(完整版)必修5解三角形知识点归纳总结,推荐文档
解三角形知识点

《必修五》解三角形知识点归纳一、正弦定理 正弦定理:2sin sin sin a b cR A B C=== 文字语言:在一个三角形中,各边和它所对角的正弦的比相等. 符号语言:2sin sin sin a b cR A B C=== 特点:对称美、和谐美 (一)理解定理1、正弦定理:在△ABC 中,2sin sin sin sin sin sin a b c a b cR A B C A B C++====++【在这个式子当中,已知两边和一角或已知两角和一边,可以求出其它所有的边和角,从而知正弦定理的基本作用是进行三角形中的边角互化】2、正弦定理的基本作用:①已知三角形的任意两角及其一边可以求其他边,如角化边sin sin b Aa B=②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如sin sin a BA b= 3、常用公式及其结论⑴正弦定理包含三个等式sin sin a b A B =,sin sin b c B C =,sin sin a c A C=每一个等式中都包含四个量,可以“知三求一” (2)三内角和为180︒即180A B C ︒++=,222A B C π+=- (3)两边之和大于第三边,两边之差小于第三边,,;,,.a b c a c b b c a a b c b c a a c b +>+>+>-<-<-< (4)面积公式:2111sin sin sin 2sin sin sin 2224abcS ab C bc A ac B R A B C R===== ⑸三角函数的恒等变形:sin()sin A B C +=,cos()cos A B C +=- ,()tan tan A B C +=-,sincos 22A B C +=,cos sin 22A B C+=,tan tan 22A B C +=,tan tan +tan tan tan tan A B C A B C +=⋅⋅ ⑹C B A c b a sin :sin :sin ::= ⑺角化边: C R c B R b A R a sin 2sin 2sin 2===⑻边化角:RcC Rb B Ra A 2sin 2sin 2sin ===⑼在△ABC 中,①若B b A a cos cos =,则△ABC 是等腰三角形或直角三角形; ②若B a A b cos cos =,则△ABC 是等腰三角形;③若222cos cos +cos 1A B C +=或cos cos cos a A b B c C +=,则△ABC 是直角三角形.⑽在△ABC 中,sin sin sin A B C a b c A B C >>⇔>>⇔>>(二)题型:使用正弦定理解三角形共有三种题型题型1: 利用正弦定理公式原型解三角形题型2: 利用正弦定理公式的变形(边角互化)解三角形:关于边或角的齐次式可以直接边角互化.例如:222222sin 3sin 2sin 32A B C a b c +=⇒+=题型3: 三角形解的个数的讨论 方法一:画图看方法二:通过正弦定理解三角形,利用三角形内角和与三边的不等关系检验解出的结果是否符合实际意义,从而确定解的个数.(三)三角形内角平分线定理:△ABC 中,AD 是A ∠的角平分线,则DCBDAC AB = 我们知道,当一个三角形已知任意两角和一边时,根据全等三角形的判定定理可以得知这个三角形就是唯一确定的,也就是可解的.先由三角形内角和定理求出第三个角,再由正弦定理计算另两边.另外,一个三角形的三边之间必须满足:任意两边之和大于第三步且任意两边之差小于第三边.当已知一个三角形的三边时,已知的三条边必须满足上面的条件才能够作出三角形.否则作不出三角形,当然也无法解三角形.从上面的探讨可以得知,已知三角形的三边要解三角形时,必须满足三边关系,解三角形才有意义.当已知三边时,连续利用余弦定理的推论求出较小边的对角,再用三角形内角和求出第三个角. 如果已知三角形的两边及其夹角,那么根据三角形的判定定理我们知道这个三角形是唯一确定的,也就是可解的.我们可以利用余弦定理计算第三边,用余弦定理的推论或正弦定理计算其余两个角. 如果已知任意两边及其中一边的对角如何来解三角形呢?我们先看下面的例题: 例题:已知:在△ABC 中,22,25,133,a cm b cm A ︒===解三角形. 解:22,25,133a cm b cm A ︒===∴根据正弦定理,得sin 25sin133sin 0.831122b A B a ︒==≈ 0180B ︒︒<< ∴56.21B ︒≈,或123.79B ︒≈ 180A B C ︒++= ∴9.21C ︒=-或76.79C ︒=-【师】:问题出在哪里呢?【生】:分析已知条件,我们注意到,133a b A ︒<=,是一个钝角,根据三角形的性质应该有A B <,因而B 也是一个钝角.而在一个三角形中是不可能存在两个钝角的.【师】:从上面的分析我们发现,在已知三角形的两边及其中一边的对角解三角形时,在某些条件下会出现无解的情形.如:①已知32,2,60===O b a A ,求B (有一个解);②已知32,2,60===O a b A ,求B (有两个解)二、余弦定理(一)知识与工具:余弦定理:222222222222222222cos 22cos 2cos cos 22cos cos 2b c a A bc a b c bc A a c b b a c ac B B ac c a b ab C a b c C ab ⎧+-=⎪⎧=+-⎪+-⎪⎪=+-⇒=⎨⎨=+-⎪⎪⎩+-⎪=⎪⎩(二)题型:使用余弦定理解三角形共有三种现象的题型题型1:利用余弦定理公式的原型解三角形题型2:利用余弦定理公式的变形(边角互换)解三角形:凡在同一式子中既有角又有边的题,要将所有角转化成边或所有边转化成角,在转化过程中需要构造公式形式。
