数值逼近_课后答案(第二版)_(蒋尔雄_赵风光_苏仰锋_着)_复旦大学出版社
数值计算方法习题答案(第二版)(绪论)

数值计算⽅法习题答案(第⼆版)(绪论)数值分析(p11页)4 试证:对任给初值x 0,0)a >的⽜顿迭代公式112(),0,1,2,......k a k k x x x k +=+= 恒成⽴下列关系式:2112(1)(,0,1,2,....(2)1,2,......k k k x k x x k x k +-=-=≥=证明:(1)(21122k k k k k k x a x x x x +-??-=+==? ??(2)取初值00>x ,显然有0>k x ,对任意0≥k ,a a x a x x a x x k k k k k ≥+-= +=+2121216 证明:若k x 有n 位有效数字,则n k x -?≤-110218,⽽()k k k k k x x x x x 288821821-=-???? ??+=-+ nn k k x x 2122110215.22104185.28--+?=??<-∴>≥ 1k x +∴必有2n 位有效数字。
8 解:此题的相对误差限通常有两种解法.①根据本章中所给出的定理:(设x 的近似数*x 可表⽰为m n a a a x 10......021*?±=,如果*x 具有l 位有效数字,则其相对误差限为()11 **1021--?≤-l a x x x ,其中1a 为*x 中第⼀个⾮零数)则7.21=x ,有两位有效数字,相对误差限为025.010221111=??≤--x x e 71.22=x ,有两位有效数字,相对误差限为025.010221122=??≤--x x e 3 2.718x =,有两位有效数字,其相对误差限为:00025.010221333=??≤--x e x ②第⼆种⽅法直接根据相对误差限的定义式求解对于7.21=x ,0183.01<-e x∴其相对误差限为00678.07.20183.011≈<-x e x 同理对于71.22=x ,有003063.071.20083.022≈<-x e x 对于718.23=x ,有00012.0718.20003.033≈<-x e x备注:(1)两种⽅法均可得出相对误差限,但第⼀种是对于所有具有n 位有效数字的近似数都成⽴的正确结论,故他对误差限的估计偏⼤,但计算略简单些;⽽第⼆种⽅法给出较好的误差限估计,但计算稍复杂。
大学物理简明教程第二版课后习题答案赵进芳

大学物理简明教程第二版课后习题答案赵进芳(共74页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--大学物理 简明教程 习题 解答 答案习题一1-1 |r ∆|与r ∆有无不同t d d r 和t d d r 有无不同 t d d v 和t d d v有无不同其不同在哪里试举例说明.解:(1)r ∆是位移的模,∆r 是位矢的模的增量,即r ∆12r r -=,12r r r -=∆;(2)t d d r 是速度的模,即t d d r ==v t s d d .t rd d 只是速度在径向上的分量.∵有r r ˆr =(式中r ˆ叫做单位矢),则t ˆr ˆt r t d d d d d d r rr += 式中t rd d 就是速度径向上的分量,∴t r t d d d d 与r 不同如题1-1图所示. 题1-1图(3)t d d v 表示加速度的模,即t v a d d=,t v d d 是加速度a 在切向上的分量. ∵有ττ (v =v 表轨道节线方向单位矢),所以 t v t v t v d d d d d d ττ +=式中dt dv就是加速度的切向分量.(t tr d ˆd d ˆd τ 与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r =22y x +,然后根据v =t rd d ,及a =22d d t r 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v =22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x 及a =222222d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛t y t x你认为两种方法哪一种正确为什么两者差别何在解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r+=,jt y i t x t r a jt y i t x t r v222222d d d d d d d d d d d d +==+==∴故它们的模即为222222222222d d d d d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=+=t y t x a a a t y t x v v v y x yx而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作22d d d d t r a t r v ==其二,可能是将22d d d d t r t r 与误作速度与加速度的模。
测试技术(第二版)课后复习题答案_

