP S S ∆∆+=______________.20.如图,ABC V 是以AB 为斜边的直角三角形,4AC =,3BC =,P 为AB 上一动点,且PE AC ⊥于E ,PF BC ⊥于F ,则线段EF 长度的最小值是________.三、解答题21.已知a ,b 分别为等腰三角形的两条边长,且a ,b 满足33652b a a =+-+-,求此三角形的周长.22.ABC ∆在平面直角坐标系中的位置如图所示,先将ABC ∆向右平移3个单位,再向下平移1个单位到111A B C ∆,111A B C ∆和222A B C ∆关于x 轴对称.(1)画出111A B C ∆和222A B C ∆;(2)在x 轴上确定一点P ,使1BP A P +的值最小,试求出点P 的坐标. 23.12310101023424.如图,直线L :y =﹣12x+2与x 轴、y 轴分别交于A 、B 两点,在y 轴上有一点C(0,4),动点M 从A 点以每秒1个单位的速度沿x 轴向左移动. (1)求A 、B 两点的坐标;(2)求△COM 的面积S 与M 的移动时间t 之间的函数关系式;(3)当t 为何值时△COM ≌△AOB ,请直接写出此时t 值和M 点的坐标.25.小颖和小亮上山游玩,小颖乘坐缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍,小颖在小亮出发后50分才乘上缆车,缆车的平均速度为180米/分,设小亮出发x分后行走的路程为y米.图中的折线表示小亮在整个行走过程中y随x的变化关系.(1)小亮行走的总路程是_________米,他途中休息了___________分;(2)分别求出小亮在休息前和休息后所走的路程段上的步行速度;(3)当小颖到达缆车终点时,小亮离缆车终点的路程是多少?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】由矩形的性质可知CD=AB= 3,BC=AD= 4,结合A点坐标即可求得C点坐标.【详解】∵四边形ABCD是长方形,∴CD=AB= 3,BC=AD= 4,∵点A(﹣32,﹣1),∴点C 的坐标为(﹣32+3,﹣1+4), 即点C 的坐标为(32,3), 故选D . 【点睛】本题考查了矩形的性质和坐标的平移,根据平移的性质解决问题是解答此题的关键.2.B解析:B 【解析】 【分析】 根据S △ABE =12S 矩形ABCD =3=12•AE•BF ,先求出AE ,再求出BF 即可. 【详解】 如图,连接BE .∵四边形ABCD 是矩形,∴AB=CD=2,BC=AD=3,∠D=90°, 在Rt △ADE 中,22AD DE +2231+10,∵S △ABE =12S 矩形ABCD =3=12•AE•BF , ∴BF=310. 故选:B . 【点睛】本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,属于中考常考题型.3.C解析:C 【解析】 【分析】首先连接AC ,交BD 于点O ,连接CM ,则CM 与BD 交于点P ,此时PA+PM 的值最小,由在菱形ABCD 中,AB=6,∠ABC=60°,易得△ACD 是等边三角形,BD 垂直平分AC ,继而可得CM ⊥AD ,则可求得CM 的值,继而求得PA+PM 的最小值. 【详解】解:连接AC,交BD于点O,连接CM,则CM与BD交于点P,此时PA+PM的值最小,∵在菱形ABCD中,AB=6,∠ABC=60°,∴∠ADC=∠ABC=60°,AD=CD=6,BD垂直平分AC,∴△ACD是等边三角形,PA=PC,∵M为AD中点,∴DM=AD=3,CM⊥AD,∴CM==3,∴PA+PM=PC+PM=CM=3.故选:C.【点睛】此题考查了最短路径问题、等边三角形的判定与性质、勾股定理以及菱形的性质.注意准确找到点P的位置是解此题的关键.4.B解析:B【解析】【分析】根据点P(x,y)是直线y=1322x-上的点,可以得到y与x的关系,然后变形即可求得所求式子的值.【详解】∵点P(x,y)是直线y=1322x-上的点,∴y=13 22x-,∴4y=2x-6,∴4y-2x=-6,∴4y-2x+3=-3,故选B.【点睛】本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质解答.5.C【解析】【分析】根据频数分布直方图中的数据,求得众数,平均数,中位数,即可得出结论.【详解】解:①根据频数分布直方图,可得众数为60−80元范围,故每人乘坐地铁的月均花费最集中的区域在60−80元范围内,故①不正确;②每人乘坐地铁的月均花费的平均数=876001000=87.6=87.6元,所以每人乘坐地铁的月均花费的平均数范围是80~100元,故②错误;③每人乘坐地铁的月均花费的中位数约为80元,在60~100元范围内,故③正确;④为了让市民享受到更多的优惠,若使50%左右的人获得折扣优惠,则乘坐地铁的月均花费达到80元以上的人可以享受折扣,故④正确.故选:C【点睛】本题主要考查了频数分布直方图,平均数以及中位数的应用,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.6.B解析:B【解析】【分析】A、根据众数的定义找出出现次数最多的数;B、根据中位数的定义将这组数据从小到大重新排列,求出最中间的2个数的平均数,即可得出中位数;C、根据加权平均数公式代入计算可得;D、根据方差公式计算即可.【详解】解: A、由统计表得:众数为3,不是8,所以此选项不正确;B、随机调查了20名学生,所以中位数是第10个和第11个学生的阅读小时数,都是3,故中位数是3,所以此选项正确;C、平均数=122 2.5386 3.5433.3520⨯+⨯+⨯+⨯+⨯=,所以此选项不正确;D、S2=120×[(2﹣3.35)2+2(2.5﹣3.35)2+8(3﹣3.35)2+6(3.5﹣3.35)2+3(4﹣3.35)2]=5.6520=0.2825,所以此选项不正确;故选B.【点睛】本题考查方差;加权平均数;中位数;众数.解析:C【解析】【分析】根据菱形的性质得出CD=AD=5,进而得出CE=4,利用勾股定理得出BE,进而利用勾股定理得出AE即可.【详解】∵菱形ABCD,∴CD=AD=5,CD∥AB,∴CE=CD﹣DE=5﹣1=4,∵BE⊥CD,∴∠CEB=90°,∴∠EBA=90°,在Rt△CBE中,BE3==,在Rt△AEB中,AE==故选C.【点睛】此题考查菱形的性质,关键是根据菱形的性质得出CD=AD.8.D解析:D【解析】【分析】根据勾股定理的逆定理对各选项进行逐一分析即可.【详解】解:A、∵12+22=5≠22,∴此组数据不能作为直角三角形的三边长,故本选项错误;B、∵12+12=2≠)2,∴此组数据不能作为直角三角形的三边长,故本选项错误;C、∵42+52=41≠62,∴此组数据不能作为直角三角形的三边长,故本选项错误;D、∵12+2=4=22,∴此组数据能作为直角三角形的三边长,故本选项正确.故选D.【点睛】本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.9.A解析:A【解析】【分析】根据中位线定理可得:AB=2DE=90米.解:∵D是AC的中点,E是BC的中点,∴DE是△ABC的中位线,∴DE=12 AB.∵DE=45米,∴AB=2DE=90米.故选A.【点睛】本题考查了三角形的中位线定理,属于基础题,熟练掌握三角形的中位线平行于第三边,并且等于第三边的一半.10.D解析:D【解析】【分析】根据正方形的性质及全等三角形的性质求出∠ABE=15°,∠BAC=45°,再求∠BFC,即可得出∠CFE.【详解】∵四边形ABCD是正方形,∴AB=AD,又∵△ADE是等边三角形,∴AE=AD=DE,∠DAE=60°,∴AB=AE,∴∠ABE=∠AEB,∠BAE=90°+60°=150°,∴∠ABE=(180°-150°)÷2=15°,又∵∠BAC=45°,∴∠BFC=45°+15°=60°,∴∠CFE=180°-∠BFC=120°故选:D.【点睛】本题主要是考查正方形的性质和等边三角形的性质,本题的关键是求出∠ABE=15°. 11.B解析:B【解析】【分析】根据二次根式的性质,结合算术平方根的概念对每个选项进行分析,然后做出选择.【详解】A.≠A错误;B.=,故B正确;C.3=,故C错误;D.2=,故D错误.故选:B.【点睛】本题主要考查了二次根式的性质和二次根式的化简,熟练掌握运算和性质是解题的关键.12.A解析:A【解析】【分析】根据最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式,结合选项求解即可.【详解】A是最简二次根式,本选项正确.B=C2=A=不是最简二次根式,本选项错误.故选A.【点睛】本题考查了最简二次根式的知识,解答本题的关键在于掌握最简二次根式的概念,对各选项进行判断.二、填空题13.96【解析】【分析】已知ABAC根据勾股定理即可求得AO的值根据对角线长即可计算菱形ABCD的面积【详解】解:∵四边形ABCD是菱形AC=12∴AO=AC=6∵菱形对角线互相垂直∴△ABO为直角三角解析:96【解析】【分析】已知AB,AC,根据勾股定理即可求得AO的值,根据对角线长即可计算菱形ABCD的面积.【详解】解:∵四边形ABCD是菱形,AC=12,∴AO=12AC=6,∵菱形对角线互相垂直,∴△ABO 为直角三角形,∴BO=22AB OA -=8,BD=2BO=16, ∴菱形ABCD 的面积=12AC•BD=12×12×16=96. 故答案为:96.【点睛】本题考查了菱形对角线互相垂直平分的性质,菱形各边长相等的性质,勾股定理在直角三角形中的运用,本题中根据勾股定理求AO 的值是解题的关键.14.(答案不唯一满足均可)【解析】【分析】一次函数的图象经过第一二四象限列出不等式组求解即可【详解】解:一次函数的图象经过第一二四象限解得:m 的值可以是1故答案为:1(答案不唯一满足均可)【点睛】此题主 解析:(答案不唯一,满足02m <<均可)【解析】【分析】一次函数()2y m x m =-+的图象经过第一、二、四象限,列出不等式组200,m m -<⎧⎨>⎩求解即可.【详解】解:一次函数()2y m x m =-+的图象经过第一、二、四象限, 200m m -<⎧⎨>⎩解得:02m <<m 的值可以是1.故答案为:1(答案不唯一,满足02m <<均可).【点睛】此题主要考查了一次函数图象,一次函数y kx b =+的图象有四种情况:①当0,0k b >>时,函数y kx b =+的图象经过第一、二、三象限;②当0,0k b ><时,函数y kx b =+的图象经过第一、三、四象限;③当0,0k b <>时,函数y kx b =+的图象经过第一、二、四象限;④当0,0k b <<时,函数y kx b =+的图象经过第二、三、四象限.15.4【解析】【分析】设每份为x 则根据勾股定理即可求出x 的值然后求出a 的长【详解】解:根据题意设每份为x ∵∴在中由勾股定理得解得:(负值已舍去)∴;故答案为:4【点睛】本题考查了勾股定理解直角三角形解题 解析:4【解析】【分析】设每份为x ,则2a x =,3=b x ,根据勾股定理,即可求出x 的值,然后求出a 的长.【详解】解:根据题意,设每份为x ,∵:2:3a b =,∴2a x =,3=b x ,在Rt ABC ∆中,由勾股定理,得222(2)(3)x x +=,解得:2x =(负值已舍去),∴4a =;故答案为:4.【点睛】本题考查了勾股定理解直角三角形,解题的关键是熟练掌握勾股定理求出三角形的边长. 16.16【解析】【分析】首先证明四边形ADEF 是平行四边形根据三角形中位线定理求出DEEF 即可解决问题【详解】解:∵BD=ADBE=EC∴DE=AC=5DE∥AC∵CF=FACE=BE∴EF=AB=3E解析:16【解析】【分析】首先证明四边形ADEF 是平行四边形,根据三角形中位线定理求出DE 、EF 即可解决问题.【详解】解:∵BD=AD ,BE=EC ,∴DE=12AC=5,DE ∥AC , ∵CF=FA ,CE=BE , ∴EF=12AB=3,EF ∥AB , ∴四边形ADEF 是平行四边形,∴四边形ADEF 的周长=2(DE+EF )=16,故答案为16.【点睛】本题考查三角形中位线定理、平行四边形的判定和性质等知识,熟练掌握三角形中位线定理是解题的关键.17.1【解析】【分析】根据三角形中位线定理求出DE 根据直角三角形的性质求出EF 计算即可【详解】解:∵DE 分别为ABAC 的中点∴DE =BC =25∵AF ⊥CFE 为AC 的中点∴EF =AC =15∴DF =DE ﹣E解析:1【解析】【分析】根据三角形中位线定理求出DE ,根据直角三角形的性质求出EF ,计算即可.【详解】解:∵D 、E 分别为AB 、AC 的中点,∴DE =12BC =2.5, ∵AF ⊥CF ,E 为AC 的中点,∴EF =12AC =1.5, ∴DF =DE ﹣EF =1,故答案为:1.【点睛】 本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.18.【解析】【分析】根据二次根式得非负性求解即可【详解】解:∵成立则有:并且即:∴故答案为:【点睛】本题考查的是二次根式的取值范围在二次根式里被开方数必须是非负数解析:01a <≤【解析】【分析】根据二次根式得非负性求解即可.【详解】a=成立, 则有:10a ->,0a ≠ ,0,即:0a >, ∴01a <≤,故答案为:01a <≤.【点睛】本题考查的是二次根式的取值范围,在二次根式里被开方数,必须是非负数. 19.【解析】【分析】根据三角形的面积公式求出△APD 和△BPC 的面积相加即可得出答案【详解】过点P 作MN ∥AD 交AB 于点N 交CD 于点M 如图∴AB ∥CDAD ∥BCAD=BC=AB=CD=4∴S △APB+S解析:83【解析】【分析】根据三角形的面积公式求出△APD和△BPC的面积,相加即可得出答案.【详解】过点P作MN∥AD,交AB于点N,交CD于点M.如图,∴AB∥CD,AD∥BC,AD=BC=43,AB=CD=4,∴S△APB+S△DPC=12×AB×PN+12CD×PM=12×4×PN +12×4×PM =12×4×(PM+PN)=12×4×43=83.故答案为:83.【点睛】本题考查了矩形的性质和三角形的面积公式,主要考查学生的计算能力和观察图象的能力.20.【解析】【分析】先由矩形的判定定理推知四边形PECF是矩形;连接PC 则PC=EF所以要使EF即PC最短只需PC⊥AB即可;然后根据三角形的等积转换即可求得PC的值【详解】连接PC∵PE⊥ACPF⊥B解析:12 5【解析】【分析】先由矩形的判定定理推知四边形PECF是矩形;连接PC,则PC=EF,所以要使EF,即PC最短,只需PC⊥AB即可;然后根据三角形的等积转换即可求得PC的值.【详解】连接PC,∵PE⊥AC,PF⊥BC,∴∠PEC=∠PFC=∠C=90°;又∵∠ACB=90°,∴四边形ECFP是矩形,∴EF=PC,∴当PC最小时,EF也最小,即当CP⊥AB时,PC最小,∵AC=4,BC=3,∴AB=5,∴12AC•BC=12AB•PC,∴PC=125.∴线段EF长的最小值为125;故答案是:125.【点睛】本题考查了勾股定理、矩形的判定与性质、垂线段最短.利用“两点之间垂线段最短”找出PC⊥AB时,PC取最小值是解答此题的关键.三、解答题21.三角形的周长为7或8【解析】【分析】根据二次根式的非负性,可求得a=2、b=3,根据等腰三角形的性质,可得三边长为2、2、3或2、3、3,从而求得三角形周长.【详解】∵3b=∴3a-6≥0,2-a≥0∴a=2∴b=3∵a,b分别为等腰三角形的两条边长∴等腰三角形的另一条边为2或3∴等腰三角形的周长为:2+2+3=7或2+3+3=8【点睛】本题考查二次根式的非负性和等腰三角形的多解问题,解题关键是利用二次根式的非负性,得出a=2.22.(1)详见解析;(2)3,05P⎛⎫-⎪⎝⎭【解析】【分析】(1)△ABC 向右平移3个单位,再向下平移1个单位到△A 1B 1C 1,△A 1B 1C 1和△A 2B 2C 2关于x 轴对称,据此作图即可;(2)依据轴对称的性质,连接BA 2,交x 轴于点P ,此时BP+A 1P 的值最小,依据直线BA 2的解析式,即可得到点P 的坐标.【详解】解:(1)如图所示,△A 1B 1C 1和△A 2B 2C 2即为所求;(2)如图所示,连接BA 2,交x 轴于点P ,则点P 即为所求;设直线BA 2的解析式为y kx b =+,由B (-3,2),A 2(3,-3)可得,3233k b k b -+=⎧⎨+=-⎩,解得5612k b ⎧=-⎪⎪⎨⎪=-⎪⎩ ∴直线BA 2的解析式为y=5162x =-- 当y=0时,51062x --= 解得35x =- ∴305P ⎛⎫- ⎪⎝⎭, 【点睛】本题主要考查了利用平移以及轴对称变换进行作图以及最短路线问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,多数情况要作点关于某直线的对称点. 2351012【解析】【分析】本题考查了同类二次根式的加法,系数相加二次根式不变.【详解】原式123234⎛=+-= ⎝【点睛】本题主要考查了实数中同类二次根式的运算能力,.24.(1)A(4,0)、B(0,2);(2)0≤t≤4时,S △OCM =8﹣2t ;t >4时,S △OCM =2t ﹣8;(3)当t =2或6时,△COM ≌△AOB ,此时M(2,0)或(﹣2,0)【解析】【分析】(1)由直线L 的函数解析式,令y =0求A 点坐标,x =0求B 点坐标;(2)由面积公式S =12OM•OC 求出S 与t 之间的函数关系式; (3)若△COM ≌△AOB ,OM =OB ,则t 时间内移动了AM ,可算出t 值,并得到M 点坐标.【详解】(1)对于直线AB :y =﹣12x+2, 当x =0时,y =2;当y =0时,x =4,则A 、B 两点的坐标分别为A (4,0)、B (0,2);(2)∵C (0,4),A (4,0)∴OC =OA =4,当0≤t≤4时,OM =OA ﹣AM =4﹣t ,S △OCM =12×4×(4﹣t )=8﹣2t ; 当t >4时,OM =AM ﹣OA =t ﹣4,S △OCM =12×4×(t ﹣4)=2t ﹣8; (3)∵OC =OA ,∠AOB =∠COM =90°,∴只需OB =OM ,则△COM ≌△AOB ,即OM =2,此时,若M 在x 轴的正半轴时,t =2,M 在x 轴的负半轴,则t =6.故当t =2或6时,△COM ≌△AOB ,此时M (2,0)或(﹣2,0).【点睛】本题考查了一次函数的性质和三角形的面积公式,以及全等三角形的判定与性质,理解全等三角形的判定定理是关键.25.(1)3600 ,20;(2)65(米/分),55(米/分);(3)1100(米).【解析】【分析】(1)根据图象可知小亮走的总路程和中途休息的时间;(2)根据图象可知休息前走了30分钟,1950米,休息后走了30分钟,3600-1950米,由此根据速度公式进行求解即可;(3)先求出缆车到达终点所需时间,从而求出小亮行走的时间,最后根据题意求出当小颖到达缆车终点时,小亮离缆车终点的路程.【详解】(1)根据图象可知:小亮行驶的总路程为3600m,中途休息时间为:50﹣30=20min,故答案为;3600,20;(2)观察图象可知小亮休息前走了30分钟,1950米,所以小亮休息前的速度为:19506530=(米/分),小亮休息后的速度为:36001950558050-=-(米/分),答:小亮休息前的速度为65米/分,休息后的速度为55米/分;(3)缆车到山顶的线路长为3600÷2=1800米,缆车到达终点所需时间为1800÷180=10分钟,小颖到达缆车终点时,小亮行走的时间为10+50=60分钟,80-60=20(分),∴小颖到达终点时,小亮离缆车终点的路程为:20⨯55=1100(米),答:当小颖到达缆车终点时,小亮离缆车终点的路程是1100米.【点睛】本题考查了函数的图象,弄清题意,读懂图象,根据图象提供的信息进行解答是关键.。

