反比例函数单元复习PPT课件

合集下载

课件-反比例函数复习.ppt

课件-反比例函数复习.ppt

4.函数 y 的 6图象位于第 二象、限四,
x
在每一象限内,y的值随x的增大而 增大, 当x>0时,y <0,这部分图象位于第 象四限.
5.在某一电路中,保持电压U不变,电流I(安培)与
电阻R(欧姆)之间的关系是:U=IR,当电阻R=5欧
姆时,电流I=2安培.则电流I(安培)是电阻R(欧姆)

函数反,且比I与例R之间的函数
1
y
P (m,n)
oD
x
2.如图, P是反比例函数y k 图像上的一点,由P分别 x
向x轴, y轴引垂线,阴影部分面积为3,则这个反比例
函数的解析式是____.
解:
S矩形APCO | k |,| k | 3.
y
又图像在二、四象限 ,
PC
k 3 解析式为y 3 .
x
A ox
3.如图, A,B是函数y 1 的图 像上关于原点O对称 x
x (元) 3
4
5
6 ……
y(个) 20 15 12 10 ……
(1)猜想并确定在赢利的条件下y与x之间的函数关系式。
(2)设经营此贺卡的销售利润为w元,试求出w与x之间的函 数关系式,若物价局规定此贺卡的销售价最高不能超过10元, 请你求出当销售单价x定为多少时,才能使获利最大?
练一练
1.下列函数中哪些是y是x的正比例函数?哪些
A(0.25,1000)
1000
O 0.1 0.2 0.3 0.4 S(m2)
作业: P60---62复习题17
5、6、7、8、9、10、11。
y
y
B
P(m,n)
o
Ax
B
P(m,n)
oA
x

反比例函数复习课完整版课件

反比例函数复习课完整版课件
图像观察法
通过观察反比例函数和直线图像的相对位置关系,可以直观判断交点的存在性及 个数。例如,当直线与双曲线有两个交点时,说明存在两个解;当直线与双曲线 相切时,说明存在一个解;当直线与双曲线无交点时,说明不存在解。
03 反比例函数在实际问题中 应用
生活中常见问题建模为反比例关系
路程、速度和时间的关系
当路程一定时,速度和时间成反比例关系。例如,从家到学校距离一定,步行速度越快, 所需时间越短。
工作总量、工作效率和工作时间的关系
当工作总量一定时,工作效率和工作时间成反比例关系。例如,完成一项任务所需的总工 作量是固定的,工作效率越高,所需时间越短。
矩形面积、长和宽的关系
当矩形面积一定时,长和宽成反比例关系。例如,一块固定面积的土地,长度越长,宽度 就越短。
我们探讨了反比例函数与直线交点的求解方法,以及交点存在
和不存在的条件。
学生自我评价报告分享
01
02
03
知识掌握情况
学生们表示通过本节课的 复习,对反比例函数的概 念、性质和应用有了更深 刻的理解。
学习方法反思
部分学生提到,在解决反 比例函数与直线交点问题 时,需要更加细心地处理 计算过程,以避免出错。
反比例函数定义
形如 $y = frac{k}{x}$ (其中 $k$ 为常 数,且 $k neq 0$) 的函数称为反比 例函数。
反比例函数表达式
比例系数的意义
$k$ 决定了反比例函数的图像和性质 ,当 $k > 0$ 时,图像位于第一、三 象限;当 $k < 0$ 时,图像位于第二 、四象限。
$y = frac{k}{x}$,其中 $x$ 是自变量 ,$y$ 是因变量,$k$ 是比例系数。

反比例函数复习课件

反比例函数复习课件
反比例函数单元复习
知识点回顾1 1.什么是反比例函数?
一般地,函数 y k(k是常数, x
k≠0)叫做反比例函数.
2.解析式还有两种常见的表达形式。 y=kx-1(k≠0) xy = k (k≠0)
你一定能找对!
1.下列函数中哪些是反比例函数?
y = 3①x-1
y = 2x2
②y=
1 x
y = 23x③ ④
|k|的一半.
2.设x为一切实数,在下列函数中
,当x增大时,y的值总是减小的函
C
数是( )
(A) y = -5x -1 ( B) y=x2
(C) y=-2x+2; (D) y=4x.
3. 已知k<0,则函数 y1=kx,y2=
k x
在同一坐标系中的图像大致是
D
()
y
y
(A)
0
(B)
x
0
x
y
y
(C)
0
(D)
x
0
x
4. 已知k>0,则函数 y1=kx+k与kxy2=
在同一坐标系中的图像大致是 ( C)
y
y
(A)
(B)
0
x
0
x
y
y
(C)
(D)
0
x
0
x
5.设P(2,3)是反比例函数图像 上的一点,求△POA的面积。
y
P(2,3)
oA
x
y P(m,n)
oA
x
6.在平面直角坐标系内,从反比例函数
y=k/x(k>0)的图象上的一点分别作坐标轴 的垂线段,与坐标轴围成的矩形的面积是12,
8.已知:y=y1+y2,其中y1与x成正 比例,y2与x成反比例,当x=1时 ,y=4,当x=2时,y=5,求函数y 的解析式。

