中职数学指数函数及对数函数

合集下载

中职教育-数学(基础模块)上册课件:第4章 指数函数与对数函数.ppt

中职教育-数学(基础模块)上册课件:第4章  指数函数与对数函数.ppt
图4-6
接下来,我们再用描点法作出函数y log 1 x 和y log 1 x
的图像.
2
3
对数函数的定义域为(0,+∞),在定义域内取若干个x 值,分别求出对应的y值,然后列表,如表4-8、表4-9所示.
表4-8
x
… 1/4 1/2 1
2
4

y

2
1
0 -1 -2 …
表4-9
x
… 1/9 1/3 1
3
9

y

2
1
0 -1 -2 …
以表中的x值为横坐标,对应的y值为纵坐标,在直角坐标
系中依次描出相应的点(x,y),然后用光滑的曲线依次连接
这些点,即可得到函数y log 1 x 和 y log 1 x 的图像,如图4-7
所示.
2
3
图4-7
一般地,对数函数 y loga x (a 0 且 a 1)具有下列性质:
第4章 指数函数与对数函数
4.1 • 实数指数幂 4.2 • 指数函数 4.3 • 对数 4.4 • 对数函数
内容简介:本章完成了由正整数指数幂到实数指数幂 及其运算的逐步推广过程,介绍了指数函数的概念、图像和 性质,引入了对数概念及运算法则,并在此基础上介绍了对 数函数的概念、图像和性质。
学习目标:理解有理数指数幂;掌握实数指数幂及其 运算法则;了解幂函数,理解指数函数的图像和性质;了解 指数函数的实际应用,理解对数的概念;掌握利用计算器求 对数值;了解积、商、幂的对数、对数函数的图像和性质及 对数函数的实际应用。
m
an
1 n am
计算器辅助求值
下面,我们以用CASIO
fx-82ES

人教版中职数学基础模块上册:4.3指数函数与对数函数应用 课件

人教版中职数学基础模块上册:4.3指数函数与对数函数应用 课件

解 设年后我国人口总数达到14.5亿.依题意,得
14.1×(1+0.5%)x≥14.5.
即1.005x≥ 14.5 ,两边取常用对数得
14.1
lg 14.5
lg1.005x lg 14.5,
14.1
所以 x 14.1 · 解得x≥5.6.
lg 1.005
因为x是自然数,所以约6年后我国人口总数将达到
感谢观看
例1 2021年5月11日,国家统计局公布第七次全国人口 普查主要情况,数据显示,我国人口总数约是14.1亿, 如果人口的年自然增长率为0.5%,则约几年后我国人口 总数将不小于14.5亿(结果保留整数)?
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
1.153104 x ln 96 ln 0.9505 0.051 .
101
因此 x 0.051 104 442 .
1.153
故在600m高空处,大气压强约为94kpa,在442m 高空处,大气压强约为96kpa.
巩固练习,提升素养 在活初动中3,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
数学
基础模块(上册)
第四章 指数函数 与对数函数
4.3 指数函数与对数函数应用
人民教育出版社
第四章 指数函数与对数函数 4.3指数函数与 对数函数应用
学习目标
知识目标 理解指数函数与对数函数图象和性质
能力目标
学生运用分组探讨、合作学习,理解指数函数与对数函数图象和性质,掌握 指数函数与对数函数图象和性质,提高学生的运用指数函数与对数函数图象 和性质解决现实问题的能力

中职数学基础模块第4章《指数函数与对数函数》知识点小结

中职数学基础模块第4章《指数函数与对数函数》知识点小结


1,N>0),那么幂指数b是以a为底N的对数,记作b=log a
N
,
其中a叫作对数的底数,N叫作真数.
【注意】:(1)底数的限制:a>0且a不等于1; (2)N的限制:N>0; (3)log是对数的符号.
2.指数式与对数式的互化:a 0且a 1,N 0时,ab N loga N b
5.对数的运算法则
(1)loga (MN ) loga M loga N (积的对数等于对数的积)
(2)loga
M N
Байду номын сангаас
loga
M
loga
N (商的对数等于对数的差)
(3)logaM b b loga M (幂的对数等于幂指数乘幂的底数的对数)
推广:loga (N1 N2 NK ) loga N1 loga N2 loga Nk
3.对数的性质:
(1)N>0(零和负数没有对数); (2)loga1=0(1的数等于0); (3)logaa=1(底的对数等于1); (4) aloga N N.
知识清单 ——————————————————————————
4.两个特殊对数
(1)常用对数:以10为底的对数,记作lgN. (2)自然对数:以e为底的对数,记作lnN.(e为无理数,e约等于2.718)
知识清单
知识清单 ——————————————————————————
三.有理数指数幂运算法则:
(1)a paq a pq ;
(2)
a a
p q
a pq
(3)(a p )q a pq
(4)(ab) p a pb p
有理指数幂还可以推广到实数指数幂,以上运算法则依然成 立。其中a>0,b>0,p、q是实数.

指数函数和对数函数

指数函数和对数函数

指数函数和对数函数是高中数学数学分析中较为重要的函数类型,它们不仅常见于数学领域,而且广泛应用于科学、工程等多个领域。

本文将引导读者了解的定义、性质、应用以及它们之间的联系。

一、指数函数指数函数可以被定义为具有形式$f(x)=a^x$的函数,其中a是正的常数,x可以是任何实数。

指数函数的图像通常表现出指数增长或指数衰减的特征,根据a的不同取值,可以分为指数增长和指数衰减两种情况。

例如,当a>1时,函数f(x)=a^x会不断增长,当0<a<1时,函数会不断衰减。

特别地,当a=1时,函数f(x)=1^x 恒等于1。

指数函数的常用性质有:1.当a>1时,指数函数在定义域上单调递增,并且在x=0处的值恒为1;当0<a<1时,指数函数在定义域上单调递减,且在x=0处的值恒为1.2.指数函数的导数也是指数函数,即[latex]\frac{d}{dx}a^x[latex]=a^x \times ln(a)3.指数函数f(x)=a^x是以a为底的幂函数f(x)=b^x的反函数,即f^{-1}(x)=log_a(x)指数函数与对数函数有着密切联系。