【必考题】初二数学下期中试卷(附答案)

【必考题】初二数学下期中试卷(附答案)

【必考题】初二数学下期中试卷(附答案)一、选择题1.小明搬来一架 3.5 米长的木梯,准备把拉花挂在 2.8 米高的墙上,则梯脚与墙脚的距离为( )A .2.7 米B .2.5 米C .2.1 米D .1.5 米2.已知四边形ABCD 是平行四边形,下列结论中不正确的是( )A .当AB BC =时,它是菱形B .当AC BD ⊥时,它是菱形 C .当90ABC ︒∠=时,它是矩形 D .当AC BD =时,它是正方形3.实数a ,b 在数轴上的位置如图所示,则化简()()2212a b +--的结果是( )A .3a b -+B .1a b +-C .1a b --+D .1a b -++4.周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是( )A .小丽从家到达公园共用时间20分钟B .公园离小丽家的距离为2000米C .小丽在便利店时间为15分钟D .便利店离小丽家的距离为1000米 5.若正比例函数y =mx (m 是常数,m≠0)的图象经过点A (m ,4),且y 的值随x 值的增大而减小,则m 等于( )A .2B .﹣2C .4D .﹣46.如图,要测量被池塘隔开的A ,B 两点的距离,小明在AB 外选一点C ,连接AC ,BC ,并分别找出它们的中点D ,E ,并分别找出它们的中点D ,E ,连接DE ,现测得DE =45米,那么AB 等于( )A .90米B .88米C .86米D .84米7.《九章算术》勾股章有一问题,其意思是:现有一竖立着的木柱,在木柱上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺,牵着绳索退行,在离木柱根部8尺处时绳索用尽,请问绳索有多长?若设绳索长度为x 尺,根据题意,可列方程为( )A .82﹢x 2 = (x ﹣3)2B .82﹢(x +3)2= x 2C .82﹢(x ﹣3)2= x 2D .x 2﹢(x ﹣3)2= 82 8.菱形周长为40cm ,它的条对角线长12cm , 则该菱形的面积为( )A .24B .48C .96D .36 9.下列运算正确的是( )A .235+=B .3262=C .235=gD .1333÷= 10.要使代数式3x -有意义,则x 的取值范围是( ) A .3x ≠B .3x >C .3x ≥D .3x ≤ 11.如图,矩形ABCD 中,DE ⊥AC 于E ,且∠ADE :∠EDC=3:2,则∠BDE 的度数为( )A .36°B .18°C .27°D .9°12.如图,在Rt ABC △中,90B ∠=︒,6AB =,9BC =,将ABC △折叠,使点C 与AB 的中点D 重合,折痕交AC 于点M ,交BC 于点N ,则线段BN 的长为( )A .3B .4C .5D .6二、填空题13.一次函数的图像经过点A (3,2),且与y 轴的交点坐标是B (0,2- ),则这个一次函数的函数表达式是________________.14.当直线y=kx+b 与直线y=2x-2平行,且经过点(3,2)时,则直线y=kx+b 为______.15.已知菱形ABCD 的边长为5cm ,对角线AC =6cm ,则其面积为_____cm 2.16.如图,平面直角坐标系中,点A 、B 分别是x 、y 轴上的动点,以AB 为边作边长为2的正方形ABCD ,则OC 的最大值为_____.17.一组数据4、5、a 、6、8的平均数5x =,则方差2s =________.18.如图,在矩形ABCD 中,AD=9cm ,AB=3cm ,将其折叠,使点D 与点B 重合,则重叠部分(△BEF)的面积为_________cm 2.19.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A ,且另三个锐角顶点B ,C ,D 在同一直线上.若AB=2,则CD=_____.20.如图,在∠MON 的两边上分别截取OA 、OB ,使OA =OB ;分别以点A 、B 为圆心,OA 长为半径作弧,两弧交于点C ;连接AC 、BC 、AB 、OC .若AB =2cm ,四边形OACB 的面积为4cm 2.则OC 的长为_____cm .三、解答题21.如图,正方形网格的每个小正方形的边长均为1,每个小正方形的顶点叫做格点,若C 在格点上,且满足13,32AC BC ==(1)在图中画出符合条件的ABCV;(2)若BD AC⊥于点D,则BD的长为.22.计算:16(23)(23)27 3+-+-.23.如图,一个没有上盖的圆柱形食品盒,它的高等于24cm,底面周长为20,cm在盒内下底面的点A处有一只蚂蚁,蚂蚁爬行的速度为2/cm s.(1)如图1,它想沿盒壁爬行吃到盒内正对面中部点B处的食物,那么它至少需要多少时间?(盒的厚度和蚂蚁的大小忽略不计,下同)(2)如果蚂蚁在盒壁.上爬行了一圈半才找点B处的食物(如图2),那么它至少需要多少时间?(3)假如蚂蚁是在盒的外部下底面的A处(如图3),它想吃到盒内正对面中部点B处的食物,那么它至少需要多少时间?24.如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点.(1)在图1中以格点为顶点画一个面积为10的正方形;(2)在图2中以格点为顶点画一个三角形,使三角形三边长分别为2、、;(3)如图3,点A、B、C是小正方形的顶点,求∠ABC的度数.25.一天李师傅骑车上班途中因车发生故障,修车耽误了一段时间后继续骑行,按时赶到了单位,如图描述了他上班途中的情景,回答下列问题:(1)李师傅修车用了多时间;(2)修车后李师傅骑车速度是修车前的几倍.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】仔细分析题意得:梯子、地面、墙刚好形成一直角三角形,梯高为斜边,利用勾股定理解此直角三角形即可.【详解】=2.1(米).故选C .【点睛】本题考查了勾股定理的应用.善于提取题目的信息是解题以及学好数学的关键.2.D解析:D【解析】【分析】根据特殊平行四边形的判定方法判断即可.【详解】解:有一组邻边相等的平行四边形是菱形,A 选项正确;对角线互相垂直的平行四边形是菱形,B 选项正确;有一个角是直角的平行四边形是矩形,C 选项正确;对角线互相垂直且相等的平行四边形是正方形,D 选项错误.故答案为:D【点睛】本题考查了特殊平行四边形的判定方法,熟练掌握特殊平行四边形与平行四边形之间的关系是判定的关键.3.A解析:A【解析】【分析】先根据数轴上两点的位置确定1a +和2b -.【详解】观察数轴可得,1a >-,2b >,故10a +>,20b ->,∴ ()12a b =+--12a b =+-+3a b =-+故选:A.【点睛】. 4.C解析:C【解析】解:A.小丽从家到达公园共用时间20分钟,正确;B.公园离小丽家的距离为2000米,正确;C.小丽在便利店时间为15﹣10=5分钟,错误;D.便利店离小丽家的距离为1000米,正确.故选C.5.B解析:B【解析】【分析】利用待定系数法求出m,再结合函数的性质即可解决问题.【详解】解:∵y=mx(m是常数,m≠0)的图象经过点A(m,4),∴m2=4,∴m=±2,∵y的值随x值的增大而减小,∴m<0,∴m=﹣2,故选:B.【点睛】本题考查待定系数法,一次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.6.A解析:A【解析】【分析】根据中位线定理可得:AB=2DE=90米.【详解】解:∵D是AC的中点,E是BC的中点,∴DE是△ABC的中位线,∴DE=12 AB.∵DE=45米,∴AB=2DE=90米.故选A.【点睛】本题考查了三角形的中位线定理,属于基础题,熟练掌握三角形的中位线平行于第三边,并且等于第三边的一半.7.C解析:C【解析】【分析】设绳索长为x尺,根据勾股定理列出方程解答即可.【详解】解:设绳索长为x尺,可列方程为(x-3)2+82=x2,故选:C.【点睛】本题考查了勾股定理的应用,找准等量关系,正确列出一元二次方程是解题的关键. 8.C解析:C【解析】【分析】根据菱形的性质,四条边相等且对角线互相平分且互相垂直,由勾股定理得出BO的长,进而得其对角线BD的长,再根据菱形的面积等于对角线乘积的一半计算即可.【详解】解:如图:四边形ABCD是菱形,对角线AC与BD相交于点O,∵菱形的周长为40,∴AB=BC=CD=AD=10,∵一条对角线的长为12,当AC=12,∴AO=CO=6,在Rt△AOB中,根据勾股定理,得BO=8,∴BD=2BO=16,∴菱形的面积=12AC•BD=96,故选:C.【点睛】此题主要考查了菱形的性质、菱形的面积公式以及勾股定理等知识,根据题意得出BO的长是解题关键.9.D解析:D【解析】【分析】根据二次根式的运算法则即可求出答案.【详解】A、原式23=,故错误;B2C、原式,故C错误;=,正确;D3故选:D.【点睛】本题考查二次根式,解题的关键是熟练运用二次根式的运算,本题属于基础题型.10.B解析:B【解析】【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【详解】由题意得,x-3>0,解得x>3.故选:B.【点睛】本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.11.B解析:B【解析】试题解析:已知∠ADE:∠EDC=3:2⇒∠ADE=54°,∠EDC=36°,又因为DE⊥AC,所以∠DCE=90°-36°=54°,根据矩形的性质可得∠DOC=180°-2×54°=72°所以∠BDE=180°-∠DOC-∠DEO=18°故选B.12.B解析:B【解析】【分析】=,根据勾股定理可求DN的长,即可求BN的长.由折叠的性质可得DN CN【详解】AB=,Q是AB中点,6D∴==,AD BD3=,根据折叠的性质得,DN CN∴=-=-,9BN BC CN DN在Rt DBN V 中,222DN BN DB =+,22(9)9DN DN ∴=-+,5DN ∴=4BN ∴=,故选B .【点睛】本题考查了翻折变换,折叠的性质,勾股定理,熟练运用折叠的性质是本题的关键.二、填空题13.y=x-2【解析】【分析】一次函数关系式y=kx+b 将AB 两点坐标代入解一元一次方程组可求kb 的值确定一次函数关系式【详解】设一次函数关系式y=kx+b 将A (32)B (0-2)代入得解得一次函数解析解析:y=43x-2. 【解析】【分析】一次函数关系式y=kx+b ,将A 、B 两点坐标代入,解一元一次方程组,可求k 、b 的值,确定一次函数关系式.【详解】设一次函数关系式y=kx+b ,将A (3,2)、B (0,-2)代入,得 322k b b +⎧⎨-⎩==,解得432k b ⎧⎪⎨⎪-⎩==, 一次函数解析式为y=43x-2. 故答案为:y=43x-2. 【点睛】此题考查利用待定系数法求一次函数解析式,解题关键在于利用待定系数法进行求解. 14.y=2x ﹣4【解析】【分析】根据两直线平行可得出k=2再根据直线y=kx+b 过点(32)利用一次函数图像上点的坐标特征即可得出关于b 的一元一次方程解方程即可求出b 值即可求y=kx+b 【详解】解:∵直解析:y=2x ﹣4【解析】【分析】根据两直线平行可得出k=2,再根据直线y=kx+b 过点(3,2)利用一次函数图像上点的坐标特征即可得出关于b的一元一次方程,解方程即可求出b值,即可求y=kx+b.【详解】解:∵直线y=kx+b与直线y=2x-2平行,∴k=2.又∵直线y=kx+b过点(3,2),∴2=2×3+b,解得:b=-4.∴y=kx+b=2x-4.故答案为y=2x-4.【点睛】本题考查的知识点是两直线相交或平行问题已经一次函数图像上点的坐标特征,解题关键是求出k和b的值.15.24【解析】【分析】根据菱形的性质求出另一条对角线BD的长然后再求面积即可【详解】如图所示:∵菱形ABCD的边长为5cm对角线AC=6cm∴AC⊥BDAO=CO=3cmBD=2BO∴BO==4(cm解析:24【解析】【分析】根据菱形的性质求出另一条对角线BD的长,然后再求面积即可.【详解】如图所示:∵菱形ABCD的边长为5cm,对角线AC=6cm,∴AC⊥BD,AO=CO=3cm,BD=2BO,∴BO=22AB AO=4(cm),∴BD=8cm,∴S菱形ABCD=12×6×8=24(cm2),故答案为24.【点睛】本题考查了菱形的性质,熟练掌握菱形的对角线互相垂直平分以及菱形的面积等于对角线积的一半是解题的关键.16.【解析】如图取AB的中点E连接OECE则BE=×2=1在Rt△BCE中由勾股定理得C E=∵∠AOB=90°点E是AB的中点∴OE=BE=1由两点之间线段最短可知点OEC三点共线时OC最大∴OC的最大5+1【解析】如图,取AB的中点E,连接OE、CE,则BE=12×2=1,在Rt△BCE中,由勾股定理得,=∵∠AOB=90°,点E是AB的中点,∴OE=BE=1,由两点之间线段最短可知,点O、E、C三点共线时OC最大,∴OC的最大值..【点睛】运用了正方形的性质,直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,熟记各性质并确定出OC最大时的情况是解题的关键.17.4【解析】【分析】首先根据其平均数为5求得a的值然后再根据方差的计算方法计算即可【详解】解:根据题意得(4+5+a+6+8)=5×5解得a=2则这组数据为45268的平均数为5所以这组数据的方差为s解析:4【解析】【分析】首先根据其平均数为5求得a的值,然后再根据方差的计算方法计算即可.【详解】解:根据题意得(4+5+a+6+8)=5×5,解得a=2,则这组数据为4,5,2,6,8的平均数为5,所以这组数据的方差为s2= 15[(4-5)2+(5-5)2+(2-5)2+(6-5)2+(8-5)2]=4.故答案为:4【点睛】本题考查方差的定义、意义、计算公式,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.18.5cm2【解析】已知四边形ABCD是矩形根据矩形的性质可得BC=DC∠BCF=∠DCF=90°又知折叠使点D和点B重合根据折叠的性质可得C′F=CF在RT△BCF中根据勾股定理可得BC2+CF2=B解析:5cm2【解析】已知四边形ABCD是矩形根据矩形的性质可得BC=DC,∠BCF=∠DCF=90°,又知折叠使点D 和点B重合,根据折叠的性质可得C′F=CF,在RT△BCF中,根据勾股定理可得BC2+CF2=BF2,即32+(9-BF)2=BF2,解得BF=5,所以△BEF的面积=12BF×AB=12×5×3=7.5.点睛:本题考查了翻折变换的性质,矩形的性质,勾股定理,熟记翻折前后两个图形能够重合找出相等的线段、相等的角是解题的关键.19.【解析】【分析】先利用等腰直角三角形的性质求出BC=2BF=AF=1再利用勾股定理求出DF即可得出结论【详解】如图过点A作AF⊥BC于F在Rt△ABC 中∠B=45°∴BC=AB=2BF=AF=AB=解析:31-【解析】【分析】先利用等腰直角三角形的性质求出BC=2,BF=AF=1,再利用勾股定理求出DF,即可得出结论.【详解】如图,过点A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴2AB=2,BF=AF=22AB=1,∵两个同样大小的含45°角的三角尺,∴AD=BC=2,在Rt△ADF中,根据勾股定理得,22AD AF-3∴33,3-1.【点睛】此题主要考查了勾股定理,等腰直角三角形的性质,正确作出辅助线是解本题的关键.20.【解析】【分析】根据作法判定出四边形OACB是菱形再根据菱形的面积等于对角线乘积的一半列式计算即可得解【详解】根据作图AC=BC=OA∵OA=OB∴OA=OB=BC=AC∴四边形OACB是菱形∵AB解析:【解析】【分析】根据作法判定出四边形OACB是菱形,再根据菱形的面积等于对角线乘积的一半列式计算即可得解.【详解】根据作图,AC=BC=OA,∵OA=OB,∴OA=OB=BC=AC,∴四边形OACB 是菱形,∵AB =2cm ,四边形OACB 的面积为4cm 2, ∴12AB •OC =12×2×OC =4, 解得OC =4cm .故答案为:4.【点睛】 本题考查菱形的判定与性质,菱形的面积.解决本题的关键是能根据题目中作图的过程得出线段的等量关系.三、解答题21.(1)见解析; (2)51313【解析】【分析】(1)结合网格图利用勾股定理确定点C 的位置即可得解;(2)根据三角形的面积列出关于BD 方程,求解即可得到答案.【详解】解:(1)如图:∵小正方形的边长均为1∴3AE =,2CE =;3BF CF ==∴2213AC AE CE =+=2232BC BF CF +=∴ABC V 即为所求.(2)如图:∵由网格图可知5AB =,3CH =,13AC =32BC =22ABC AB CH AC BD S ⋅⋅==V 13532BD ⋅⨯= ∴1313BD =. 【点睛】本题考查了勾股定理在网格图中的的运用,本题需仔细分析题意,结合图形,利用勾股定理即可解决问题.22.13【解析】【分析】先利用平方差公式计算,然后把二次根式化为最简二次根式后合并即可.【详解】解:原式=234333-- =13【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.23.(161s ;(2)329s ;(3349s【解析】【分析】(1)从A 到B 有两种走法:从内壁直接爬过去和从盒子底部直接爬过去,画出展开图,求出AB 的长度,比较即可得出结果;(2)根据勾股定理解答即可;(3)要求圆柱体中两点之间的最短路径,最直接的作法,就是将正方体展开,作出B 关于边EF 的对称点D ,然后利用勾股定理求出AD 的长,再算出时间.【详解】(1)图1展开图,如图①、图②所示:图①中(直接沿着盒壁爬过去):261AB = 图②中(沿底面直径爬过去再竖直爬上去):2012AB π=+2026112π<+Q261261t s ∴=÷=(2)如图:蚂蚁走过的最短路径为:223012629AB =+=cm ,所用时间为:6292329s ÷=;(3)如图2,作B 关于EF 的对称点D ,连接AD ,蚂蚁走的最短路程是AP+PB=AD ,由图可知,AC=10cm ,CD=24+12=36(cm ),2236101396+=,1396349s ), 从A 到C 349秒.【点睛】本题考查的是平面展开-最短路径问题,根据题意画出圆柱的侧面展开图,利用勾股定理求解是解答此题的关键.24.(1)详见解析;(2)详见解析;(3)450【解析】【分析】(1)根据勾股定理画出边长为的正方形即可;(2)根据勾股定理和已知画出符合条件的三角形即可;(3)连接AC、CD,求出△ACB是等腰直角三角形即可.【详解】(1)如图1的正方形的边长是,面积是10;(2)如图2的三角形的边长分别为2,、;(3)如图3,连接AC,因为AB2=22+42=20,AC2=32+12=10,BC2=32+12=10,所以AB2= AC2+ BC2,AC=BC∴三角形ABC是等腰直角三角形,∴∠ABC=∠BAC=45°.【点睛】本题考查了勾股定理逆定理,三角形的面积,直角三角形的判定的应用,主要考查学生的计算能力和动手操作能力.25.(1)5分钟;(2)2倍【解析】【分析】(1)观察图象可得李师傅离家10分钟时开始修车、离家15分钟修完车,两数相减即可得解;(2)观察图象可得李师傅修车前后行驶的路程和时间,即可求得相应的行驶速度,两速度相除即可得解.【详解】解:(1)由图可得,李师傅修车用了15105-=(分钟);(2)∵修车后李师傅骑车速度是200010002002015-=-(米/分钟),修车前速度为1000100=(米/分钟)10÷=∴2001002∴修车后李师傅骑车速度是修车前的2倍.【点睛】本题考查了从图象中读取信息的数形结合的能力,需要注意分析其中的“关键点”,还要善于分析各部分图象的变化趋势.。

仁爱版初二下册《数学》期中考试卷及答案【可打印】

仁爱版初二下册《数学》期中考试卷及答案【可打印】

仁爱版初二下册《数学》期中考试卷一、选择题(每题3分,共30分)1. 已知一个数的平方根是±2,则这个数是()。

A. 4B. 4C. 2D. 22. 下列各数中,不是有理数的是()。

A. 3B. 0.5C. √2D. 3/43. 下列等式中,正确的是()。

A. 3x + 4y = 7B. 2x 5y = 3C. 3x + 4y = 3D. 2x 5y = 74. 已知等差数列的前三项分别是2,5,8,则该数列的公差是()。

A. 3B. 2C. 4D. 55. 下列各式中,是同类项的是()。

A. 3x^2y 和 2xy^2B. 5x^3 和 4x^2C. 7y^3 和 6y^2D. 9z^4 和 8z^36. 已知一个三角形的两个内角分别是45°和60°,则第三个内角的度数是()。

A. 75°B. 60°C. 45°D. 30°7. 下列函数中,是一次函数的是()。

A. y = 2x^2 + 3x + 4B. y = 3x + 4C. y = 2x^3 + 5x^2 + 7D. y = 4x + 68. 已知一个圆的半径是5cm,则其周长是()。

A. 10π cmB. 15π cmC. 20π cmD. 25π cm9. 下列图形中,是中心对称图形的是()。

A. 矩形B. 梯形C. 圆D. 正方形10. 下列数列中,是等差数列的是()。

A. 2, 5, 10, 17, 26B. 3, 6, 9, 12, 15C. 4, 8, 16, 32,64 D. 5, 10, 15, 20, 25二、填空题(每题3分,共30分)11. 已知一个数的立方根是2,则这个数是__________。