反比例函数单元复习课件

反比例函数单元复习课件

A 面积分别为S1 , S2 , S3 , 则有 __ . A.S1 = S2 = S3 B. S1 < S2 < S3 C. S3 < S1 < S2 D. S1 > S2 >S3
解:由性质(1)得
1 1 1 1 S AOA1 | k | , S BOB1 | k | , 2 2 2 2 1 1 S OOC 1 | k | , 即S1 S 2 S 3 , 故选A. 2 2
4.下列的数表中分别给出了变量y与x之间的对应关 系,其中是反比例函数关系的是( D ). x 1 2 3 4 A: y 5 8 7 6 x 1 2 3 4 C: y 8 5 4 3 x 1 B: y 6 x D: 1 2 8 2 3 9 3
1 3
4 7 4
1 4
y
1 1 2
5.已知y是关于x的反比
1 y 5 x
是x的反比例函数, k =5;
x 2 y 2 不是反比例函数;
3 xy 2
是x的反比例函数, k =2;
4 xy 0 不是反比例函数;
1.在下列函数表达式中,x均为自变量,哪些y是x的反比 例函数?每一个反比例函数相应的k值是多少?
5
5 y 2 不是x的反比例函数; x
(1)形积类: 体积不变,底面积与高成反比例. (2)行程类: 总路程不变,速度与时间成反比例. (3)压强类: 压力不变,压强与面积成反比例. (4)电学类: 电压不变,输出功率与电阻成反比例. 电压不变,电流与电阻成反比例. (5)杠杆原理: 阻力×阻力臂=动力×动力臂
4.(2004 年凉山统考题) k 如图, O是坐标原点 直线OA与双曲线 y 在第一象限内交于 , x 1 点A, 过A作AB x轴, 垂足为B, 如果OB 4,AB:OB 。 2

反比例函数图象性质及应用复习课件

反比例函数图象性质及应用复习课件

04
反比例函数的实际应用案 例
电流与电阻的关系
总结词
电流与电阻成反比关系,当电阻增大时,电流减小;反之亦然。
详细描述
在电路中,电流与电阻之间的关系表现为反比例关系。当电路中的电压保持恒定时,电阻的阻值增大,会导致电 流减小;反之,如果电阻的阻值减小,电流则会增大。这一关系在电子设备和电路设计中具有重要应用。
答案解析
针对每个练习题,提供 详细的答案解析,帮助 学生理解解题思路和过
程。
感谢您的观看
THANKS
表达式
一般形式为 y = k/x,其中 k 是 常数且 k ≠ 0。
图像特点
双曲线
反比例函数的图像是双曲线,分布在两个象限内。
渐近线
图像分别渐近于 x 轴和 y 轴。
变化趋势
随着 x 的增大或减小,y 的值会无限接近于 0 但永远不会等于 0。
渐近线与对称性
渐近线
对于反比例函数 y = k/x (k > 0),其图像在第一象限和第三象限内,当 x 趋于正无穷 或负无穷时,y 值趋于 0,因此渐近于 x 轴;当 y 趋于正无穷或负无穷时,x 值趋于 0 ,因此渐近于 y 轴。对于 k < 0 的情况,图像在第二象限和第四象限内,渐近线为 y
反比例函数图象性质及 应用复习ppt课件
目录 CONTENT
• 反比例函数的基本性质 • 反比例函数的图像绘制 • 反比例函数的应用场景 • 反比例函数的实际应用案例 • 反比例函数与其他知识点的关联 • 复习与巩固
01
反比例函数的基本性质
定义与表达式
定义
反比例函数是指形如 y = k/x (k ≠ 0) 的函数,其中 x 是自变量, y 是因变量。