高中数学必修五第一章《解三角形》知识点知识讲解

高中数学必修五第一章《解三角形》知识点收集于网络,如有侵权请联系管理员删除高中数学必修五 第一章 解三角形知识点归纳1、三角形三角关系:A+B+C=180°;C=180°—(A+B);2、三角形三边关系:a+b>c; a-b<c3、三角形中的基本关系:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=- sincos ,cos sin ,tan cot 222222A B C A B C A B C +++=== 4、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,则有2sin sin sin a b c R C===A B . 5、正弦定理的变形公式: ①化角为边:2sin a R =A ,2sin b R =B ,2sin c R C =; ②化边为角:sin 2a R A =,sin 2b R B =,sin 2c C R=; ③::sin :sin :sin a b c C =A B ; ④sin sin sin sin sin sin a b c a b c C C++===A +B +A B . 6、两类正弦定理解三角形的问题:①已知两角和任意一边,求其他的两边及一角.②已知两角和其中一边的对角,求其他边角.(对于已知两边和其中一边所对的角的题型要注意解的情况(一解、两解、三解)7、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B .=2R 2sinAsinBsinC=R abc 4=2)(c b a r ++=))()((c p b p a p p ---8、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A ,2222cos b a c ac =+-B , 2222cos c a b ab C =+-.9、余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac +-B =,222cos 2a b c C ab+-=. 10、余弦定理主要解决的问题:①已知两边和夹角,求其余的量。
人教版数学必修5知识点的总结.doc

高中数学 必修 5 知识点第一章 解三角形 (一)解三角形:1、正弦定理:在C 中 , a 、 b 、 c 分 别 为 角、、C 的对边,,则有a bc 2Rsin sinsin C( R 为C 的外接圆的半径 )2、正弦定理的变形公式:①a 2Rsin ,b 2Rsin ,c 2Rsin C ;② sina , sinb ,sin Cc ;③ a : b : c sin :sin :sin C ;2R2R2 R3、三角形面积公式:S1bc sin 1 1ac sin .Cab sin C2224、余弦定理:在2222bc cosb 2c 2 a 2C 中,有 a bc,推论: cos2bc第二章数列1、数列中 a n 与 S n 之间的关系:a nS 1 , (n 1)注意通项能否合并。
S n S n 1,( n2).2、等差数列:⑴定义:如果一个数列从第 2 项起,每一项与它的前一项的差等于同一个常数,即 a - ann 1=d ,(n ≥ 2, n ∈N ), 那么这个数列就叫做等差数列。
⑵等差中项:若三数a 、 A 、b 成等差数列 A ab2⑶通项公式: a na 1 ( n 1)d a m (n m) d或 a npn q ( p 、q 是常数) .⑷前 n 项和公式:S n na 1 n n 1 dn a 1 a n22⑸常用性质:①若 mnp q m,n, p, q N ,则 a m a na p a q ;②下标为等差数列的项 a k ,a k m , a k 2m,,仍组成等差数列;③数列a nb ( ,b 为常数)仍为等差数列;④若 { a n } 、 { b n } 是等差数列,则 { ka n } 、 { ka n pb n } ( k 、 p 是非零常数 ) 、{ a p nq }( p, q N * )、, 也成等差数列。
⑤单调性: a n 的公差为 d ,则:ⅰ) ⅱ) ⅲ) d 0 a n 为递增数列;d0 a n 为递减数列;da n 为常数列;⑥数列 { a n } 为等差数列a npn q ( p,q 是常数)⑦若等差数列a n的前 n 项和 S ,则 S 、S 2 k S k 、S 3k S 2k 是等差数列。
必修5解三角形知识点归纳总结

第一章解三角形一.正弦定理: 1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外接圆的直径,即 —=—=—=2R (其中R 是三角形外接圆的半径) sin A sin B sinC a + b + c a b c = = = . sin A + sin B + sin Csin A sin B sin C 2)化边为角: a : b : c = sin A : sin B : sin C . a sin A b sin B a sin Ab sin B ,c sin C ,csin C 3)化边为角:a = 2R sin A , b = 2R sin B , c = 2R sin Csin A a sin B b sin A a • —— •sin B b ' sin C c ' sin C c 'abc sin A =——, sin B =——, sin C =—— 2 R 2 R 2 R3.利用正弦定理可以解决下列两类三角形的问题:①已知两个角及任意一边,求其他两边和另一角;例:已知角B,C,a,解法:由A+B+C=180o ,求角A,由正弦定理a =空A ;-=把B b sin B c sin C a sin A = ------- ;求出b 与c c sin C②已知两边和其中一边的对角,求其他两个角及另一边。