12. 下列各数中,是无理数的是__________。

13. 下列等式中,正确的是__________。

14. 已知等差数列的前三项分别是2,5,8,则该数列的公差是__________。

参考答案2024-2025学年度第二学期初二数学期中阶段质量检测试题参考答案

参考答案2024-2025学年度第二学期初二数学期中阶段质量检测试题参考答案

2024-2025学年度第一学期初二数学学科期中阶段质量反馈参考答案一、单项选择(30分,每题3分)1-5 CADBD 6-10ABBAA二、填空题(18分,每题3分)11.±312.三角形的稳定性13.814.815.16.4三、解答题(72分)17.(1) (1)53(共10分,每问5分,第一步化简乘方、开方正确2分)18. (共12分,(1)每空1分,(2)8分)(1)①;②;③;④.(2)延长至点,使得,连接,延长至点,使得,连接,,...................................................................................................辅助线1分,在△和△中,,△△,,..............................................................................................................................3分同理△△,3-52B B '∠=∠12BD BC =12B D BC ''''=SAS ADE DE DA =BE A D ''E 'D E D A ''''=B E ''AD A D ='' AE A E ∴=''ADC EDB AD ED ADC EDB CD BD =⎧⎪∠=∠⎨⎪=⎩∴ADC ≅()EDB SAS AC BE ∴=A D C '''≅()E D B SAS ''',,,............................................................................................................................4分在△和△中,,△△,,同理,,.................................................................................................................6分在△和△中,,△△.............................................................................. .....................8分19. (共4)分方法一:如图,连接并延长,.......................................................... .....................1分在中,,在中,,, (2)分A CB E ''''∴=AC A C '=' BE B E ''∴=BAE B A E '''AB A B BE B E EA E A ''=⎧⎪''=⎨⎪''=⎩∴BAE ≅()B A E SSS '''BAD B A D ∴∠=∠'''CAD C A D ∠=∠'''BAC B A C ∴∠=∠'''ABC A B C '''AB A B BAC B A C AC A C ''=⎧⎪'''∠=∠⎨⎪''=⎩∴ABC ≅()A B C SAS '''AC ADC ∆1D DAC ∠=∠+∠ABC ∆2B BAC ∠=∠+∠12140BCD D B BAC DAC D B A ∴∠=∠+∠=∠+∠+∠+∠=∠+∠+∠=︒李叔叔量得,就可以断定这个零件不合格......................................1分方法二:如图,延长交于,,,,,李叔叔量得,就可以断定这个零件不合格.20. (共10分,(1)4分,(2)6分)(1)如图,点即为所求;(2)连接,由作图可知,为的垂直平分线,则,设 ,则,..............................................1分,在中,由勾股定理得:,..............................................2分即......................................................................................................5分解得:,答:深圳号驱逐舰行驶的航程的长为. (6)分∴142BCD ∠=︒DC AB M 180180903060AMD A D ∠=︒-∠-∠=︒-︒-︒=︒ 180********CMB AMD ∴∠=︒-∠=︒-︒=︒1801802012040MCB B CMB ∴∠=︒-∠-∠=︒-︒-︒=︒180********DCB MCB ∴∠=︒-∠=︒-︒=︒∴142BCD ∠=︒C BC CD AB BC AC =BC AC x ==nmile (90)OC x nmile =-OA OB⊥ 90O ∴∠=︒Rt OBC ∆222BO OC BC +=22230(90)x x +-=50x =BC 50nmile21. (共9分,(1)3分,(2)3分,点描对1个给1分(3)3分)22.(共5分)解:如图,设C ′D 与AC 交于点O ,∵∠C=35°,∴由折叠可得∠C ′=∠C=35°,.....................................................................................1分∵∠1=∠DOC+∠C ,∠1=106°,∴∠DOC=∠1-∠C=106°-35°=71°, (3)分∵∠DOC=∠2+∠C ′,∴∠2=∠DOC-∠C ′=71°-35°=36°..............................................................................5分23.(共10分,(1)6分,(2)4分)(1)截取AC=CE 给2分;平行尺规作图:利用角的关系或做全等,有痕迹作对都可给4分(2)解:,,............................................................................................................1分在和中,,,............................................................................................................3分,即的长就是、之间的距离...............................................................4分//DE AB A E ∴∠=∠ABC ∆EDC ∆A E ACB ECD BC CD ∠=∠⎧⎪∠=∠⎨⎪=⎩()ABC EDC AAS ∴∆≅∆DE AB ∴=DE A B24.(共12分,(1)2分,(2)8分,(3)2分)解:(2)结论成立............................................................................1分证明:四边形是正方形,,............................................................................2分在和中,,..,即....................................................................................................................5分在和中,,.,...............................................................................................7分,,,.(8分).........................................................................................................8分 ABCD BA AD DC ∴==90BAD ADC ∠=∠=︒EAD ∆FDC ∆EA FD ED FC AD DC =⎧⎪=⎨⎪=⎩EAD FDC ∴∆≅∆EAD FDC ∴∠=∠EAD DAB FDC CDA ∴∠+∠=∠+∠BAE ADF ∠=∠BAE ∆ADF ∆BA AD BAE ADF AE DF =⎧⎪∠=∠⎨⎪=⎩BAE ADF ∴∆≅∆BE AF ∴=ABE DAF ∠=∠⋯90DAF BAF ∠+∠=︒ 90ABE BAF ∴∠+∠=︒90AMB ∴∠=︒AF BE ∴⊥⋯。

北京市中国人民大学附属中学2023-2024学年八年级下学期期中数学试题(解析版)

北京市中国人民大学附属中学2023-2024学年八年级下学期期中数学试题(解析版)