反比例函数的图像和性质ppt课件

反比例函数的图像和性质ppt课件

7、若点(-2,y1)、(-1,y2)、(2,y3)在
反比例函数 y = - 1 0 0 的图象上,则(
xቤተ መጻሕፍቲ ባይዱ
B

A、y1>y2>y3 C、y3>y1>y2
B、y2>y1>y3 D、y3>y2>y1
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
已知点A(2,y1), B(5,y2)C是(反-3比,y例3)函是数y 象上的两点.请比较y1,y2的,y大3的小大.小.
4 x

y
⑴代入求值
y1 A B
-3 y2 O2 5
C y3
⑵利用增减性
⑶根据图象判断
x
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
1、反比例函数y= - 5 的图象大致是( D )
y
x
y
A:
o
x
B:
o
x
y
C:
o
x
D:
y
o x
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
2、我校食堂有5吨煤,用y表示可以用的天数
,用x表示每天的烧煤量,则y关于x的函数的
10
1、这几个函数图象有 8 什么共同点?
2、函数图象分别位于 6 哪几个象限?
4
3、y随的x变化有怎

反比例函数复习课课件

反比例函数复习课课件

2023
REPORTING
THANKS
感谢观看
2023
PART 05
反比例函数的易错点与难 点解析
REPORTING
易错点的解析
混淆反比例函数与正比例函数
01
正比例函数是y=kx,而反比例函数是xy=k。学生常常将两者混
淆,导致在解题时出现错误。
忽视反比例函数的定义域
02
反比例函数的定义域是x不为0的实数,学生常常忽视这一点,
导致在解题时出错。
2023
PART 04
反比例函数的综合题解析
REPORTING
反比例函数的综合题解析
01
分析与照顾 into acts' intoic andic. of course, and will,, on the在这
பைடு நூலகம்02
saidcoupled =oman ofic ofic of and ofic and of intoic of and, and other神话 top similar 觉ungais'hipster
描述反比例函数的定义
详细描述
反比例函数是一种数学函数,其定义为 y = k/x,其中 k 是常数且 k ≠ 0。当 x 取任意非零实数时,y 的值都存在。
反比例函数的图像
总结词
描述反比例函数的图像特点
详细描述
反比例函数的图像通常在 x 轴和 y 轴上都有渐近线,即当 x 或 y 趋于无穷大时 ,函数值趋于 0。图像通常位于第一象限和第三象限。
反比例函数的性质
总结词:列举反比例函数 的性质
1. 当 k > 0 时,函数图像 在第一象限和第三象限;
3. 反比例函数是奇函数, 即 f(-x) = -f(x);

反比例函数全章PPT课件

反比例函数全章PPT课件

A.S1<S2<S3
B.S2<S1<S3
C.S1<S3<S2
D.S1=S2=S3
第33页/共39页
图2
☞ 小试牛刀
(3)如图3,点A、B是双曲线y 3 上的点, x
分别经过A、B两点向x轴、y轴作垂线段, 若S阴影 1,则S1 S2
y
A
S1
B
S2
O
图3
x
第34页/共39页
双曲线的两支分别 位于第一、第三象限,
k>0

在每个象限内 y值随x值的增大而减小。

双曲线的两支分别 位于第二、第四象限,
k<0 在每个象限内 y值随x值的增大而增大。
第18页/共39页
学了就用
1、已知反比例函数 y 2 m 的函数图象位于第一、三象限, 则m的取值范围是 m<2 。x
2、 下列函数中,其图象位于第二、四象限的有 (1),(4) ,
x 当k>0时,双曲线的两支分别位于第一、第三象限, 在每个 象限内y值随x值的增大而减小。 当k<0时,双曲线的两支分别位于第二、第四象限, 在每个 象限内y值随x值的增大而增大。
作业:课本53页第3、8题和课本68页第10题
第26页/共39页
反比例函数图象中的 面积问题
第27页/共39页
☞ 图象上的面积
12|2m||2n| 2|k|
第31页/共39页
y o
P/
P(m,n)
x
A
☞ 小试牛刀
(1)如图1,反比例函数图像上一点A
与坐标轴围成的矩形ABOC的面积是8 ,
则该反比例函数的解析式
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