下面我们将介绍对数函数。

二、对数函数对数函数一般表示为g(x)=log_a (x),其中a是正实数,且a ≠ 1,x是正实数。

对数函数的图像表现为一条光滑曲线,通常在a>1的时候,曲线向上迅速爬升,而在a<1的时候,曲线向下迅速下降。

对数函数的常用性质有:1.定义域为(x,∞);值域为(-∞,∞)2.当x=a 时,g(x)=13.当x>1时,log_a (x) > 0;当0<x<1时,log_a (x) < 04.对数函数g(x)=log_a(x)是指数函数f(x)=a^x的反函数,即a^{g(x)} = x三、指数函数的应用指数函数在生态学、生物学、物理学、经济学、金融学等多个领域有广泛应用。

中职数学“指数函数与对数函数”的有效性教学探索word精品文档4页

中职数学“指数函数与对数函数”的有效性教学探索word精品文档4页

中职数学“指数函数与对数函数”的有效性教学探索一、绪言指数函数和对数函数是数学函数教学课程中一个非常重要的内容,两种函数类型有着必然的不同点,还有很大的类似性和相关性.在中职教育的过程中,指数函数和对数函数是我们在数学教学过程中所要面对的一个非常大的难点,教师在教授的过程中,往往会遇到一系列的问题.也正是由于这个原因,作为中职院校的教师来讲,必须要加强对自身教学方式与教学手段的钻研,通过多种有效的手段改进中职数学教学过程中指数函数和对数函数的教学方法,从根本上提高教学的实践性和有效性.二、中职教育指数函数和对数函数的教学目标中职教育的指数函数与对数函数的教学首要的目的就是要让学生从根本上理解和掌握指数函数和对数函数的相关的定义与性质,能够看懂甚至绘制与之相关的图像,进而要求他们能够在对性质和定义了解的基础上运用它们的原理解决一些初级的数学问题.由于指数函数和对数函数是两个互相联系的定义,所以教师要指导学生在理解指数函数的基础上加强对对数函数的理解和应用,要使他们认清两者之间的区别和联系,理解它们的底数和定义域,可以让学生绘制出与之相关的正确的图像.学生可以根据自己掌握的内容深层次地认识到两者的内涵和性质,并最终根据自己的理解来解决一些较为实际的内容.在这个过程中,教师要特别注意去提高学生的分析能力以及他们的观察能力,可以通过对两个函数的相关图像进行对比和研究,要求他们指出其中的不同,使他们拥有简洁、对称的审美观念,使他们认识到数学的深层次魅力,从根本上调动起他们的兴趣,提高他们的学习积极性.三、中职教育“指数函数与对数函数”的有效性教学策略无论是指数函数还是对数函数来讲,它们都是函数中较为初等的一个类别,在函数教学越来越艰涩的后续过程中,打好指数函数与对数函数的教学基础就显得非常的重要.从另一个角度来看的话,从根本上扎实地掌握指数函数与对数函数的应用原理,学生可以及时发现函数的应用价值,从而使他们对数学的函数学习产生浓厚的兴趣.从根本上来讲,函数可以解决我们在现实生活之中遇到的许多的问题,但是对于它的实践性要求比较高.我们从另一方面来理解的话,无论是指数函数还是对数函数,都是具有非常抽象意义的概念,如果缺乏一定的理性思维能力,学生在一般情况之下很难去透彻理解,由于绝大多数同学都是第一次接触指数函数和对数函数的概念,对于两个互为反函数的函数之间的微妙关系,也很难理解和掌握,更不用说利用它们来解决实际问题了,这也是学生在学习指数函数与对数函数过程中所遇到的最大的问题.我们在引入概念的过程中,应该注意从学生容易理解的部分开始出发,运用它们对于函数的固有理解来加强他们对于指数函数和对数函数的认识,同时需要注意的是,在对图像进行处理的过程中,我们不仅要让学生掌握底数,而且对于不同的问题应该选择不同的底数,如果将这些分析结果放入同一坐标系的话,学生们也就可以非常容易地发现函数的图像所具有的特点,从而可以很深层次地认识到函数的内涵,最后理解它们的性质,对于他们更好地学习有很强的辅助作用.我们要认识到中职教学过程中学生自身的一些特点,数学基础比较弱,思考能力不强,特别是抽象思维能力.所以,在教学的过程中,要做到因材施教最好提供更多的锻炼机会给学生,让他们多动脑多动手.在课堂的教授过程中,教师也不能满堂灌,应该放手让学生自己去挖掘、去思考、去理解,教师只能起到一个指引的作用,不能做过多的干涉.教师这样做的目的可以在很大程度上开拓学生的思维能力,从而提升他们对于数学的学习兴趣,从而提高学生的学习能力.具体来讲,作为中职数学教师,应该从以下几个方面入手,切实提高学生对指数函数和对数函数的理解能力:1.改变思路,变被动为主动在当下的教学环境之中,培养学生的创造性思维被提上了一个高度,教师也应该利用现代化的教学工具,来为学生创造出轻松愉悦的学习环境,在这个过程中,情境教学和多媒体教学的手段都是非常有效的方式.举例说明,教师在开始具体的授课之前,可以利用多媒体手段为学生播放一些与指数函数和对数函数有关的动画,可以让学生对这个概念有一个完整且深入的认识,而且动画的效果可以在很大程度上提高学生的学习兴趣.这种手段可以在一定程度上将原来的枯燥无味的教授过程变成一个动态化的形式,可以很好地引起学生的兴趣,而且动态化的教学过程可以使学生能够对教学内容有更本质的了解,可以弥补学生抽象思维能力不足的问题.2.有效传达函数理念,让学生更容易进入函数思维的模式之中我们学习数学,最主要的是利用数学的模式来思考问题,从而很简单地解决在日常生活中所遇到的一系列问题.在进行指数函数和对数函数的教学过程中,最为主要的也是要培养学生的思维能力,使他们能够在生活之中很自然而然地使用数学理念来解决问题.所以,在进行教学的过程中,要注意培养学生数形结合的思想,使他们能够用创造性的、抽象化的思维模式来进行学习.3.充分使用信息化手段,提升学生的学习兴趣在学习的过程中,教师要懂得利用包括多媒体技术在内的现代化信息手段来辅助教学,通过为学生播放生动有趣的动画,利用网络教学,整合多种资源,更灵活更有效地提升学生的学习兴趣.希望以上资料对你有所帮助,附励志名言3条:1、宁可辛苦一阵子,不要苦一辈子。