人大附中2023~2024学年度第二学期初二年级数学期中练习说明:1.本试卷共6页,共两部分,三道大题,24道小题,满分100分,考试时间90分钟.2.试题答案一律填涂或书写在答题卡上,在试卷、草稿纸上作答无效.3.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.第一部分 选择题一、选择题(共24分,每题3分)1. 以下列长度的三条线段为边能组成直角三角形的是( )A. 6,7,8B. 2,3,4C. 3,4,6D. 6,8,10【答案】D【解析】【分析】根据勾股定理逆定理即两短边的平方和等于最长边的平方逐一判断即可.【详解】解:.,不能构成直角三角形,故本选项错误;.,不能构成直角三角形,故本选项错误;.,不能构成直角三角形,故本选项错误;.,能构成直角三角形,故本选项正确.故选:.【点睛】本题考查的是勾股定理逆定理,熟知如果三角形的三边长,,满足,那么这个三角形就是直角三角形是解答此题的关键.2. 如图,中,于点,若,则的度数为( )A. B. C. D. 【答案】B【解析】【分析】由在□ABCD 中,∠EAD =35°,得出∠D 的度数,根据平行四边形的对角相等,即可求得∠B 的度数,继而求得答案.【详解】解:∵∠EAD =35°,AE ⊥CD ,∴∠D =55°,A 222678+≠ ∴B 222234+≠ ∴C 222346+≠ ∴D 2226810+= ∴D a b c 222+=a b c ABCD Y AE CD ⊥E 35EAD ∠=︒B ∠35︒55︒65︒125︒∴∠B =55°,故选:B .【点睛】此题考查了平行四边形的性质.此题难度不大,注意掌握数形结合思想的应用.3. 下列各式中,运算正确的是( )A. B. C. D. 【答案】A【解析】【分析】本题考查了算术平方根,二次根式的加减运算.熟练掌握算术平方根,二次根式的加减运算是解题的关键.根据算术平方根,二次根式的加减运算求解作答即可.【详解】解:AB .,错误,故不符合要求;C .D,错误,故不符合要求;故选:A .4. 在菱形中,点分别是的中点,若,则菱形的周长是( )A. 12B. 16C. 20D. 24【答案】D【解析】【分析】根据三角形中位线定理可得,再根据菱形的周长公式列式计算即可得到答案.【详解】解:点分别是的中点,是的中位线,,菱形的周长,=3=2=2=-=3=≠2+≠22=≠-ABCD E F ,AC DC ,3EF =ABCD 26AD EF == E F ,AC DC ,EF ∴ACD 2236AD EF ∴==⨯=∴ABCD 44624AD ==⨯=【点睛】本题主要考查了三角形中位线定理,菱形性质,熟练掌握三角形的中位线等于第三边的一半及菱形的四条边都相等,是解题的关键.5. 如图,正方形的边长为2,是的中点,,与交于点,则的长为( )A. B. C. D. 3【答案】A【解析】【分析】由正方形的性质得出∠DAF =∠B =90°,AB =AD =2,由E 是BC 的中点,得出BE =1,由勾股定理得出AEADF ≌△BAE(ASA ),即可得出答案.【详解】∵四边形ABCD是正方形,∴∠DAF =∠B =90°,BC =AB =AD =2,∴∠BAE +∠2=90°,∵AB =2,E 是BC 的中点,∴BE =1,∴AE ,∵AD ∥BC ,∴∠1=∠2,∵DF ⊥AE ,∴∠1+∠ADF =90°,∴∠ADF =∠BAE ,在△ADF 和△BAE 中,,的ABCD E BC DF AE ⊥AB F DF =DAF B AD ABADF BAE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADF ≌△BAE (ASA ),∴DF =AE故选:A .【点睛】此题主要考查了正方形的性质、全等三角形的判定和性质、勾股定理等知识;熟练掌握正方形的性质,证明三角形全等是解题的关键.6. 一个正方形的面积是22.73,估计它的边长大小在( )A. 2与3之间B. 3与4之间C. 4与5之间D. 5与6之间【答案】C 【解析】【分析】设正方形的边长为,根据其面积公式求出的值,估算出的取值范围即可.【详解】解:设正方形的边长为,正方形的面积是22.73,,,,它的边长大小在4与5之间,故选:C .【点睛】本题考查的是估算无理数的大小及算术平方根,估算无理数的大小时要用有理数逼近无理数,求无理数的近似值.7. 要判断一个四边形是否为矩形,下面是4位同学拟定的方案,其中正确的是 ( )A. 测量两组对边是否分别相等B. 测量两条对角线是否互相垂直平分C. 测量其中三个内角是作都为直角D. 测量两条对角线是否相等【答案】C【解析】【分析】根据矩形的判定和平行四边形的判定以及菱形的判定分别进行判断,即可得出结论.【详解】解:矩形的判定定理有①有三个角是直角的四边形是矩形,②对角线互相平分且相等的四边形是矩形,③有一个角是直角的平行四边形是矩形,、根据两组对边分别相等,只能得出四边形是平行四边形,故本选项错误;a a a a a ∴=1622.7325<< <<45<<∴A、根据对角线互相垂直平分得出四边形是菱形,故本选项错误;、根据矩形的判定,可得出此时四边形是矩形,故本选项正确;、根据对角线相等不能得出四边形是矩形,故本选项错误;故选:.【点睛】本题考查了矩形的判定、平行四边形和菱形的判定,主要考查学生的推理能力和辨析能力.8. 如图,点A ,B ,C 在同一条直线上,点B 在点A ,C 之间,点D ,E 在直线AC 同侧,,,,连接DE ,设,,,给出下面三个结论:①;②;.上述结论中,所有正确结论的序号是( )A. ①B. ①③C. ②③D. ①②③【答案】D【解析】【分析】此题考查了勾股定理,全等三角形的判定与性质,完全平方公式的应用,熟记勾股定理是解题的关键.①根据直角三角形的斜边大于任一直角边即可;②在三角形中,两边之和大于第三边,据此可解答;③将用和表示出来,再进行比较.【详解】解:①过点作,交于点;过点作,交于点.∵,,,又,,B C D C AB BC <90A C ∠=∠=︒EAB BCD ≌△△AB a =BC b =DE c =a b c +<a b +>)a b c +>c a b D DF AC ∥AE F B BG FD ⊥FD G DF AC ∥AC AE ⊥DF AE ∴⊥BG FD ⊥ BG AE ∴四边形为矩形,同理可得,四边形也为矩形,,在中,则,故①正确,符合题意;②∵,,在中,,,故②正确,符合题意;③∵,,,又,,.,,,,,.故③正确,符合题意;故选:D第二部分 非选择题二、填空题(共24分,每题3分)∴ABGF BCDG FD FG GD a b ∴=+=+∴Rt EFD DF ED<a b c +<EAB BCD ≌△△AE BC b ∴==Rt EAB△BE ==AB AE BE +>a b ∴+>EAB BCD ≌△△AEB CBD ∠∠∴=BE BD =90AEB ABE ∠+∠=︒ 90CBD ABE ∴∠+=∠︒90EBD ∴∠︒=BE BD = 45BED BDE ∴∠=∠=︒sin 45BE c ∴==⋅︒=c ∴= 22222222()2(2)2()42()a b a ab b a b ab a b +=++=++>+∴)a b +>∴)a b c +>9.有意义,则实数x 的取值范围是______.【答案】【解析】【分析】本题主要考查了二次根式有意义的条件,解题的关键是熟练掌握二次根式被开方数为非负数.有意义,∴,解得:,故答案为:.10. 如图,在中,若,点D 是的中点,,则的长度是_____.【答案】2【解析】【分析】本题考查了直角三角形的性质,利用直角三角形斜边上的中线等于斜边的一半可得的长度.【详解】解:∵在中,,点D 是的中点,,∴.故答案为:2.11. 如图,在数轴上点 A 表示的实数是_____.【解析】【分析】根据勾股定理求得的长度,即可得到的长度,根据点的位置即可得到点表示的数.【详解】解:如图,1x ≥10x -≥1x ≥1x ≥ABC 90ACB ∠=︒AB 4AB =CD CD ABC 90ACB ∠=︒AB 4AB =114222CD AB ==⨯=BD AB B A根据勾股定理得:,,点【点睛】本题考查了实数与数轴,掌握直角三角形两直角边的平方和等于斜边的平方是解题的关键.12. 如图,在四边形中,对角线相交于点O .如果,请你添加一个条件,使得四边形成为平行四边形,这个条件可以是______________________.【答案】(答案不唯一)【解析】【分析】本题考查了平行四边形的判定.熟练掌握平行四边形的判定是解题的关键.根据平行四边形的判定作答即可.【详解】解:由题意知,可添加的条件为,∵,,∴四边形平行四边形,故答案为:.13. 如图,矩形的对角线相交于点O ,,,则矩形对角线的长为___________,边的长为___________.【答案】①. 8 ②. 【解析】【分析】本题主要考查了矩形的性质,等边三角形的性质与判定,勾股定理,先由矩形对角线相等且互相是BD ==∴AB BD ==∴A ABCD AC BD ,AB CD ∥ABCD AD BC ∥AD BC ∥AD BC ∥AB CD ∥ABCD AD BC ∥ABCD AC BD ,60AOB ∠=︒4AB =BD BC平分得到,再证明是等边三角形,得到,则,据此利用勾股定理求出的长即可.【详解】解:∵四边形是矩形,∴,∵,∴是等边三角形,∴,∴,在中,由勾股定理得故答案为:8;14. 小明用四根长度相同的木条制作了能够活动的菱形学具,他先活动学具成为图1所示的菱形,并测得,对角线的长为,接着活动学具成为图2所示的正方形,则图2中对角线的长为________.【答案】【解析】【分析】如图1,2中,连接AC .在图2中,利用勾股定理求出BC ,在图1中,只要证明△ABC 是等边三角形即可解决问题.【详解】解:如图1,2中,连接AC .如图1中,∵AB =BC ,∠B =60°,∴△ABC 是等边三角形,∴AB =BC =AC =30,在图2中,∵四边形ABCD 是正方形,2290AC BD OA BD ABC ====︒,∠AOB 4OA OB AB ===28AC BD OB ===BC ABCD 2290OA OB AC BD OA BD ABC =====︒,,∠60AOB ∠=︒AOB 4OA OB AB ===28AC BD OB ===Rt ABC △BC ===60B ∠︒AC 30cm AC cm∴AB =BC ,∠B =90°,∵AB =BC =30cm ,∴AC =cm ,故答案为:.【点睛】本题考查菱形的性质、正方形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15. 如图,将菱形纸片ABCD 折叠,使点B 落在AD 边的点F 处,折痕为CE ,若∠D =80°,则∠ECF 的度数是________.【答案】40°【解析】【分析】根据题意由折叠的性质可得∠BCE =∠FCE ,BC =CF ,由菱形的性质可得BC ∥AD ,BC =CD ,可求∠BCF =∠CFD =80°,即可求解.【详解】解:∵将菱形纸片ABCD 折叠,使点B 落在AD 边的点F 处,∴∠BCE =∠FCE ,BC =CF ,∵四边形ABCD 是菱形,∴BC ∥AD ,BC =CD ,∴CF =CD ,∴∠CFD =∠D =80°,∵BC ∥AD ,∴∠BCF =∠CFD =80°,∴∠ECF =40°.故答案为:40°.【点睛】本题考查翻折变换以及菱形的性质,熟练掌握并运用折叠的性质是解答本题的关键.16. 图1中的直角三角形有一条直角边长为3,将四个图1中的直角三角形分别拼成如图2,图3所示的正方形,其中阴影部分的面积分别记为,,则的值为___________.【答案】9【解析】【分析】设直角三角形另一直角边为,然后分别用表示出两个阴影部分的面积,最后求解即可.本题主要考查了三角形和正方形面积的求法,解题的关键在于能够熟练地掌握相关的知识点.【详解】解:设直角三角的另一直角边为,则,,,.故答案为:9三、解答题(共52分,第17题8分,第18-19题,每题5分,第20题6分,第21题5分,第22题6分,第23题7分,第24题10分)解答应写出文字说明、演算步骤或证明过程.17. 计算:(1);(2).【答案】(1(2)【解析】【分析】本题考查了利用二次根式的性质进行化简,二次根式的加减运算,二次根式的混合运算.熟练掌握利用二次根式的性质进行化简,二次根式的加减运算,二次根式的混合运算是解题的关键.