例:已知边a,b,A,解法:由正弦定理a =竺4求出角B,由A+B+C=180o 求出角C,再使用正 b sin B弦定理a = sn A 求出c 边 c sin C 4.△ABC 中,已知锐角A,边b,则①a < b sin A 时,B 无解;②a = b sin A 或a > b 时,B 有—个解③b sin A < a < b 时,B 有两个解。
2.变形:1) 4)化角为边: 5)化角为边:如:①已知A :60。
(完整版)高中数学必修五解三角形知识点归纳,推荐文档

的距离 ; 代数意义: | a | 0 a 0
a a0
2、 如果 a 0, 则不等式:
(1)
|x| a |x| a (3) | x | a
x a 或x a ;(2)
x a 或x a
axa
;
(4) | x | a
axa
注意 : 上式中的 x 可换成 f(x)
3、解含有绝对值不等式的主要方法:解含绝对
注意:
使用均值不等式的条件:一正、二定、三相等
3、平均不等式:( a、b 为正数),即
a2 b2 2
ab 2
2 ab
1 1 (当 a = b 时取等)
ab
4、常用的基本不等式:
① a2
b2
2ab a, b
R ;② ab
a2 b2 a,b R
2
; ③ ab .
2
ab
2
a
0,b
0 ;④ a2 b2
2
ab a, b R
d n2 2
(a1
d )n 2
(2) 找到通项的正负分界线
s a1 0
若 d 0 则 n 有最大值,当 n=k 时取到的
最大值 k 满足
ak 0 ak 1 0
a1 0 d0
若
则sn 有最大值,当 n=k 时取到的最
大
值 k 满足
ak 0 ak 1 0
等比数列
一.定义、如果一个数列从第 2 项起,每一项与
a f ( x ) a g( x ) (0 a 1) f ( x ) g( x )
③对数不等式:
log a f ( x ) log a g( x )( a 1)
f (x) 0
g( x) 0
高中数学必修五--第一章---解三角形知识点归纳

- 1 - 高中数学必修五 第一章 解三角形知识点归纳1、三角形三角关系:A+B+C=180°;C=180°—(A+B);2、三角形三边关系:a+b>c; a-b<c3、三角形中的基本关系:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=- sin cos ,cos sin ,tan cot 222222A B C A B C A B C +++===4、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,则有2sin sin sin a b c R C===A B . 5、正弦定理的变形公式:①化角为边:2sin a R =A ,2sin b R =B ,2sin c R C =; ②化边为角:sin 2a R A =,sin 2b R B =,sin 2c C R=; ③::sin :sin :sin a b c C =A B ;④sin sin sin sin sin sin a b c a b c C C ++===A +B +A B . 6、两类正弦定理解三角形的问题:①已知两角和任意一边,求其他的两边及一角.②已知两角和其中一边的对角,求其他边角.(对于已知两边和其中一边所对的角的题型要注意解的情况(一解、两解、三解))7、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A 等,变形: 222cos 2b c a bc +-A =等, 8、余弦定理主要解决的问题:①已知两边和夹角,求其余的量。
②已知三边求角)9、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B .=2R 2sinAsinBsinC=R abc 4=2)(c b a r ++=))()((c p b p a p p ---10、如何判断三角形的形状:判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则:①若222a b c +=,则90C = ;②若222a b c +>,则90C < ;③若222a b c +<,则90C > .11、三角形的四心:垂心——三角形的三边上的高相交于一点重心——三角形三条中线的相交于一点(重心到顶点距离与到对边距离之比为2:1) 外心——三角形三边垂直平分线相交于一点(外心到三顶点距离相等) 内心——三角形三内角的平分线相交于一点(内心到三边距离相等)12 、请同学们自己复习巩固三角函数中 诱导公式及辅助角公式(和差角、倍角等) 。
高中数学必修5的知识点

2.线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值问题. 3.解线性规划实际问题的步骤:
(1)将数据列成表格; ( 2)列出约束条件与目标函数; ( 3)根据求最值方法:①画:画可行域;②移:移
与目标函数一致的平行直线;③求:求最值点坐标;④答;求最值;
( 4)验证。
两类主要的目标函数的几何意义 :
高中数学必修 5 知识点总结
(一)解三角形:
1、正弦定理:在
C 中, a 、 b 、 c 分别为角 、 、 C 的对边,,则有 a
b
c 2R
sin sin sin C
( R为
C 的外接圆的半径 )
2、正弦定理的变形公式:① a 2Rsin , b 2Rsin , c 2Rsin C ;
② sin
a , sin
ap aq Sn , S3n
S2 n 成等差数列
则 am an a p aq 3. Sn , S2n Sn , S3n
S2n 成等比
数列
(三)不等式
1、 a b 0 a b ; a b 0 a b ; a b 0 a b .