中职数学(人教版):讲指数与对数函数教学教案

中职数学(人教版):讲指数与对数函数教学教案

第07讲 指数与对数函数一、指数与对数运算: (一)知识归纳: 1.根式的概念:①定义:若一个数的n 次方等于),1(*∈>N n n a 且,则这个数称a 的n 次方根.即,若a x n =,则x 称a 的n 次方根)1*∈>N n n 且,1)当n 为奇数时,n a 的次方根记作n a ;2)当n 为偶数时,负数a 没有n 次方根,而正数a 有两个n 次方根且互为相反数,记作)0(>±a a n .②性质:1)a a n n =)(; 2)当n 为奇数时,a a nn=;3)当n 为偶数时,⎩⎨⎧<-≥==)0()0(||a a a a a a n2.幂的有关概念:①规定:1)∈⋅⋅⋅=n a a a a n ( N *, 2))0(10≠=a a , n 个 3)∈=-p aap p(1Q ,4)m a a a n m n m,0(>=、∈n N * 且)1>n ②性质:1)r a a a a s r s r ,0(>=⋅+、∈s Q ), 2)r a a a s r s r ,0()(>=⋅、∈s Q ), 3)∈>>⋅=⋅r b a b a b a rr r ,0,0()( Q ) (注)上述性质对r 、∈s R 均适用. 3.对数的概念:①定义:如果)1,0(≠>a a a 且的b 次幂等于N ,就是N a b=,那么数b 称以a 为底N的对数,记作,log b N a =其中a 称对数的底,N 称真数. 1)以10为底的对数称常用对数,N 10log 记作N lg ,2)以无理数)71828.2( =e e 为底的对数称自然对数,N e log 记作N ln ②基本性质:1)真数N 为正数(负数和零无对数), 2)01log =a , 3)1log =a a , 4)对数恒等式:N aNa =log③运算性质:如果,0,0,0,0>>≠>N M a a 则 1)N M MN a a a log log )(log +=; 2)N M NMa a alog log log -=; 3)∈=n M n M a n a (log log R ). ④换底公式:),0,1,0,0,0(log log log >≠>≠>=N m m a a aNN m m a1)1log log =⋅a b b a , 2).log log b mnb a na m = (二)学习要点:1.b N N a a N a bn ===log ,,(其中1,0,0≠>>a a N )是同一数量关系的三种不同表示形式,因此在许多问题中需要熟练进行它们之间的相互转化,选择最好的形式进行运算.在运算中,根式常常化为指数式比较方便,而对数式一般应化为同应化为同底.2.要熟练运用初中学习的多项式各种乘法公式;进行数式运算的难点是运用各种变换技巧,如配方、因式分解、有理化(分子或分母)、拆项、添项、换元等等,这些都是经常使用的变换技巧,必须通过各种题型的训练逐渐积累经验.【例1】解答下述问题:(1)计算:25.02121325.0320625.0])32.0()02.0()008.0()945()833[(÷⨯÷+---[解析]原式=41322132)10000625(]102450)81000()949()278[(÷⨯÷+-922)2917(21]1024251253794[=⨯+-=÷⨯⨯+-=(2)计算1.0lg 21036.0lg 21600lg )2(lg 8000lg 5lg 23--+⋅.[解析]分子=3)2lg 5(lg 2lg 35lg 3)2(lg 3)2lg 33(5lg 2=++=++;分母=41006lg 26lg 101100036lg)26(lg =-+=⨯-+; ∴原式=43. (3)化简:.)2(2485332332323323134aa a a ab aaab b b a a ⋅⋅⨯-÷++--[解析]原式=51312121323131231313123133133131)()(2)2()2()(])2()[(a a a a ab a b b a a b a a ⋅⋅⨯-÷+⋅+- 23231616531313131312)2(a a a a aa ba ab a a =⨯⨯=⨯-⨯-=.(4)已知:36log ,518,9log 3018求==ba 值. [解析],5log ,51818b b=∴=ab a b -+-=-+-+=++=∴22)2(2)3log 18(log )9log 18(log 16log 5log 2log 18log 36log 181818181818181830.[评析]这是一组很基本的指数、对数运算的练习题,虽然在考试中这些运算要求并不高,但是数式运算是学习数学的基本功,通过这样的运算练习熟练掌握运算公式、法则,以及学习数式变换的各种技巧.【例2】解答下述问题:(1)已知1log 2log log ≠=+x x x x b c a 且, 求证:b a ac c log 2)(= [解析]0log ,1,log log 2log log log ≠∴≠=+x x bxc x x a a a a a a ,2log log )1(log log 2log 2log 11c b c c bc a a a a a a ⇒+=⇒=+∴=b b a a a a a ac c ac b ac log 2log )()(log log )(log =⇒=⋅(2)若0lg lg )][lg(lg lg lg lg lg lg 2=-++++yx y x y y x x y x ,求)(log 2xy 的值.