(1)先利用二次根式的性质进行化简,然后进行加减运算即可;1S 2S 12S S -a a a 2211(3)4392S a a a =+-⨯⨯=+22S a a a =⋅=221299S S a a ∴-=+-=(1-(2)先分别计算二次根式的乘除,然后进行加减运算即可.【小问1详解】解:【小问2详解】解:.18. 如图,四边形为平行四边形,,是直线上两点,且,连接,.求证:.【答案】见详解【解析】【分析】本题考查平行四边形的性质、平行线的性质、全等三角形的判定与性质,根据可得,再根据平行四边形的性质可得,且,即,即可证明,即可得到结论.【详解】证明:∵,∴,∴,∵四边形为平行四边形,∴,且,∴,在和中,2=⨯=(32=+1=-ABCD E F BD BE DF =AF CE AF CE =BE DF =ED FB =AB DC =AB DC =EDC FBA ∠∠()SAS DEC BFA ≌BE DF =BE BD DF BD +=+ED FB =ABCD AB DC =AB DC =EDC FBA ∠∠DEC BFA V,∴,∴.19. 已知,求的值.【答案】11【解析】【分析】本题考查了已知式子的值求代数式的值,平方差公式,先整理,再代入计算,即可作答.【详解】解:依题意,20. 如图,在中,点D 是线段的中点.求作:线段,使得点E 在线段上,且.作法:①连接,②以点A 为圆心,长为半径作弧,再以C 为圆心,长为半径作弧,两弧相交于点M ;③连接,交于点E ;所以线段即为所求的线段.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明:证明:连接∵,,∴四边形是平行四边形.(①)(填推理的依据)∵交于点E ,∴,即点E 是的中点.(② )(填推理的依据)DE BF EDC FBA DC AB =⎧⎪∠=∠⎨⎪=⎩()SAS DEC BFA ≌AF CE=1x =-227x x ++()22727x x x x ++=++()))2272711751711x x x x ++=++=⨯++=-+=ABC AB DE AC 12DE BC =CD CD AD DM AC DE AM CM ,,AM CD =AD CM =ADCM AC DM ,AE CE =AC∵点D 是AB 的中点,∴.(③ )(填推理的依据)【答案】见详解【解析】【分析】本题考查了作图复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.(1)根据几何语言画出对应的几何图形即可;(2)先证明四边形是平行四边形,得出点E 是的中点,再结合然后点D 是的中点,即三角形中位线性质得到.【详解】解:(1)如图,;(2)证明:连接AM ,CM ,∵,,∴四边形是平行四边形.(①两组对边分别相等的四边形是平行四边形)(填推理的依据)∵AC ,DM 交于点E ,∴,即点E 是中点.(②平行四边形的对角线互相平分)(填推理的依据)∵点D 是的中点,∴(③中位线的性质).故答案为:两组对边分别相等的四边形是平行四边形;平行四边形的对角线互相平分;中位线的性质.21. 如图,四边形中,,,.的12DE BC =-ADCM AC AB 12DE BC =AM CD =AD CM =ADCM AE CE =AC AB 12DE BC =ABCD 90BAD ∠=︒AB AD ==4BC =CD =(1)求的度数;(2)求四边形的面积.【答案】(1)(2)5【解析】【分析】(1)由题意得,,由勾股定理得,,由,可得是直角三角形,且,根据,计算求解即可;(2)根据,计算求解即可.【小问1详解】解:∵,∴,由勾股定理得,,∵,∴,∴是直角三角形,且,∴,∴的度数为;【小问2详解】解:由题意知,,∴四边形的面积为5.【点睛】本题考查了三角形内角和定理,等边对等角,勾股定理,勾股定理逆定理等知识.熟练掌握三角形内角和定理,等边对等角,勾股定理,勾股定理逆定理是解题的关键.ABC ∠ABCD 135︒1802BADABD ADB ︒-∠∠=∠=2BD =222BD BC CD +=BCD △90CBD ∠=︒ABC ABD CBD ∠=∠+∠1122ABD BCD ABCD S S S AB AD BC BD =+=⨯+⨯ 四边形90BAD ∠=︒AB AD ==180452BAD ABD ADB ︒-∠∠=∠==︒2BD ==(2222420+==222BD BC CD +=BCD △90CBD ∠=︒135ABC ABD CBD ∠=∠+∠=︒ABC ∠135︒11522ABD BCD ABCD S S S AB AD BC BD =+=⨯+⨯= 四边形ABCD22. 在中,,点D 是边上的一个动点,连接.作,,连接.(1)如图1,当时,求证:;(2)当四边形是菱形时,①在图2中画出四边形,并回答:点D 的位置为 .②若,,则四边形的面积为 .【答案】(1)见解析,(2)①见解析,为的中点;②【解析】【分析】(1)由,,可证四边形是平行四边形,由,可证四边形是矩形,进而结论得证;(2)①由题意作图如图2,由四边形是菱形,可得,则,由,可得,则,,即为的中点;②如图2,记的交点为,则,,,由勾股定理求,则,根据,计算求解即可.【小问1详解】证明:∵,,∴四边形是平行四边形,∵,∴,∴四边形是矩形,∴;【小问2详解】①解:如图2,Rt ABC △90ACB ∠=︒AB CD AE DC ∥CE AB ∥DE CD AB ⊥AC DE =ADCE ADCE 10AB =8DE =ADCE D AB 24AE DC ∥CE AB ∥AECD 90CDA ∠=︒AECD ADCE AD CD =DAC DCA ∠=∠18090B ACB DAC DCB DCA ∠=︒-∠-∠∠=︒-∠,B DCB ∠=∠CD BD =AD BD =D AB AC DE 、O 5AD =142DO DE ==AC DE ⊥3AO =26AC AO ==12ADCE S AC DE =⨯四边形AE DC ∥CE AB ∥AECD CD AB ⊥90CDA ∠=︒AECD AC DE =∵四边形是菱形,∴,∴,∵,∴,∴,∴,∴为的中点;②解:如图2,记的交点为,∵四边形是菱形,为的中点,,,∴,,,由勾股定理得,,∴,∴,故答案为:.【点睛】本题考查了矩形的判定与性质,等边对等角,三角形内角和定理,菱形的性质,勾股定理等知识.熟练掌握矩形的判定与性质,等边对等角,三角形内角和定理,菱形的性质,勾股定理是解题的关键.23. 如图,四边形中,,,对角线平分,过点A 作的垂线,分别交,于点E ,O ,连接.(1)求证:四边形菱形;(2)连接,若,,求的长.是ADCE AD CD =DAC DCA ∠=∠18090B ACB DAC DCB DCA ∠=︒-∠-∠∠=︒-∠,B DCB ∠=∠CD BD =AD BD =D AB AC DE 、O ADCE D AB 10AB =8DE =5AD =142DO DE ==AC DE⊥3==AO 26AC AO ==1242ADCE S AC DE =⨯=四边形24ABCD AD BC ∥90BCD ∠=︒BD ABC ∠BD AE BC BD DE ABED CO 3AB =2CE =CO【答案】(1)见解析(2)【解析】【分析】(1)先证明,再由等腰三角形的性质得,然后证,得,则四边形是平行四边形,然后由菱形的判定即可得出结论;(2)由勾股定理得,根据直角三角形斜边上的中线等于斜边的一半,即可得出【小问1详解】证明:∵,∴,∵平分,∴,∴,∴,∵,∴,∵,在和中,,,,四边形是平行四边形,又,平行四边形为菱形;【小问2详解】解:∵四边形为菱形,∴,,CO =AB AD =OB OD =()ASA OBE ODA ≌OE OA =ABED CD =BD =CO =AD BC ∥ADB DBE ∠=∠BD ABC ∠ABD DBE ∠=∠ABD ADB ∠=∠AB AD =AE BD ⊥BO DO =AD BC ∥OBE △ODA V DBE ADB OB ODBOE DOA ∠=∠⎧⎪=⎨⎪∠=∠⎩()ASA OBE ODA ∴ ≌OE OA ∴=∴ABED AB AD = ∴ABED ABED 3BE DE AB ===BO DO =∵,,,∴在中,根据勾股定理得:,∵,为直角三角形,∴.【点睛】本题考查了菱形的判定与性质、全等三角形的判定与性质、等腰三角形的性质以及勾股定理、直角三角形斜边上的中线等于斜边的一半,二次根式的混合运算等知识,熟练掌握菱形的判定与性质是解题的关键.24. 在中,,,点D 为射线上一动点(不与点B 、C 重合),点B 关于直线的对称点为E ,作射线,过点C 作的平行线,与射线交于点F .连接(1)如图1,当点E 恰好在线段上时,用等式表示与的数量关系,并证明;(2)如图2,当点D 在线段的延长线上时,①依题意补全图形;②用等式表示和的数量关系,并证明.【答案】(1),证明见详解(2)①见详解②,证明见详解【解析】【分析】本题考查了全等三角形的判定与性质、正方形的性质与判定,矩形的性质,轴对称性质,正确掌握相关性质内容是解题的关键.(1)先由轴对称性质,得出再证明,因为,得出得证即可作答.90BCD ∠=︒CD =∴=325BC BE CE =+=+=Rt BCDBD ===BO DO =BCD△12CO BD ==ABC 90ABC ∠=︒AB BC =BC AD DE AB DE AE AF ,.AC DF BD BC ADB ∠AFE ∠2DF BD =45ADB AFE ∠+︒=∠AB AE BD ED ==,,()SSS ADE ADB ≌CF AB ∥45ECD ECF ∠=∠=︒,()ASA CED CEF ≌,(2)①根据题意的描述作图即可;②易得,过点作于点,四边形是正方形,证明,则,再通过角的运算,即可作答.【小问1详解】解:,证明如下:如图:当点E 恰好在线段上时,∵在中,∴,∵点B 关于直线的对称点为E ,∴在和中,∴,∴,∴,,∵,∴在和中,∴ADE ADB ≌A AG CF ⊥G ABCG ()Rt Rt HL AFG AFE ≌FAG FAE EAG ∠==∠2DF BD =AC ABC 90ABC AB BC∠=︒=,45BAC ACB ∠=∠=︒AD AB AE BD ED ==,,ADE V ADB AE AB ED BD AD AD =⎧⎪=⎨⎪=⎩,()SSS ADE ADB ≌90AED ABD ∠=∠=︒AC DF ⊥90CED CEF ∠=∠=︒CF AB ∥45ECF BAC ∠=∠=︒,45ECD ECF ∴∠=∠=︒,CED △CEF △CED CEF CE CEECD ECF ∠=∠⎧⎪=⎨⎪∠=∠⎩()ASA CED CEF ≌,∴ ∴,即有;【小问2详解】解:当点在线段的延长线上时①依题意补全图形如下②用等式表示和的数量关系是,证明如下∵点关于直线的对称点为E ,∴,∴,过点作于点,如上图,则,∵,∴∴四边形是矩形,∵,∴四边形是正方形,∴,在和中,∴,∴,即有,12DE EF DF ==,12BD DE DF ==2DF BD =D BC ADB ∠AFE ∠45ADB AFE ∠+︒=∠B AD ADE ADB ≌90AE AB AEF ABC =∠=∠=︒,12EAD BAD BAE ∠=∠=∠,A AG CF ⊥G 90AGF AGC ∠=∠=︒CF AB ∥90BAG AGF ABC AGC∠=∠=︒=∠=∠ABCG AB BC =ABCG AG AB AE ==Rt AFG △Rt AFE AG AE AF AF=⎧⎨=⎩()Rt Rt HL AFG AFE ≌FAG FAE EAG ∠==∠2EAG FAE ∠=∠∵∴,∴,∴∴在中,,∴∴.人大附中2023~2024学年度第二学期初二年级数学期中练习附加题说明:1.附加题共4页,共两道大题,9道小题,满分40分,考试时间30分钟.2.试题答案一律填涂或书写在答题卡上,在试卷、草稿纸上作答无效.3.在答题卡上,作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.一、填空题(共15分,第1题4分,第2-4题,每题3分,第5题2分)25. 矩形中,,,点E 是边上一点,连接,将沿折叠,使点B 落在点处,连接.(1)如图1,当时,的长为___________.(2)如图2,当点恰好在矩形的对角线上,则的长为___________.【答案】①. 4 ②. 