( A)
A、10 B、5
C、2
1
D、 10
5限.已,知那反么比m例的函取数值y范 围2mx是1_的_M_图_>_象_1在_/_2第__一、三象
6.如果反比例函数的图象经过点(1,-2),那么
这个反比例函数的解析式_y_=__-2_/_x___。
2021/3/7
11
▪ 7.已知甲,乙两地相距s km,汽车从甲 地匀速行驶到乙地.如果汽车每小时耗油
2021/3/7
15
小结:
• 本节复习课主要复习本章学生应 知应会的概念、图像、性质、应 用等内容,夯实基础提高应用。
• 充分利用“图象”这个载体,随 时随地渗透数形结合的数学思想.
2021/3/7
16
素材和资料部分来自 网络,如有帮助请下载!
量为a L,那么从甲地到乙地的总耗油量y
(L)与汽车的行驶速度v (km/h)的函数图
象大致是(C ).
Y/L
Y/L
Y/L
Y/L
o
V(km/h) o
V(km/h)
o
V(km/h)
(A)
(B)
(C)
o V(km/h)
(D)
2021/3/7
12
9.已知反比例函数 y k 的图象经过点 4 , 1
x
∴m=2/2=1 , ∴ 点B的坐标为(2,1 )
2021/3/7
14
设由y=x+1的图象平移后得到的函数解析 式为y=x+b, 则由题意得y=x+b的图象经 过点B(2,1),即1=2+b,解得b=-1
故,平移后的一次函数解析式为y=x- 1.
令y=0,则0=x- 1, 解得x= 1
∴平移后的一次函数图象与x轴的交点坐标 为(1,0).
x
2
若一次函数y=x+1的图象平移后经过该反比
例函数图象上的点B(2,m),求平移后的一
次函数的图象与x轴的交点坐标。
思路分析:本题综合考查反比例函数、 一次函数及平移等知识,解题的关键是 确定反比例函数的关系式。
2021/3/7
13
解:∵反比例函数
y
k x
的图象经过点
4
,
1 2
∴∴又反∵12 B比 (k42例,,解函m得数)在k的=2解y. 析 2式的为图象y 上2x,
变化趋当势k<0时,在每一象限内,y随x的增大而增大
变对化称趋性势坐标双轴曲相线交无限接近于x、y轴,但永远不会与
y 对称性 双曲线既是轴对称图形又是中心对称图形. 任意一组变量的乘积是一个定值,即xy=k
B
P(m,n)
面积不变性 长方形面积 ︳m n︱ =︳K︱
oA x
2021/3/7
3
练一练: 图像与性质
BC=1+︱ -1 ∣=2,AB=2
∴SΔABC=BC×AB÷2=2.
2021/3/7
8
交流与探索
中考中的反比例函数 各年中考试题选编
2021/3/7
9
1.反比例函数
y
2 x
的图象位于(
D)
A、第一、二象限 B、第一、三象限
C、第二、三象限 D 、第二、四象限
2.若反比例函数
值为( C )
y
6 x
且S△AOB=1 1)求两个函数解析式
2)求△ABC的面积
2021/3/7
7
解:1)∵一次函数y=x +1/2k与
反比例函数y=k/x相交于点A ,
SΔAOB = 1
于是k=2
∴ 所求的两个函数解析式为
y=x+ 1,y=2/x
2)∵两个函数解析式为y=x + 1, y=2/x

点A和点C的坐分别为A(1 ,2) 和C(-1,0)。∴
1 x
,若
X1<o <x2 <x3 大小关系是
(,其y对1<应y值3<y1y,2y2
,y3 )

y2
利用y3 图像法或特殊值 法。增y1 减性,一定要 考虑在每一象限内。
2021/3/7
6
反比例函数交点问题:
5、双如曲图线在坐标系中,在直第线一y象=x限+ 12交k与与
点A, 与x轴交于点C,AB垂直x轴, 垂足为B,
经过点A(m,-2m),则m的
A、 3 B、3
C、 3
D、±3
3数.函的数图y象在kx (平k 面0)直的角图坐象标经系过中(2的,( -2D),)则此函
A、第一、三象限
B、第三、四象限
C20、21/3/第7 一、二象限
D、第二、四象限 10
4.反比例函数y
k x
(k
0)的图象经过点(2,5),
若点(1, n)在反比例函数的图象上,则n等于
1 、 反比例函数y=2x- 的图象是双曲 线 ,分布 在第二、四 象限,在每个象限内, y都随x的 增大而 增大;若 p1 (x1 , y1)、p2 (x2 , y2) 都在第 二象限且x1<x2 , 则y1 y2
2021/3/7
4
图像与性质
A
2021/3/7
5
图像与性质
3、已知反比例函数 y
即 xy = k,k = 0; (3)解析式有三种常见的表达形式。
2021/3/7
2
2.你能回顾总结一下反比例函数的图象性 质特征吗? 与同伴进行交流.
形形状 状图时,双曲线分别位于第一,三象限内 当k<0时, 双曲线分别位于第二,四象限内
增增减减性性 当k>0时,在每一象限内,y随x的增大而减小
反比例函数单元复习
城兴中学 张小灯
2009.04.03
2021/3/7
1
知 识回 顾
1.什么是反比例函数?
一般地,形如 y =
k —
( k是常数, k = 0 )
x
的函数叫做反比例函数。
y=kxx-y1(= kk≠0)
注意:
(k ≠ 0)
(1)常数 k 称为比例系数,k 是非零常数;
(2)自变量 x 次数不是 1; x 与 y 的积是非零常数,
相关文档
最新文档