[解析]去分母得0)][lg()lg (lg 22=-++y x y x⎩⎨⎧=-=⇒⎩⎨⎧=-=+∴110)lg(0lg lg y x xy y x y x , x ∴、y -是二次方程012=--t t 的两实根,且y x y x y x >≠≠>>,1,1,0,0,解得251±=t , 0)(log ,215,215,02=+∴-=+=∴>y x y x x [评析]例2是更综合一些的指数、对数运算问题,这种问题更接近考试题的形式,应多从这种练习中积累经验. 二、指数函数与对数函数(一)学习要点: 1.指数函数:①定义:函数)1,0(≠>=a a a y x且称指数函数,1)函数的定义域为R , 2)函数的值域为),0(+∞, 3)当10<<a 时函数为减函数,当1>a 时函数为增函数.②函数图像:1)指数函数的图象都经过点(0,1),且图象都在第一、二象限,2)指数函数都以x 轴为渐近线(当10<<a 时,图象向左无限接近x 轴,当1>a 时,图象向右无限接近x 轴),3)对于相同的)1,0(≠>a a a 且,函数x x a y a y -==与的图象关于y 轴对称.③函数值的变化特征:2.对数函数:①定义:函数)1,0(log ≠>=a a x y a 且称对数函数, 1)函数的定义域为),0(+∞, 2)函数的值域为R , 3)当10<<a 时函数为减函数,当1>a 时函数为增函数,4)对数函数x y a log =与指数函数)1,0(≠>=a a a y x且互为反函数.②1)对数函数的图象都经过点(0,1),且图象都在第一、四象限,2)对数函数都以y 轴为渐近线(当10<<a 时,图象向上无限接近y 轴;当1>a 时,图象向下无限接近y 轴).4)对于相同的)1,0(≠>a a a 且,函数x y x ya 1log log ==与的图象关于x 轴对称.③函数值的变化特征:(二)学习要点:1.解决含指数式或对数式的各种问题,要熟练运用指数、对数运算法则及运算性质,更关键是熟练运用指数与对数函数的性质,其中单调性是使用率比较高的知识.2.指数、对数函数值的变化特点(上面知识结构表中的12个小点)是解决含指数、对数式的问题时使用频繁的关键知识,要达到滚瓜烂熟,运用自如的水平,在使用时常常还要结合指数、对数的特殊值共同分析.3.含有参数的指数、对数函数的讨论问题是重点题型,解决这类问题的最基本的分类方案是以“底”大于1或小于1分类.4.在学习中含有指数、对数的复合函数问题大多数都是以综合形式出现,如与其它函数(特别是二次函数)形成的复合函数问题,与方程、不等式、数列等内容形成的各类综合问题等等,因此要努力提高综合能力.【例1】已知11log )(--=x mxx f a 是奇函数 (其中)1,0≠>a a , (1)求m 的值;(2)讨论)(x f 的单调性; (3)求)(x f 的反函数)(1x f-;(4)当)(x f 定义域区间为)2,1(-a 时,)(x f 的值域为),1(+∞,求a 的值.[解析](1)011log 11log 11log )()(222=--=--+--+=+-xx m x mx x mx x f x f a a a 对定义域内的任意x 恒成立,10)1(11122222±=⇒=-⇒=--∴m x m xx m , 当)1(0)(1≠==x x f m 时不是奇函数,1-=∴m , (2)∴-+=,11log )(x x x f a 定义域为),1()1,(+∞--∞ , 求导得e x x f a log 12)(2--=', ①当1>a 时,)(,0)(x f x f ∴<'在),1()1,(+∞--∞与上都是减函数; ②当10<<a 时,),1()1,()(,0)(+∞--∞∴>'与在x f x f 上都是增函数; (另解)设11)(-+=x x x g ,任取111221>>-<<x x x x 或, 0)1)(1()(21111)()(2112112212<----=-+--+=-∴x x x x x x x x x g x g , )()(12x g x g <∴,结论同上;(3)111)1(1111log -+=⇒+=-⇒-+=⇒-+=y y yy y a a a x a x a x x a x x y , )10,0(11)(,0,011≠>≠-+=∴≠∴≠--a a x a a x f y a x x y且(4))2,1()(,3,21->∴-<<a x f a a x 在 上为减函数,∴命题等价于1)2(=-a f ,即014131log 2=+-⇒=--a a a a a, 解得32+=a .[评析]例1的各个小题概括了指数、对数函数的各种常见的基本问题,熟练掌握这些基本问题的解答程序及方法是很重要的能力训练,要认真总结经验.【例2】对于函数)32(log )(221+-=ax x x f ,解答下述问题:(1)若函数的定义域为R ,求实数a 的取值范围; (2)若函数的值域为R ,求实数a 的取值范围; (3)若函数在),1[+∞-内有意义,求实数a 的取值范围; (4)若函数的定义域为),3()1,(+∞-∞ ,求实数a 的值; (5)若函数的值域为]1,(--∞,求实数a 的值; (6)若函数在]1,(-∞内为增函数,求实数a 的取值范围. [解答]记2223)(32)(a a x ax x x g u -+-=+-==,(1)R x u ∈>对0 恒成立,33032min <<-⇒>-=∴a a u ,a ∴ 的取值范围是)3,3(-;(2)这是一个较难理解的问题。