【解析】【分析】(1)由矩形性质得,由折叠得:,,由平行线的性质得:,,进而得出:,,即;90AFE FAE ∠+∠=︒90FAE AFE ∠=︒-∠21802EAG FAE AFE ∠=∠=︒-∠2702BAE BAG EAG AFE∠=∠+∠=︒-∠135.BAD BAE AFE ∠=∠=︒-∠Rt △ABD 90ADB BAD ∠+∠=︒13590ADB AFE ∠+︒-∠=︒45ADB AFE ∠+︒=∠ABCD 6AB =8BC =BC AE ABE AE B 'CB 'CB AE '∥BE B 'ABCD ACAE 90ABE ∠=︒B E BE '=AEB AEB '∠=∠AEB ECB '∠=∠AEB EB C ''∠=∠ECB EB C ''∠=∠B E EC '=142BE EC BC ===(2)利用勾股定理可得,由折叠得:,,,设,则,,利用勾股定理建立方程求解即可;本题是矩形综合题,考查了矩形的性质,折叠变换的性质,勾股定理等,熟练掌握相关知识,学会添加辅助线是解题关键.【详解】解:(1)四边形是矩形,,由折叠得:,,,,,,,,,,故答案为:4;(2)如图,点恰好在矩形的对角线上,四边形是矩形,,,,,由折叠得:,,,,,设,则,,在中,,10AC ===AB AB '=B E BE '=90AB E ABE '∠=∠=︒BE x =B E x '=8CE x =- ABCD 90ABE ∴∠=︒B E BE '=AEB AEB '∠=∠CB AE ' AEB ECB '∴∠=∠AEB EB C ''∠=∠ECB EB C ''∴∠=∠B E EC '∴=12BE EC BC ∴==8BC = 4BE ∴=B 'ABCD AC ABCD 90ABC ∴∠=︒=6AB 8BC=10AC ∴===AB AB '=B E BE '=90AB E ABE '∠=∠=︒1064B C AC AB ''∴=-=-=18090CB E AB E ''∠=︒-∠=︒BE x =B E x '=8CE x =-Rt CB E '△222B E B C CE ''+=,解得:,,在中,;故答案为:4,26. 如图,四边形中, ,的平分线交于点E ,连接.在以下条件:①平分;②E 为中点;③中选取两个作为题设,另外一个作为结论,组成一个命题.(1)请写出一个真命题:题设为___________,结论为___________.(填序号)(2)可以组成真命题的个数为___________.【答案】①. ②, ②. ③, ③. 6【解析】【分析】(1)根据挑选题设为②,结论为③,结合,的平分线交这个两个条件,先证明,再进行边的等量代换,即可作答.(2)注意分类讨论以及逐个分析,不管取哪个作为条件都可以证明,从而利用全等三角形的性质进行边的等量代换或者角的等量代换,即可作答.【详解】解:(1)题设为②,结论为③;理由如下:延长交的延长线于点,∵∴,()22248x x ∴+=-3x =3BE ∴=Rt ABEAE ===ABCD AD BC ∥BAD ∠CD BE BE ABC ∠CD AD BC AB +=AD BC ∥BAD ∠CD ()AAS AED FEC ≌AED FEC △≌△AE BC F AD BC∥DAE F ∠=∠∵E 为中点,∴,在和中,∴,∴,,∵的平分线交于点E ,∴,∴∴∴(2)由(1)知,题设为②,结论为③是真命题,同理:题设为③,结论为②是真命题,过程如下:延长交的延长线于点,∵的平分线交于点E∴,∵∴∴∵∴∴∵CD DE CE =AED △FEC DAE F DEA CEFDE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS AED FEC ≌CF AD =AD BC CF BC BF +=+=BAD ∠CD DAE BAD ∠=∠BAD F∠=∠AB BF=AD BC AB+=AE BC F BAD ∠CD DAE BAD ∠=∠AD BC∥BAD DAE F∠=∠=∠AB BF=AD BC AB+=AD BC AB BF+==AD CF=AD BC∥∴∵∴∴即E 为中点;当题设为①,结论为②是真命题,过程如下:延长交的延长线于点,∵的平分线交于点E∴,∵∴∴∵平分∴∵∴∴即E 为中点;同理:当题设为②,结论①为是真命题,同理,∴,,∵的平分线交于点E ,∴,∴∴∴DAE F∠=∠DEA CEF∠=∠ ≌DEA CEFDE CE=CD AE BC F BAD ∠CD DAE BAD ∠=∠AD BC∥BAD DAE F∠=∠=∠AB BF=BE ABC∠EB AF AE EF⊥=,DEA CEF DAE F∠=∠∠=∠, ≌DEA CEFDE CE=CD CF AD =AD BC CF BC BF +=+=BAD ∠CD DAE BAD ∠=∠BAD F∠=∠AB BF=AD BC AB+=则当题设为①,结论为③是真命题,同理:当题设为③,结论为②是真命题,综上共有6个命题:分别是题设为②,结论为③;题设为③,结论为②;题设为①,结论为②;题设为②,结论①;题设为①,结论为③,题设为③,结论为②.【点睛】本题考查了全等三角形的判定与性质、真命题,等腰三角形的判定与性质,角平分线的定义,正确掌握相关性质内容是解题的关键.27. 如图,在正方形中,,点E 为对角线上的动点(不与A ,C 重合),以为边向外作正方形,点P 是的中点,连接,则的取值范围为___________.【解析】【分析】先取的中点O,结合正方形的性质,得证,当时,有最小值,在中,,计算即可作答.【详解】解:如图,取的中点O ,连接,∵四边形、是正方形,∴,,∴,则在和中ABCD 4AB =AC DE DEFG CD PG PG PG ≤<AD ()SAS ODE PDG ≌OEAC ⊥OE Rt AOE △2224OE AE AO +==AD OE DEFG ABCD 90ODE EDC ︒∠+∠=90PDG EDC ∠+∠=︒ODE PDG ∠=∠ODE PDG △OD OP ODE PDGDE DG =⎧⎪∠=∠⎨⎪=⎩,∴,当时,有最小值,此时为等腰直角三角形,,∵,∴,在中,,即,解得,∴.当点运动到点的时候,如图:此时即为点H 的位置,此时正方形的边长最大且为则的值最大,此时∴则.【点睛】本题考查了正方形性质,全等三角形的判定与性质,垂线段最短,勾股定理等知识,正确掌握相关性质内容是解题的关键.28.如图,正方形ABCD 边长为2,点E 是射线AC 上一动点(不与A ,C 重合),点F 在正方形ABCD 的外角平分线CM 上,且CF=AE ,连接BE , EF , BF 下列说法:①的值不随点E 的运动而改变的()SAS ODE PDG ∴ ≌OE PG =OE AC ⊥OE AOE △OE AE =4AD AB ==122AO AB ==Rt AOE △2224OE AE AO +==224OE =OE =OE E C G DEFG 4CD AD ==PH PH ===PG PG ≤<PG ≤<②当B ,E , F 三点共线时,∠CBE=22.5°;③当△BEF 是直角三角形时,∠CBE=67.5°;④点E 在线段AC 上运动时,点C 到直线EF 的距离的最大值为1;其中正确的是__________(填序号).【答案】①②④【解析】【分析】连接、,由正方形的对称性可知,,,证明,得出,,证出,证出是等腰直角三角形得出,因此,得出①正确;当,,三点共线时,证出,,,四点共圆,由圆周角定理得出,证出,得出,求出,②正确;当是直角三角形时,证出,得出,,③不正确;当点在线段上运动时,过点作于,则,最大时,与重合,即,证出是的中位线,得出,④正确;即可得出结论.【详解】解:连接、,如图1所示:由正方形的对称性可知,,四边形是正方形,,,点是正方形外角平分线上一点,,,在和中,,,,,ED DF BE DE =CBE CDE ∠=∠()ABE CDF SAS ∆≅∆BE DF =ABE CDF ∠=∠DE DF =EDF∆EF=EF B E F E C F D BFC CDE ∠=∠CDE CBE =∠∠CBF CFB ∠=∠22.5CBF ∠=︒BEF ∆9045135BED ∠=︒+︒=︒1(36013590)67.52CBE ∠=︒-︒-︒=︒67.5CBF ∠<︒E AC C CQ EF ⊥Q CQ CH …CQ CQ CH CD EF ⊥QE ACD ∆112CQ DQ CD ===ED DF BE DE =CBE CDE∠=∠ ABCD AB CD ∴=45BAC ∠=︒ F ABCD CM 45DCF ∴∠=︒BAC DCF ∴∠=∠ABE ∆CDF ∆AB CD BAC DCF AE CF =⎧⎪∠=∠⎨⎪=⎩()ABE CDF SAS ∴∆≅∆BE DF ∴=ABE CDF ∠=∠,,,即,是等腰直角三角形,,的值不随点的运动而改变,①正确;当,,三点共线时,如图2所示:,,,,四点共圆,,,,,,,,②正确;当是直角三角形时,如图3所示:是等腰直角三角形,,DE DF ∴=90ABE CBE ∠+∠=︒ 90CDF CDE ∴∠+∠=︒90EDF ∠=︒EDF∴∆EF ∴=EF ∴=∴EF BEE B EF 90ECF EDF ∠=∠=︒ E ∴C F D BFC CDE ∴∠=∠ABE ADE ∠=∠ 90ABC ADC ∠=∠=︒CDE CBE ∴∠=∠CBF CFB ∴∠=∠45FCG CBF CFB ∠=∠+∠=︒ 22.5CBF ∴∠=︒BEF ∆EDF ∆ 9045135BED ∴∠=︒+︒=︒,,③不正确;当点在线段上运动时,如图4所示:过点作于,则,最大时,与重合,即,当时,,,是的中位线,,④正确;综上所述,①②④正确;故答案为:①②④.【点睛】本题考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、四点共圆、圆周角定理等知识;本题综合性强,有一定难度.29. 如图,在平行四边形中,,,,在线段上取一点E ,使,连接,点M ,N 分别是线段上的动点,连接,则的最小值为___________.1(36013590)67.52CBE ∴∠=︒-︒-︒=︒67.5CBF ∴∠<︒E AC C CQ EF ⊥Q CQ CH …CQ ∴CQ CH CD EF ⊥CD EF ⊥//EF AD CF CE AE ==QE ∴ACD ∆112CQ DQ CD ∴=== ABCD 3AB =4BC =60ABC ∠=︒AD 1DE =BE AE BE ,MN 12MN BN +【解析】【分析】如图,作于,于,于,则四边形是矩形,,由题意可求,,,则,,由,可知当三点共线且时,最小,为,求的长,进而可求最小值,【详解】解:如图,作于,于,于,则四边形是矩形,∴,∵平行四边形中,,,,,∴,,∴,∴,∴,∴,∴当三点共线且时,最小,为,∵,∴,由勾股定理得,,∴,【点睛】本题考查了平行四边形的性质,矩形的判定与性质,含的直角三角形,等边对等角,勾股定理NF BC ^F AH BC ⊥H MG BC ⊥G AHGM MG AH =3AE AB ==120BAC ∠=︒30ABE AEB ∠=∠=︒30EBC ∠=︒12NF BN =12MN BN MN NF +=+M N F 、、MF BC ⊥12MN BN +MG AH 12MN BN +NF BC ^F AH BC ⊥H MG BC ⊥G AHGM MG AH =ABCD 3AB =4BC =1DE =60ABC ∠=︒3AE AB ==120BAC ∠=︒30ABE AEB ∠=∠=︒30EBC ∠=︒12NF BN =12MN BN MN NF +=+M N F 、、MF BC ⊥12MN BN +MG =30BAH ∠︒1322BH AB ==AH ==12MN BN +30︒等知识.明确线段和最小的情况是解题的关键.二、解答题(共25分,第6题5分,第7题4分,第8-9题,每题8分)解答应写出文字说明、演算步骤或证明过程.30. 如图是由小正方形组成的网格,每个小正方形的边长为,其顶点称为格点,四边形的四个顶点都在格点上,请运用课本所学知识,仅用无刻度的直尺,在给定网格中按要求作图.(1)①线段的长为 个单位长度;②在图1中求作边的中点E ;(2)在图中求作边上一点,使平分.注:保留作图痕迹,同时标出必要的点;当你感觉方法比较复杂时,可用文字简要说明作法.【答案】(1)①;②作图见解析;(2)见解析.【解析】【分析】(1)①利用勾股定理即可求解;②取格点、,连接交于点,则点为所求;(2)取格点、,连接、相交于点,作射线交于点,则点为所求.【小问1详解】解:①,故答案为:;②如图,点为所求作图形,【小问2详解】解:如图,点为所求,87⨯1ABCD CD CD 2AB F CF BCD ∠5M N MN AC E E G H AQ DH Q CF AB FF 5CD ==5E F。