2、不等式的性质: ① a b b a ; ② a b, b c a c ; ③ a b a c b c ;
5、均值定理的应用:设 x 、 y 都为正数,则有
s2 ⑴若 x y s (和为定值) ,则当 x y 时,积 xy 取得最大值 .
4
⑵若 xy p (积为定值) ,则当 x y 时,和 x y 取得最小值 2 p .
注意:在应用的时候,必须注意“一正二定三等”三个条件同时成立。
高考试题来源: /zyk/gkst/
赠送以下资料
英语万能作文 (模板型) Along with the advance of the society more and more problems are brought to our
必修5-解三角形知识点归纳总结

第一章 解三角形一.正弦定理:1.正弦定理:R C cB b A a 2sin sin sin ===(其中R 是三角形外接圆的半径) 2.变形:1)sin sin sin sin sin sin a b c a b cC C++===A +B +A B R 2=.2)化边为角:C B A c b a sin :sin :sin ::=;;sin sin B A b a = ;sin sin C B c b = ;sin sin CA c a = 3)化边为角:C R cB R b A R a sin 2,sin 2,sin 2===4)化角为边:;sin sin b a B A = ;sin sin c b C B =;sin sin caC A = 5)化角为边: RcC R b B R a A 2sin ,2sin ,2sin === 3. 利用正弦定理可以解决下列两类三角形的问题:①已知两个角及任意—边,求其他两边和另一角(唯一解); 例:已知角B,C,a ,解法:由A+B+C=180o ,求角A,由正弦定理;sin sin B A b a =;sin sin C B c b = ;sin sin CAc a =求出b 与c ②已知两边和其中—边的对角,求其他两个角及另一边。
(解不定,需要讨论) 例:已知边a,b,A,解法:由正弦定理B A b a sin sin =求出角B,由A+B+C=180o 求出角C ,再使用正弦定理CAc a sin sin =求出c 边4.(i )△ABC 中,已知锐角A ,a ,边b ,则先求B sin ,⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧≥<==>解解解无解1,2,,1sin 1,1sin ,1sin b a b a B B B如:①已知32,2,60===O b a A ,求B (有一个解)②已知32,2,60===O a b A ,求B (有两个解) 注意:由正弦定理求角时,注意解的个数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例:已知角 B,C,a,
解法:由 A+B+C=180o a sin A ; 求出 b 与 c
,求角 A,由正弦定理 a sin A ; b sin B
b sin B ; c sin C
c sin C ②已知两边和其中—边的对角,求其他两个角及另一边。
例:已知边 a,b,A,
解法:由正弦定理 a sin A 求出角 B,由 A+B+C=180o 求出角 C,再使用
4) 三角形内的诱导公式:
sin( A B) sin C, cos( A B) cos C, tan( A B) tan C,
宝剑锋从磨砺出 梅花香自苦寒来
宝安数学老师瞿老师上门一对一 15915355718 QQ:1838471850
必修 5
C
tan
A
B 2
tan( 2
C
) 2
sin( cos(
必修 5
第一章 解三角形
1.正弦定理: 1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于 外接圆的直径,即 a b c 2R (其中 R 是三角形外接圆的半径)
sin A sin B sinC
2.变形:1)
abc sin sin sin C
a sin
b sin
2 2) C )
22
C cos( 2)
C sin( )
2
5) 两角和与差的正弦、余弦、正切公式
(1)sin(α±β)=sin αcos β±cos αsin β .