中职数学基础模块上册《指数函数、对数函数的应用》word教案

中职数学基础模块上册《指数函数、对数函数的应用》word教案

第四单元 指数函数与对数函数一 教学要求1.理解有理数指数幂的概念,掌握幂的运算法则.2.了解幂函数的概念,了解幂函数y =x ,y =x 2,y =x 3,y = x21,y =x -1,y =x -2的图像.3.理解指数函数的概念、图像和性质.4.理解对数的概念(包括常用对数、自然对数),了解对数的运算法则.5.了解对数函数的概念、图像和性质.6.了解指数函数和对数函数的实际应用.7.通过幂与对数的计算,培养学生计算工具使用技能;结合生活、生产实例,讲授指数函数、对数函数模型,培养学生数学思维能力和分析与解决问题能力. 二 教材分析和教学建议(一) 编写思想1.通过温故知新完成由正整数指数幂到实数指数幂及其运算的逐步推广.让学生体验推广的过程,培养学生的数学思维方式.2.指数函数是中职数学学习中新引进的第一个基本初等函数,因此,教材先给出了指数函数的实际背景,然后对指数函数概念的建立、指数函数图像的绘制、指数函数的基本性质,作了完整的介绍.3.教材从具体问题引进对数概念,由求指数的逆运算引入对数运算,并研究对数运算的性质.4.对数函数同指数函数一样,是以对数概念和运算法则作为基础展开的.对数函数的研究过程也同指数函数的研究过程一样,目的是让学生对建立和研究一个具体函数的方法有较完整的认识.5.专设一节研究指数函数、对数函数的应用.本单元教学的重点是指数函数与对数函数的概念、图像及其单调性.本单元教学的难点是分数指数幂的概念、对数的概念,以及指数函数、对数函数单调性的应用.(二) 课时分配本单元教学约需12课时,分配如下(仅供参考):4.1有理数指数幂约1课时4.2实数指数幂及其运算法则约1课时4.3幂函数约1课时4.4指数函数的图像与性质约3课时4.5对数约2课时4.6对数函数的图像与性质约2课时4.7指数函数、对数函数的应用约1课时归纳与总结约1课时(三) 内容分析与教学建议4.1 有理数指数幂1.指数概念是由相同因式相乘发展而来的,回顾指数运算的发展过程,对学生学好这部分知识是十分必要的.2.讲解整数指数,是由正整数指数的意义及运算法则引入零指数、负整数指数的概念.3.在讲分数指数之前,先介绍方根的概念,在方根的定义和整数指数运算法则的基础上,引入正分数指数和负分数指数的概念,这里要让学生多做些练习,以掌握这个新的概念.4.2 实数指数幂及其运算法则1.整数指数幂的运算性质,对于分数指数幂也同样适用.为此教材给出了如下运算性质:a r·a s = a r+s(a>0,r, s∈Q),(a r )s= a rs(a>0,r,s∈Q),(a·b) r=a r b r (a,b>0,r∈Q).需要学生注意的是括号中限制条件的变化.当指数从整数指数推广到了有理数指数后,-2=3-8=(-8)13=(-8)26=6(-8)2=664=2.教学中,建议让学生用自己的语言叙述指数运算的三条性质.2.考虑到中职生的实际情况,教材只指出了“可以把有理数指数幂推广到无理数指数幂”,并未通过“用有理数逼近无理数”的思想引进无理数指数幂.3.在教学中要加强计算工具的使用,要让学生切实掌握利用计算器计算实数指数幂的题目,了解计算器的基本功能.4.3 幂函数本节教材只介绍了幂函数的定义,以及y=x,y=x2,y=x3,y=x21,y=x-1,y=x-2等几个幂函数的图像,教学中应注意把握好这个尺度.4.4 指数函数的图像与性质1.教材由两个实例引入了指数函数的概念,然后采用约定式定义法定义了指数函数,即“形如y=a x(a>0且a≠1)的函数叫做指数函数”.这个定义要求底a>0,且a≠1.这一点学生容易忽略,教学中应加以强调.2.教材采用描点法在同一坐标系中画出了两个指数函数的图像.这一过程应在课堂上展示给学生,以加深对指数函数图像形状特征的了解,为了使图像较为准确,所描的点可适当多一些,列表时,可借助于计算器.但是,对于学习基础较差的学生,教师只需要学生论证指数函数的图形特征、位置,对描点法作图可以不做要求.3.指数函数的性质是利用图像的直观性得到的,其中单调性是重点.它的应用主要是两方面:(1) 比较两个同底的幂的大小;(2) 解同底的指数不等式.4.5 对数1.现代工农业生产和科学技术研究工作中,需要计算大量的繁复的数据.如果利用对数计算,可以简化计算过程,特别是在高次乘方和开方中可以极大减轻劳动强度.因此对数是一种常用的计算工具和方法.在向学生进行关于对数知识和新的计算方法——对数计算的教学同时,要特别重视培养学生利用对数进行计算的技能.这不仅有助于解决几何、三角、物理中的计算问题,还能为参加生产实践或进一步学习打好基础.本节教材分两部分,即对数、对数运算法则.第一部分,在学习了指数概念的基础上,由实例引入对数的定义,接着研究对数式与指数式的关系和互化,再介绍对数恒等式及其应用.第二部分,着重研究对数运算法则及其应用.本节教材的重点是对数的定义、运算法则.难点是对数概念的正确建立及应用,而关键在于正确理解对数与指数关系,掌握它们的特性,加强综合练习.2.先举实例,要求出(1+6%)x=4,2x=10中的x值,需要一种新的计算方法——利用对数进行计算的方法,来适应数值计算需要.接着通过具体数字例子到一般式a b=N,b=log a N,引入对数的定义.把对应的指数简称为对数,再用符号表示.这样从具体到抽象,便于学生接受.通过指数式a b=N与对数式log a=b的对照比较,看出两个式子中a,b,N三者之间的关系是一样的,都是a的b次幂等于N,只是表示形式不同而已.从而使学生再次领会对应的指数就是对数,达到正确掌握对数、底数、真数三者之间的关系的目的以及对数式与指数式之间的密切联系,以加深对对数定义的理解.3.在引入对数定义后,教材简要地说明规定了a >0且a ≠1后,N >0,因此在实数集内零与负数没有对数,但对数可以是任何实数(正数、负数和零) .4.对数运算法则是对数运算的根据.利用它可以使数和式的乘、除、乘方运算化成低一级的对数的加、减、乘运算,从而简化计算.因此它也是学习对数的一个关键内容.对数运算法则是根据对数的定义和幂的运算法则导出的.教学时,可以进行对比:5.利用对数运算法则进行式子的恒等变形(包括化简),是利用对数进行计算的基本技能,因此必须加强练习,使学生能牢固掌握和熟练运用.要注意防止可能产生的错误,例如:(1) log a (M ±N)=log a M ±log a N ,(2) log a M ·log a N =log a M +log a N ,(3) log a M ·log a N =log a (M+N ),(4) log aN M =aNaM log log , (5) log a N M =log a (M-N ) , (6) log a M p =(log a M ) p ,(7) log a (-M )=-log a M .