2024年人教版初二数学下册期中考试卷(附答案)

2024年人教版初二数学下册期中考试卷(附答案)

一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 17B. 18C. 19D. 202. 在下列各数中,最大的数是:A. 0.5B. 0.7C. 0.8D. 0.93. 下列哪个图形是正方形?A. 圆B. 矩形C. 正方形D. 三角形4. 下列哪个数是偶数?A. 3B. 4C. 5D. 75. 下列哪个数是分数?A. 0.5B. 0.6C. 0.7D. 0.8二、判断题(每题1分,共5分)1. 2 + 3 = 5 ()2. 4 × 5 = 20 ()3. 6 ÷ 2 = 3 ()4. 7 4 = 3 ()5. 8 + 9 = 17 ()三、填空题(每题1分,共5分)1. 9 + 5 = __2. 8 × 6 = __3. 7 ÷ 7 = __4. 6 3 = __5. 5 × 5 = __四、简答题(每题2分,共10分)1. 请简述加法的定义。

2. 请简述减法的定义。

3. 请简述乘法的定义。

4. 请简述除法的定义。

5. 请简述分数的定义。

五、应用题(每题2分,共10分)1. 小明有5个苹果,小红有3个苹果,他们一共有多少个苹果?2. 小明有10个橘子,他吃掉了4个,还剩下多少个?3. 小明有8个橙子,他吃掉了2个,还剩下多少个?4. 小明有6个梨,他吃掉了3个,还剩下多少个?5. 小明有7个葡萄,他吃掉了1个,还剩下多少个?六、分析题(每题5分,共10分)1. 请分析加法、减法、乘法、除法之间的关系。

2. 请分析分数与整数之间的关系。

七、实践操作题(每题5分,共10分)1. 请用实践操作的方法验证加法的定义。

2. 请用实践操作的方法验证减法的定义。

【答案】一、选择题1. A2. D3. C4. B5. A二、判断题1. √2. √3. √4. √5. √三、填空题1. 142. 483. 14. 35. 25四、简答题1. 加法是将两个数相加得到一个和的运算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【好题】初二数学下期中试题带答案一、选择题1.下列四组线段中,可以构成直角三角形的是( ) A .1,2,3B .2,3,4C .1, 2,3D .2,3,52.估计26的值在( ) A .2和3之间B .3和4之间C .4和5之间D .5和6之间3.正方形具有而菱形不具有的性质是( ) A .四边相等 B .四角相等C .对角线互相平分D .对角线互相垂直4.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为,CE 且D 点落在对角线'D 处.若3,4,AB AD ==则ED 的长为( )A .32B .3C .1D .435.如图,是一个三级台阶,它的每一级的长、宽、高分别为20dm 、3dm 、2dm ,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点的最短路程是( )A .3B .2C .20D .25 6.顺次连结对角线相等的四边形各边中点所得的四边形是( )A .正方形B .菱形C .矩形D .梯形7.已知点(﹣2,y 1),(﹣1,y 2),(1,y 3)都在直线y =﹣x+b 上,则y 1,y 2,y 3的值的大小关系是( ) A .y 1>y 2>y 3B .y 1<y 2<y 3C .y 3>y 1>y 2D .y 3>y 1>y 28.下列各式正确的是( )A .(255=- B ()20.50.5-=- C .(2255=D ()20.50.5-=9.如图是自动测温仪记录的图象,它反映了齐齐哈尔市的春季某天气温T 如何随时间t 的变化而变化,下列从图象中得到的信息正确的是( )A .0点时气温达到最低B .最低气温是零下4℃C .0点到14点之间气温持续上升D .最高气温是8℃10.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y (米)与甲出发的时间t (分)之间的关系如图所示,下列结论: ①甲步行的速度为60米/分; ②乙走完全程用了32分钟; ③乙用16分钟追上甲;④乙到达终点时,甲离终点还有300米 其中正确的结论有( )A .1个B .2个C .3个D .4个11.下列运算正确的是( ) A .235+= B .3262= C .235=gD .1333÷= 12.如图,矩形ABCD 中,DE ⊥AC 于E ,且∠ADE :∠EDC=3:2,则∠BDE 的度数为( )A .36°B .18°C .27°D .9°二、填空题13.已知51,x =则226x x +-=____________________.14.在Rt ABC ∆中,a ,b ,c 分别为A ∠,B Ð,C ∠的对边,90C ∠=︒,若:2:3a b =,52c =a 的长为_______.15.如图,已知菱形ABCD 的周长为16,面积为83,E 为AB 的中点,若P 为对角线BD 上一动点,则EP +AP 的最小值为______.16.如图,矩形ABCD 的对角线AC 和BD 相交于点O ,过点O 的直线分别交AD 和BC 于点E 、F ,AB=2,BC=4,则图中阴影部分的面积为_______.17.如图,四边形ABCD 为菱形,8AC =,6DB =,DH AB ⊥于点H ,则BH =__________.18.果字成熟后从树上落到地面,它落下的高度与经过的时间有如下的关系: 时间t (秒) 0.50.60.70.80.91 落下的高度h (米)50.25⨯ 50.36⨯ 50.49⨯ 50.64⨯ 50.81⨯51⨯如果果子经过2秒落到地上,那么此果子开始落下时离地面的高度大约是__________米. 19.放学后,小刚和同学边聊边往家走,突然想起今天是妈妈的生日,赶紧加快速度,跑步回家.小刚离家的距离()s m 和放学后的时间之间()t min 的关系如图所示,给出下列结论:①小刚边走边聊阶段的行走速度是125/m min ;②小刚家离学校的距离是1000m ;③小刚回到家时已放学10min ;④小刚从学校回到家的平均速度是100/m min .其中正确的是_____(把你认为正确答案的序号都填上)20.如图,已知函数y ax b =+和y kx =的图象交于点P, 则根据图象可得,关于y ax by kx =+⎧⎨=⎩的二元一次方程组的解是_____________。