(2)cos(α±β)=cos αcos β∓sin αsin β. tan α ± tan β
(3)tan(α±β)=1 ∓ tan αtan β.
5) 二倍角的正弦、余弦、正切公式
(1) sin 2α=2sin α c o s α .
(2) cos 2 α= c o s 2 α - s i n 2 α= 2 c o s 2 α- 1 = 1 - 2 s i n 2 α.
4)化角为边: sin A a ;
sin B b 5)化角为边: sin A a ,
2R
sin B b ; sin A a ;
sin C c sin C c
sin B b , sin C c
2R
2R
3. 利用正弦定理可以解决下列两类三角形的问题:
①已知两个角及任意—边,求其他两边和另一角;
②已知 A 60 ,b 2, a 2 3 ,求 B (有两个解)
宝剑锋从磨砺出 梅花香自苦寒来
宝安数学老师瞿老师上门一对一 15915355718 QQ:1838471850
必修 5
注意:由正弦定理求角时,注意解的个数。
二.三角形面积 1. S 1 ab sin C 1 bc sin A 1 ac sin B
方的角叫仰角,视线在水平线直下方的角叫俯角.
线
水平线
俯角
视线
5、三角形中常见的结论
1)三角形三角关系:A+B+C=180°;C=180°—(A+B);
2 三角形三边关系:
两边之和大于第三边:
,
,
;
两边之差小于第三边:
,
,
;
3 在同一个三角形中大边对大角: A B a b sin A sin B
三.余弦定理 1. 余弦定理:三角形中任何一边的平方等于其他两边平方的和减去这两边与它 们夹角的余弦的积的 2 倍,即
a2 b2 c2 2bc cos A
b2 a2 c2 2ac cos B
c2 a2 b2 2ab cos C
2.变形: cos A b2 c2 a2 2bc
cos B a2 c2 b2 2ac
,
所以 为钝角,则
宝安数学老师瞿老师上门一对一 1591535575
是钝角三角形
4. 利用余弦定理可以解决下列两类三角形的问题: 1) 已知三边,求三个角 2) 已知两边和它们的夹角,求第三边和其他两个角
四、应用题 1.已知两角和一边(如 A、B、C),由 A+B+C = π 求 C,由正弦定理求
c sin C
.
2)化边为角: a : b : c sin A : sin B : sin C ;
a sin A ; b sin B ; a sin A ; b sin B c sin C c sinC
3) 化边为角: a 2R sin A, b 2R sinB, c 2R sin C
4. 已知三边 a、b、c,应用余弦定理求 A、B,再由 A+B+C = π , 求角 C.
5.方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方
向旋转到目
视线
标的方向线所成的角(一般指锐角),通常表达成.正北或正南,北偏东××度
, 北偏西××度,南偏东××度,南偏西××度.
6. 俯角和仰角的概念:在铅视线与水平仰线角所成的角中,视线在水平线上
a、b. 2. 已知两边和夹角(如 a、b、c),应用余弦定理求 c 边;再应用正弦定
理先求较短边所对的角,然后利用 A+B+C = π , 求另一角.
3.已知两边和其中一边的对角(如 a、b、A),应用正弦定理求 B,由
A+B+C = π 求 C,再由正弦定理或余弦定理求 c 边,要注意解可能有多种 情况.
b sin B 正弦定理 a sin A 求出 c 边
c sin C
4.△ABC 中,已知锐角 A,边 b,则
① a b sin A 时,B 无解;
b
② a b sin A 或 a b 时,B 有一个解;
A
③ b sin A a b 时,B 有两个解。
b sinA
如:①已知 A 60 ,a 2,b 2 3 ,求 B (有一个解)
2 ABC
2
2
2.
S ABC
1 (a b c)r ,其中r 是三角形内切圆半径. 2
3. S ABC
p( p a)( p b)( p c), 其中 p 1 (a b c) , 2
4. S abc ,R 为外接圆半径
ABC 4R
5. SABC 2R2 sin Asin B sin C ,R 为外接圆半径
cos C a2 b2 c 2 2ab
注意整体代入,如: a 2 c 2 b 2 ac cos B 1 2
3. 利用余弦定理判断三角形形状: 设 a 、 b 、 c 是 C 的角 、 、 C 的对边,则:
①若, ②若c2 b2 a2 A为直角
,所以 为锐角
③若
宝剑锋从磨砺出 梅花香自苦寒来