产生以上这些错误,有些是把积、商、幂的对数与对数的积、商、幂混淆起来所致,有些是把对数符号当做单独的数来使用所致.教学时,可以用具体数字(如设底数是2,M =4,N =8等)代入以上各式,启发学生自己去揭示和分析产生错误的原因,从而纠正错误.由于计算器的出现,使得复杂的数学计算有了新的工具,从而对《对数表》和《反对数表》的教学与使用越来越趋于淡化.因此,本教材删去了关于《对数表》和《反对数表》的有关内容.而采用计算器演示操作的方式,向学生介绍利用科学计算器计算对数的有关问题,而且操作步骤与结果的呈现方式便于学生掌握与理解.4.6 对数函数的图像与性质1.教材在分析对数式x=log 2 y 的基础上引入对数函数,主要分析由对数式确定的对应法则是不是函数关系.在教学中可根据指数函数y =2x 的图像做些简单说明,在此基础上给出对数函数的约定式定义:“形如y =log a x (a >0且a ≠1)的函数,叫做对数函数” .2.教材仍然采用了描点法画出四个对数函数y =log2x ,y =log 21x ,y=lg x ,y =log101x 的图像,并据此分析,归纳出对数函数的图像的特征.同指数函数,对于学习基础较差的学生,只需记住对数函数图形特征、位置,对描点法作图可不做要求.3.对数函数的单调性可由图像直观地分析出.4.7 指数函数、对数函数的应用教材安排了两道指数函数应用题,一道对数函数应用题,目的是引导学生运用所学知识解决实际问题.鉴于学生水平,讲解时仍需因势力导,不能急于求成,多帮学生进行分析,使他们能领会题目条件的要求,从而顺利列出函数解析式,最后使问题得解.(四) 复习建议1.构建知识结构2.梳理知识要点见本单元教材《归纳与总结》.3.需要注意的问题(1) 指数幂a n 当扩大到有理数时,要注意底数a 的变化范围.(2) 在对数式log a N =b 中要注意底数a >0且a ≠1,真数N >0等条件,这些条件在解题或变形中常常用到.(3) 在掌握指数函数、对数函数的图像和性质时,要对底数分两种情况讨论,即分为 a >1与0<a <1两种情况.4.典型例题见本单元教材《归纳与总结》,其中例1复习对数函数定义域的求法;例2是利用指数函数、对数函数的单调性比较大小;例3是考查指数函数、对数函数的图像特征.5.解题指导函数的图像是学习函数时必须掌握的内容,函数的一些性质就是由图像直接得出的,函数的图像是数形结合的体现.每学习一种函数时,应熟悉函数图像的特征,这样既便于函数的性质的理解,也便于应用图像和性质解题.应该怎样记函数图像呢?现介绍一种记忆方法——分析与实验相结合.分析——根据图像的定义域、值域、奇偶性等记住图像的基本方位.实验——记住图像上的关键点,再用特殊数值实验函数的变化,从而得出函数的整个图像或不同函数图像间的关系.(1) 应牢记指数函数y=a x ,当a >1和0<a <1时图像的基本形状和位置.图像特点①:对任意的a >0且a ≠1,y=a x 图像都过(0,1)(因为a 0=1) .图像特点②:底互为倒数的两个指数函数图像关于y 轴对称.例如:y =2x 和y =(21)x (即y =2-x )的图像关于y 轴对称. 图像特点③:图像在x 轴上方,与x 轴没有交点(因为ax >0) .事实上,指数函数的图像比较好画,即使忘记了图像的形状和位置,只须取几个点就可以描绘出来.但要注意,因为y =a x (a >0,a ≠1)的定义域是R ,故取点时,x 取正数、零、负数都应考虑到.(2) 要牢记对数函数y=log a x ,当a >1和0<a <1时图像的基本形状和位置.图像特点①:对任意的a >0且a ≠1,y =log a x 图像都过(1,0)(因为log a 1=0) .图像特点②:底互为倒数的两个对数函数图像关于x 轴对称.例如:y =lg x 和y=log 101x 的图像关于x 轴对称.图像特点③:图像在y 轴右方,与y 轴没有交点(因为y =log a x 的定义域为(0,+∞)).(3) 指数函数、对数函数图像一起记.根据指数函数、对数函数互为反函数得出:当a >1或0<a <1时,指数函数、对数函数的图像分别关于直线y=x 对称(如图4-1和图4-2),因此两个图像可以一起记.(4) 对图像的高低,我们仍采用数值实验法.例如:对y =2x , y =10x ,取x =1,因为21<101,所以在x >0时,y =10x 图像在y =2x 图像上方,可以推测,在x <0时,y=10x 图像在y =2x 图像的下方,且在(0,1)点处,两图像是交叉的.图4-1 图4-2根据y =(21)x ,y =(101)x 图像分别与y =2x ,y =10x 图像关于y 轴对称,可以得出,在x <0时,y =x ⎪⎭⎫ ⎝⎛101图像在y =x ⎪⎭⎫ ⎝⎛21图像的上方,在x >0时,亦相反. 例如,对y =log 2x ,y =lg x ,取x =10,因为log 210>1,lg10=1,所以log 210>lg10,可以推测,在x >1时,y =log 2x 图像在y =lg x 图像上方,当x ∈(0,1)时,亦相反,即图像在点(1,0)外是交叉的.根据y =log 21x ,y =log 101x 的图像分别与y =log 2x,y =lg x 的图像关于x 轴对称,可以得出,在x >1时,y= log 101x 图像在y = log 21x 图像的上方,在x ∈(0,1)时,亦相反.这样,可以很快地画出y =log 2x ,y =log 3x ,y =lg x ,y = log 21x ,y =log 31x ,y =log 101x 在同一坐标系中的图像(如图4-3) .下面利用图像来解题.例1 设a >0且a ≠1,在同一坐标系中,y =a x ,y =log a (-x )的图像只能是图4-4中的( ).图4-4分析:因为函数y =log a (-x )的定义域为(-∞,0),所以否定(A),(D) .因为y =log a (-x )与y =log a x 的图像关于y 轴对称,所以在(B),(C)中,由y =log a (-x )的图像得a >1,所以选B .图4-3例2(1) log a2<log b2<0,试比较a,b,1的大小;(2) 若a>0,试比较log3a,log5a,log0.5a的大小;(3) 试比较log0.71.5,log0.82.5的大小.分析:(1) 作出图4-5,可以得出0<b<a<1.(2) 作出图4-6可以得出,当a∈(0,1)时,log3a<log5a<log0.5a;图4-5 当a=1时,log5a=log3a=log0.5a=0;当a>1时,log0.5a<log5a<log3a.(3) 作出图4-7得出log0.82.5<log0.71.5.也可以这样考虑,log0.82.5<log0.81.5,log0.81.5<log0.71.5.所以 log0.82.5<log0.71.5.。