三、解答题21.计算 (1)1148183273-- (2) ()()2(325)4545+-+-22.如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,点O 关于直线CD 的对称点为E ,连接DE ,CE .(1)求证:四边形ODEC 为菱形; (2)连接OE ,若BC =2,求OE 的长.23.如图1,在△ABC 中,∠ACB=90°,AC=BC ,∠EAC=90°,点M 为射线AE 上任意一点(不与A 重合),连接CM ,将线段CM 绕点C 按顺时针方向旋转90°得到线段CN ,直线NB 分别交直线CM 、射线AE 于点F 、D . (1)直接写出∠NDE 的度数;(2)如图2、图3,当∠EAC 为锐角或钝角时,其他条件不变,(1)中的结论是否发生变化?如果不变,选取其中一种情况加以证明;如果变化,请说明理由;(3)如图4,若∠EAC=15°,∠ACM=60°,直线CM与AB交于G,BD=622,其他条件不变,求线段AM的长.24.在社会主义新农村建设中,衢州某乡镇决定对A、B两村之间的公路进行改造,并有甲工程队从A村向B村方向修筑,乙工程队从B村向A村方向修筑.已知甲工程队先施工3天,乙工程队再开始施工.乙工程队施工几天后因另有任务提前离开,余下的任务有甲工程队单独完成,直到公路修通.下图是甲乙两个工程队修公路的长度y(米)与施工时间x(天)之间的函数图象,请根据图象所提供的信息解答下列问题:(1)乙工程队每天修公路多少米?(2)分别求甲、乙工程队修公路的长度y(米)与施工时间x(天)之间的函数关系式.(3)若该项工程由甲、乙两工程队一直合作施工,需几天完成?25.某市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如下表(单位:环):根据表格中的数据,可计算出甲、乙两人的平均成绩都是9环.(1)分别计算甲、乙六次测试成绩的方差;(2)根据数据分析的知识,你认为选______名队员参赛.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】求出两小边的平方和、最长边的平方,看看是否相等即可.【详解】A.∵12+22≠32,∴以1,2,3为边组成的三角形不是直角三角形,故本选项错误;B.∵22+32≠42,∴以2,3,4为边组成的三角形不是直角三角形,故本选项错误;C.∵12+)2=2,∴以1选项正确;D)2+32≠523,5为边组成的三角形不是直角三角形,故本选项错误.故选C.【点睛】本题考查了勾股定理的逆定理的应用,能熟记勾股定理的逆定理的内容是解答此题的关键.2.D解析:D【解析】【分析】寻找小于26的最大平方数和大于26的最小平方数即可. 【详解】解:小于26的最大平方数为25,大于26的最小平方数为3656,故选择D.【点睛】本题考查了二次根式的相关定义.3.B解析:B【解析】解:正方形和菱形都满足:四条边都相等,对角线平分一组对角,对角线垂直且互相平分;菱形的四个角不一定相等,而正方形的四个角一定相等.故选B .4.A解析:A 【解析】 【分析】首先利用勾股定理计算出AC 的长,再根据折叠可得DEC V ≌'V D EC ,设ED x =,则'=D E x ,''2=-=AD AC CD ,4AE x =-,再根据勾股定理可得方程2222(4)x x +=-,解方程即可求得结果.【详解】解:∵四边形ABCD 是长方形,3,4AB AD ==, ∴3,4====AB CD AD BC ,90ABC ADC ∠=∠=︒, ∴ABC V 为直角三角形,∴5AC ===,根据折叠可得:DEC V ≌'V D EC ,∴'3==CD CD ,'DE D E =,'90∠=∠=︒CD E ADC , ∴'90∠=︒AD E ,则AD'E △为直角三角形,设ED x =,则'=D E x ,''2=-=AD AC CD ,4AE x =-, 在'V Rt AD E 中,由勾股定理得:222''+=AD D E AE , 即2222(4)x x +=-,解得:32x =, 故选:A . 【点睛】此题主要考查了轴对称的折叠问题,以及勾股定理的应用,关键是掌握折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.5.D【解析】分析:本题考查的是利用勾股定理求线段的长度.解析:根据题意,得出如下图形,最短路径为AB的长,AC=20,BC=15,∴AB=25故选D.点睛:本题的关键是变曲为直,画出矩形,利用勾股定理得出对角线的长度.6.B解析:B【解析】【分析】根据三角形的中位线定理可知中点四边形的各边均等于四边形对角线长度的一半,再根据四边形对角线相等即可判断.【详解】解:根据三角形的中位线定理可知中点四边形的各边均等于四边形对角线长度的一半,而四边形对角线相等,则中点四边形的四条边均相等,即可为菱形,故选B.【点睛】本题考查的是三角形的中位线,解答本题的关键是熟练掌握三角形的中位线定理:三角形的中位线平行于第三边,且等于第三边的一半.7.A解析:A【解析】【分析】先根据直线y=﹣x+b判断出函数图象,y随x的增加而减少,再根据各点横坐标的大小进行判断即可.【详解】解:∵直线y=﹣x+b,k=﹣1<0,∴y随x的增大而减小,又∵﹣2<﹣1<1,∴y1>y2>y3.故选:A.【点睛】本题考查一次函数的图象性质:当k>0,y随x增大而增大;当k<0时,y将随x的增大而减小.解析:D【解析】【分析】【详解】===,所以A,B,C选项均错,解:因为(250.5故选D9.D解析:D【解析】【分析】根据气温T如何随时间t的变化而变化图像直接可解答此题.【详解】A.根据图像4时气温最低,故A错误;B.最低气温为零下3℃,故B错误;C.0点到14点之间气温先下降后上升,故C错误;D描述正确.【点睛】本题考查了学生看图像获取信息的能力,掌握看图像得到有用信息是解决此题的关键. 10.A解析:A【解析】【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】由图可得,甲步行的速度为:240÷4=60米/分,故①正确,乙走完全程用的时间为:2400÷(16×60÷12)=30(分钟),故②错误,乙追上甲用的时间为:16﹣4=12(分钟),故③错误,乙到达终点时,甲离终点距离是:2400﹣(4+30)×60=360米,故④错误,故选A.【点睛】本题考查了函数图象,弄清题意,读懂图象,从中找到必要的信息是解题的关键. 11.D解析:D【解析】【分析】根据二次根式的运算法则即可求出答案.【详解】A、原式+B=,故错误;C 、原式,故C 错误;D 3=,正确; 故选:D . 【点睛】本题考查二次根式,解题的关键是熟练运用二次根式的运算,本题属于基础题型.12.B解析:B 【解析】试题解析:已知∠ADE :∠EDC=3:2⇒∠ADE=54°,∠EDC=36°, 又因为DE ⊥AC ,所以∠DCE=90°-36°=54°, 根据矩形的性质可得∠DOC=180°-2×54°=72° 所以∠BDE=180°-∠DOC-∠DEO=18° 故选B .二、填空题 13.-2【解析】【分析】直接代入根据二次根式的运算法则即可求出答案【详解】解:当时原式【点睛】本题考查了学生的运算能力解题的关键是熟练运用运算法则本题属于基础题型解析:-2 【解析】 【分析】直接代入,根据二次根式的运算法则即可求出答案. 【详解】解:当1x =时,原式21)1)6=+-5126=-+-2=-【点睛】本题考查了学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.14.4【解析】【分析】设每份为x 则根据勾股定理即可求出x 的值然后求出a 的长【详解】解:根据题意设每份为x∵∴在中由勾股定理得解得:(负值已舍去)∴;故答案为:4【点睛】本题考查了勾股定理解直角三角形解题解析:4 【解析】 【分析】设每份为x ,则2a x =,3=b x ,根据勾股定理,即可求出x 的值,然后求出a 的长.【详解】解:根据题意,设每份为x ,∵:2:3a b =,∴2a x =,3=b x ,在Rt ABC ∆中,由勾股定理,得222(2)(3)(52)x x +=,解得:2x =(负值已舍去),∴4a =;故答案为:4.【点睛】本题考查了勾股定理解直角三角形,解题的关键是熟练掌握勾股定理求出三角形的边长.15.【解析】【分析】【详解】解:如图作CE′⊥AB 于E′甲BD 于P′连接ACAP′首先证明E′与E 重合∵AC 关于BD 对称∴当P 与P′重合时PA′+P′E 的值最小∵菱形ABCD 的周长为16面积为8∴AB=解析:23.【解析】【分析】【详解】解:如图作CE′⊥AB 于E ′,甲BD 于P′,连接AC 、AP′.首先证明E′与E 重合, ∵A 、C 关于BD 对称,∴当P 与P′重合时,PA′+P′E 的值最小,∵菱形ABCD 的周长为16,面积为83,∴AB=BC=4,AB·CE′=83,∴CE′=23,由此求出CE 的长=23.故答案为3考点:1、轴对称﹣最短问题,2、菱形的性质16.4【解析】【分析】根据矩形的性质可得阴影部分的面积等于矩形面积的一半即可求得结果【详解】由图可知阴影部分的面积故答案为:4考点:本题考查的是矩形的性质点评:解答本题的关键是根据矩形的性质得到△DOE 解析:4【解析】【分析】根据矩形的性质可得阴影部分的面积等于矩形面积的一半,即可求得结果.【详解】由图可知,阴影部分的面积1424 2=⨯⨯=故答案为:4考点:本题考查的是矩形的性质点评:解答本题的关键是根据矩形的性质得到△DOE的面积等于△BOF的面积,从而可以判断阴影部分的面积等于矩形面积的一半.17.【解析】【分析】由四边形ABCD是菱形AC=8BD=6可推出AD=AB=5由面积的可列出关于DH的方程求出DH的长度利用勾股定理即可求出BH的长度【详解】∵四边形ABCD是菱形AC=8BD=6∴AO解析:18 5.【解析】【分析】由四边形ABCD是菱形,AC=8,BD=6可推出AD=AB=5,由ABD∆面积的可列出关于DH的方程,求出DH的长度,利用勾股定理即可求出BH的长度.【详解】∵四边形ABCD是菱形,AC=8,BD=6,∴AO=4,OD=3,AC⊥BD,∴2234+,∵DH⊥AB,∴12⨯AO×BD=12⨯DH×AB,∴4×6=5×DH,∴DH=245,∴222465⎛⎫- ⎪⎝⎭=185.【点睛】本题考查的考点是菱形的性质及勾股定理,灵活运用菱形的性质及勾股定理是解题的关键. 18.20【解析】【分析】分析表格中数据得到物体自由下落的高度随着时间的增大而增大与的关系为:把代入再进行计算即可【详解】解:由表格得用时间表示高度的关系式为:当时所以果子开始落下时离地面的高度大约是20 解析:20【解析】【分析】分析表格中数据,得到物体自由下落的高度h 随着时间t 的增大而增大,h 与t 的关系为:25h t =,把2t =代入25h t =,再进行计算即可.【详解】解:由表格得,用时间()t s 表示高度()h m 的关系式为:25h t =,当2t =时,2525420h =⨯=⨯=.所以果子开始落下时离地面的高度大约是20米.故答案为:20.【点睛】本题考查了根据图表找规律,并应用规律解决问题,要求有较强的分析数据和描述数据的能力.能够正确找到h 和t 的关系是解题的关键.19.【解析】【分析】由0≤t≤8所对应的图象表示小刚边走边聊阶段根据速度=路程÷时间可判断①;由t=0时s=1000的实际意义可判断②;根据t=10时s=0可判断③;总路程除以所用总时间即可判断④【详解解析:②③④【解析】【分析】由0≤t≤8所对应的图象表示小刚边走边聊阶段,根据速度=路程÷时间可判断①;由t=0时s=1000的实际意义可判断②;根据t=10时s=0可判断③;总路程除以所用总时间即可判断④.【详解】 ①小刚边走边聊阶段的行走速度是10006008-=50(m/min ),故①错误; ②当t=0时,s=1000,即小刚家离学校的距离是1000m ,故②正确;③当s=0时,t=10,即小刚回到家时已放学10min ,故③正确; ④小刚从学校回到家的平均速度是100010=100(m/min ),故④正确; ∴正确的是②③④.故答案为:②③④.【点睛】此题考查一次函数的图象解决实际问题,正确理解题意、理解函数图象横、纵坐标表示的意义是解题的关键.20.【解析】【分析】由图可知:两个一次函数的交点坐标为(-4-2);那么交点坐标同时满足两个函数的解析式而所求的方程组正好是由两个函数的解析式所构成因此两函数的交点坐标即为方程组的解【详解】函数y=ax解析:42 xy-⎩-⎧⎨==【解析】【分析】由图可知:两个一次函数的交点坐标为(-4,-2);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【详解】函数y=ax+b和y=kx的图象交于点P(-4,-2),即x=-4,y=-2同时满足两个一次函数的解析式.所以关于x,y的方程组y ax by kx=+⎧⎨=⎩的解是42xy-⎩-⎧⎨==.故答案为:42 xy-⎩-⎧⎨==.【点睛】本题考查了一次函数与二元一次方程组的关系,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.三、解答题21.(12)【解析】【分析】(1)根据二次根式的混合运算顺序,首先计算开方,再计算乘法,最后从左向右依次计算即可.(2)根据二次根式的混合运算顺序,平方差公式和完全平方公式进行计算,最后从左向右依次计算即可.【详解】(1=183=(2)()()2(325)4545+-+-=9+20+125 -(16-5)=29+125-11=18+125.【点睛】 此题考查二次根式的混合运算,解题关键在于掌握运算法则.22.(1)详见解析;(2) 22【解析】【分析】(1)利用矩形性质可得OD=OC ,再借助对称性可得OD=DE=EC=CO ,从而证明了四边形ODEC 为菱形;(2)证明四边形OBCE 为平行四边形,即可得到OE=BC=22.【详解】(1)∵四边形ABCD 是矩形,∴AC=BD,OC=12AC ,OB=OD=12BD , ∴OD =OC . ∵点O 关于直线CD 的对称点为E ,∴OD =ED ,OC =EC .∴OD =DE =EC =CO .∴四边形ODEC 为菱形;(2)连接OE .如图,由(1)知四边形ODEC 为菱形,∴CE ∥OD 且CE =OD .又∵OB=OD,∴CE ∥BO 且CE =BO .∴四边形OBCE 为平行四边形.∴22OE BC ==【点睛】本题主要考查了矩形的性质,菱形的判定和性质、平行四边形的判定和性质,熟知特殊四边形的判定和性质是解题的关键.23.(1)∠NDE=90°;(2)不变,证明见解析;(3)∴6【解析】【分析】(1)根据题意证明△MAC ≌△NBC 即可;(2)与(1)的证明方法相似,证明△MAC ≌△NBC 即可;(3)作GK ⊥BC 于K ,证明AM=AG ,根据△MAC ≌△NBC ,得到∠BDA=90°,根据直角三角形的性质和已知条件求出AG 的长,得到答案.【详解】解:(1)∵∠ACB=90°,∠MCN=90°,∴∠ACM=∠BCN ,在△MAC 和△NBC 中,{AB BCACM BCN MC NC=∠=∠=,∴△MAC ≌△NBC ,∴∠NBC=∠MAC=90°,又∵∠ACB=90°,∠EAC=90°,∴∠NDE=90°;(2)不变,在△MAC ≌△NBC 中,{AB BCACM BCN MC NC=∠=∠=,∴△MAC ≌△NBC ,∴∠N=∠AMC ,又∵∠MFD=∠NFC ,∠MDF=∠FCN=90°,即∠NDE=90°;(3)作GK ⊥BC 于K ,∵∠EAC=15°,∴∠BAD=30°,∵∠ACM=60°,∴∠GCB=30°,∴∠AGC=∠ABC+∠GCB=75°,∠AMG=75°,∴AM=AG ,∵△MAC ≌△NBC ,∴∠MAC=∠NBC ,∴∠BDA=∠BCA=90°,∵∴AB=62+,AC=BC=3+1,设BK=a,则GK=a,CK=3a,∴a+3a=3+1,∴a=1,∴KB=KG=1,BG=2,AG=6,∴AM=6.【点睛】本题考查几何变换综合题.24.(1)120米(2)y乙=120x﹣360,y甲=60x(3)9【解析】【分析】【详解】解:(1)由图得:720÷(9﹣3)=120(米),答:乙工程队每天修公路120米.(2)设y乙=kx+b,则3k+b=0{9k+b=720,解得:k=120{b=360-.∴y乙=120x﹣360.当x=6时,y乙=360.设y甲=kx,则360=6k,k=60,∴y甲=60x.(3)当x=15时,y甲=900,∴该公路总长为:720+900=1620(米).设需x天完成,由题意得:(120+60)x=1620,解得:x=9.答:该项工程由甲、乙两工程队一直合作施工,需9天完成(1)根据图形用乙工程队修公路的总路程除以天数,即可得出乙工程队每天修公路的米数.(2)根据函数的图象运用待定系数法即可求出y与x之间的函数关系式.(3)先求出该公路总长,再设出需要x天完成,根据题意列出方程组,求出x,即可得出该项工程由甲、乙两工程队一直合作施工,需要的天数.25.(1)甲、乙六次测试成绩的方差分别是223S =甲,243S =乙;(2)甲 【解析】【分析】(1)根据方差的定义,利用方差公式分别求出甲、乙的方差即可;(2)根据平均数相同,利用(1)所求方差比较,方差小的成绩稳定,即可得答案.【详解】(1)甲、乙六次测试成绩的方差分别是: (222222212[(109)(99)(89)(89)(109)99)63S ⎤=⨯-+-+-+-+-+-=⎦甲, (222222214[(109)(109)(89)(109)(79)99)63S ⎤=⨯-+-+-+-+-+-=⎦乙, (2)推荐甲参加全国比赛更合适,理由如下:∵两人的平均成绩相等,∴两人实力相当;∵甲的六次测试成绩的方差比乙小,∴甲发挥较为稳定,∴推荐甲参加比赛更合适.故答案为:甲【点睛】本题考查方差的求法及利用方差做决策,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立;熟练掌握方差公式是解题关键.。

相关文档
最新文档