四川省中等职业学校对口升学考试-数学-第四章《指数函数与对数函数》总复习-课件

四川省中等职业学校对口升学考试-数学-第四章《指数函数与对数函数》总复习-课件


知识点二 函数的定义域
(6)几个常见幂函数的图像和性质如表4-1所示.

典例解析
例1
计算:
(21/40.5+(0.1)-2-(22)-23-12-3+(2+1)0.
注意:
【解析】
【技巧点拨】进行有理数指数幂运算时,若底数是带分数,则通常将带分数化为假分数
;若底数为小数,则将小数化成分数;若底数为根式,则将底数化成有理数指数幂的形
【技巧点拨】 对数的真数一定要大于零.

典例解析
例4 求函数=log1/3 (3-2x-x2)的单调区间.
【解析】 函数y=log1/3 (3-2x-x2)的定义域为{x|3-2x-x2>0}={x|-3<x<1}.
令t=3-2x-x2,x∈(-3,1),y=log1/3t在其定义域内为减函数.
注意:
;当α<0时,幂函数图像只经过(1,1)点,此时函数在(0,+∞)内为减函数;当α=0时,图像不经
过点(0,0).而当x>0时,y>0.故本题选B.
【技巧点拨】首先要明确幂函数的一般形式:y=xα,判断出函数是否是幂函数,然后确定指数α的值,
不同的值所对应的图像和性质都会发生变化,然后确定它的定义域.

知识清单
2.对数函数的概念、图像和性质
(1)对数函数的概念:y=logax(a>0,a≠1,x>0).(2)对数函数的图像和性质.对数函数的图像和性质
见表3-2

典例解析
例 1 求下列各式的值.
注意:
【解析】(1)由logaab=b知,lg(1/100)=lg10-2=-2.
(2)由alogaN=N,知(1/2)log23=(2-1)log23=(2log23)-1=3-1=1/3.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

指数函数与对数函数一、实数指数幂1、实数指数幂:如果x n=a (n ∈N +且n >1),则称x 为a 的n 次方根。

当n 为奇数时,正数a 的n 次方根是一个正数,负数的n 次方根是一个负数。

这时,a 的n 次方根只有一个,记作n a 。

当n 为偶数时,正数a 的n 次方根有两个,它们互为相反数,分别记作n a ,-n a 。

它们可以写成±n a 的形式。

负数没有(填“奇”或“偶”)次方根。

例:填空:(1)、(38)3=;(38-)3=。

(2)338=;33)8(-=。

(3)、445=;44)5(-=。

巩固练习:1、将下列各分数指数幂写成根式的形式: (1)32a (2)53-b(b ≠0)2、将下列各根式写成分数指数幂的形式: (1)52a (2)351a(a ≠0)3、求下列幂的值:(1)、(-5)0; (2)、(a-b )0; (3)、2-1; (4)、(47)4。

2、实数指数幂的运算法则 ①、βαa a •=βα+a②、βαaa =βα-a③、βα)(a =αβa④、α)(ab =ααb a •⑤、α)(ba =ααb a例1:求下列各式的值:⑴、21100⑵、328-⑶323188•例2:化简下列各式:⑴、3a a ⑵、633333••巩固练习:1、求下列各式的值:⑴、433162⋅-⑵、4482⋅ ⑶55325.042⋅⋅-2、化简下列各式:⑴2)3(-x⑵232)(-yx⑶203532a a a a •••-(a ≠0)二、幂函数1、幂函数:形如αx y =(α∈R,α≠0)的函数叫做幂函数,其中x 为自变量,α为常数。

例1、判断下列函数是否是幂函数:⑴、y =4x ⑵、y =3-x ⑶、y =21x⑷、y =x 2⑸、s =4t ⑹、y =xx ++2)1(⑺、y =2x +2x+1巩固练习:观察下列幂函数在同一坐标系中的图象,指出它们的定义域:⑴、y =x ;⑵、y =21x ;⑶y =1-x ; ⑷y =2x ;⑸y =41-x。

三、指数函数1、指数函数:形如y =x a (a >0,且a ≠1)的函数叫做指数函数,其中x 为自变量,a 为常数,指数函数的定义域为R 。

例1:判断下列函数是不是指数函数?(1)xy )3(-= (2)43x y = (3)21xy =(4)x y -⎪⎭⎫ ⎝⎛=52 (5) y =x2 (6) y =x )21(例1:已知指数函数y=a x的图像过点(2,16)。

①求函数的解析式及函数的值域。

②分别求当x=1,3时的函数值。

例2:判断下列函数在(﹣∞,﹢∞)上的单调性①y=0.5x②y=x-⎪⎭⎫ ⎝⎛31四、对数1、对数:如果ba =N(a >0,a ≠1),那么b 叫做以a 为底N 对数,记作㏒aN =b ,其中,a叫做对数的底数,简称底;N 叫做真数。

㏒aN 读作:“以a 为底N 的对数”。

我们把ba =N 叫做指数式,把㏒aN =b 叫做对数式。

2、对数式与指数式关系:例1:将下列对数式改写成指数式:(1)㏒381=4; (2)㏒5125=3; 例2:将下列指数式改写成对数式: (1)、35=125, (2)、4116=23、常用对数:把以10为底的对数叫做常用对数。

N(N>0)的常用对数㏒10N 可简记为lg N 。

例如:㏒107可简记为 lg74、自然对数:以e 为底的对数,这里e=2.718281…是一个无理数。

N (N >0)的自然对数㏒eN 可简记为㏑N 。

对数底数指数 b a =N ㏒aN = b真数 幂例如:㏒e5可简记为㏑5 5、零和负数没有对数。

6、根据对数定义,可以证明:㏒a 1=0;㏒a a=1(a >0,且a ≠1)7、对数的运算性质:(1)积的对数:两个正数的积的对数,等于同一底数的这两个数的对数的和,即㏒a (MN )=㏒a M +㏒a N(2)商的对数:两个正数的商的对数,等于同一底数的被除数的对数减去除数的对数,即㏒aNM=㏒a M-㏒a N (3)幂的对数:一个正数的幂的对数,等于幂指数乘以这个数的对数,即㏒a b M =b ㏒a M 其中,a >0,a ≠1,M >0,N >0例:求出下列各式的值:1、㏒2(4×8)2、㏒3(9×27)3、㏒216644、㏒575255、3㏒246、㏒3219五、对数函数1、对数函数:函数log a y x =(0,a >且1a ≠)就是对数函数。

是指数函数xy a =(0,a >且1a ≠)的反函数。

2、对数函数的图象和性质对数函数log a y x =()1a >()01a <<性质1.对数函数log a y x =的图像都在Y轴的右方. 性质2.对数函数log a y x =的图像都经过点(1,0)性质3.当1x >时,0y >; 当1x >时,0y <;当01x <<时,0y <. 当01x <<时,0y >. 性质4.对数函数在()0,+∞上是增函数. 对数函数在()0,+∞上是减函数.例1:求下列函数的定义域:()21log a y x =;(2)2log (4)a y x =-;(3)log 4a xy x=-例2:利用对数函数的性质,比较下列各题中两个值的大小: (1)3log 5和3log 7; (2)0.5log 3和0.5log π; (3)1log 2a 和1log 3a ,其中0,1a a >≠综合练习1、下列各式中正确的是( ) A. 100= B. 74471a a=-C.11-1-=)( D. 5511aa =-2、下列等式中能够成立的是( ) A.3339= B. 5515)(b a ba⋅=C.32322)(y x y x +=+ D.3623)3(-=-3、设0≠b ,化简式子61531222133)()()(ab b a b a ⋅⋅--的结果是( ) A.1-ab B. a C. 1-a D.1)(-ab4、在式子23)32(-+x 中,x 的取值X 围是( )A. R x ∈B. 32-≠x C. 32->x D. 32-≥x 5、幂函数31x y =必经过点( )A. )2,2(B. )1,1(和)0,0(C. )21,21( D.)3,1( 6、幂函数3x y =的奇偶性为( )A. 奇函数B. 偶函数C. 非奇非偶函数D. 减函数 7、下列函数中,为指数函数的是( )A. ()xy 1-= B. x y 2-= C. x y π= D. )10(1≠>=+a a a y x 且8、计算[]212)4(--的结果是9、=⋅⋅842422 ,=32)833(10、比较下列各题中两个实数的大小(1)4-55151⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-与 (2)5.3-522与-课后练习一、选择题1、函数y =( )A.3{1}2x x x ≤->或B.3{1}2x x x ≤-≠且C.3{1}2x x x ≤-≥或 D.{1}x x ≤- 2、定义在R 上的偶函数()f x ,在(0,)+∞上是增函数,则 ( )A .(3)(4)()f f f π<-<-B .()(4)(3)f f f π-<-<C .(3)()(4)f f f π<-<-D .(4)()(3)f f f π-<-<3、式子1241()162--的值为 ( )A .-2B .2C .4D .-44、式子2(lg5)lg 2lg50+•的值为 ( )A . 6B .4C .3D .1 5、已知3412)(++=x x x f (x ∈R,x ≠43-),则)2(1--f的值为 ( )A.107-B.53-C.53D.1076、已知()log a f x x =的图象过点(5,3),则a = ( )A .5B .3C .35 D .357、若14()162x<<,则的取值X 围是 ( )A .24x <<B .42x -<<-C .42x -<<D .24x -<< 8、对于10<<a ,给出下列四个不等式: ①)11(log )1(log a a a a +<+②)11(log )1(log aa a a +>+ ③aaa a111++<④aaaa111++>其中成立的是 ( ) A.①与③B.①与④C.②与③D.②与④ 9、已知20.3a =,2log 0.3b =,0.32c =,则下列正确的是 ( )A .a b c >>B . c a b >>C .c b a >>D .b c a >> 10、已知lg2=a ,lg3=b ,则15lg 12lg 等于( ) A .ba ba +++12B .ba ba +++12C .ba ba +-+12D .ba ba +-+1211、当1>a 时,函数11-+=x x a a y 是 ( ).A 奇函数 .B 偶函数 .C 既奇又偶函数 .D 非奇非偶函数12、3log 9log 28的值是( ) A .32 B .1 C .23 D .213、若a 2322,82ba b +=⨯=则( )A. 2B .4C .8D .1614、函数12log (21)y x =-的定义域为( )A .(21,+∞) B .[1,+∞)C .(21,1] D .(-∞,1)15、34873log 4log 8log 7log log 18m •••=,那么m =( )A .27B .18C .9D .92二、填空题16、二次函数2()21f x x x =+-,则()f x 的图像的对称轴是直线 17、函数0.(12>+=-a ay x 且)1≠a 的图像必经过点18、函数13-=x y 的反函数是 19、4102160xx-⨯+=的解集是20、[]222log log (log )1x =,则x = 三、解答题 21、计算 (1)1100.753270.064()160.018---++ (2)22223log (log 32log log 6)4-+22、解不等式与方程 (1)解不等式:222121()33x x x -+-> (2)解方程:222log (1)log log 6x x ++=23、已知函数()xf x a b =+的图象过点(1,3),其反函数1()fx -的图象过(2,0),求函数()f x 的解析式。

相关文档
最新文档