1- 1府轉质个职躺切齢肆帥静!耶个职臨号!饷腮i 普各狀啊酿?解:(1) 瞬变信号-指数衰减振荡信号,其频谱具有连续性和衰减性。
(2) 准周期信号,因为各简谐成分的频率比为无理数,其频谱仍具有离散 性。
(3) 周期信号,因为各简谐成分的频率比为有理数,其频谱具有离散性、 谐波性和收敛性。
解:x (t )=sin2 f °t 的有效值(均方根值):1- 3用鯉帧躺三騒殊开捅姉朋开丸耦茫械価1・川般认胖錠乩解:周期三角波的时域数学描述如下:1-2求信号工仁)7“ 2町山的有效值(均方根值)^ =xrmsI — To x 2 (t)dt'■■.'T o 0():° sin 2 2 f o t dt1------ sin 4 f o t 4 f 0T)T o1■;' 2To(ToT o2 x(t)0 tT 0 2T o x(t nT o )(1)傅里叶级数的三角函数展开:b n 1 T o /2 T oT o / 2 T o /2T o T o /2 4 T o /2 T o4 2 n2 5 2 T o /2(1 T o /2a。
an 2n2x(t)dt2 T o/2T 00 (1—t)dt T o x(t)cos n o t dt 2t)cos n o t dt T on 1,3,5, T o则 x(t)sin n x(t)sin n o t dt n 2,4,6,,式中由于x(t)是偶函数,sinn o t 是奇函数, o t 也是奇函数,而奇函数在上下限对称区间上的积分等于 o 。
故b n 0。
因此,其三角函数展开式如下: x(t)12 cos nn 1n0t41 匕 2sin(n ot n 1 n2)(n=1,3, 5,…)其频谱如下图所示:A())1 2l()J4 22 '41 2 3 49 24 25 213 0 5 03 0 5 0(2)复指数展开式复指数与三角函数展开式之间的关系如下:故有I nC N =-b n /21 A 1 A n = a n2 2 arctg ( “) a n1 21 V a ! b :4 I m C nR e C nC 0 IA onarctg3oI m C nR e C n1 2 A 1arctg (电)a nR e C N =31/22. 2 n 2 sin 2 22 2 2n 0n 1,3,5, n 2,4,6,a o C n-5 0-3 0 - 0 0------------------------ ko 3 o 5 o实频谱 j i R e C n1 2 222 9 225 22 25 2-5 0-3 o - o 0虚频谱 o 3 o 5 o双边幅频谱 f |C n2 25 22 9 2 225 2-5 o -3 o - o o双边相频谱1-4求三角形窗函数{图J22)的频谱[井作频谱Kkt用傅里叶变换求频谱。
正交多项式的性质

正交多项式的性质(李锋,1080209030)摘要:本文主要阐述了由基},,,,,1{2nx x x 按G-S 正交化方法得到的正交多项式的一些有用性质及其证明过程,包括正交性,递推关系,根的分布规律等。
正如在最佳平方逼近的讨论中看到的那样,正交多项式能够使得由其生成的Gram 矩阵的形式极其简单,为非奇异对角矩阵,从而大大降低了求解最佳平方逼近多项式的系数的计算,也避免了计算病态的矩阵方程。
同时在数值积分方面,它也有着非常重要的应用。
因而,有必要分析正交多项式有用的性质。
在区间],[b a 上,给定权函数)(x ρ,可以由线性无关的一组基},,,,,1{2 nx x x ,利用施密特正交化方法构造出正交多项式族{∞0)}(x n ϕ,由)(x n ϕ生成的线性空间记为Φ。
对于],[)(b a C x f ∈,根据次数k 的具体要求,总可以在Φ在找到最佳平方逼近多项式)(*x k ϕ。
)(x n ϕ的具体形式为:2,1,)(),(),()(;1)(100=-==∑-=n x x x x x n k k k k k n nn ϕϕϕϕϕϕ这样构造的正交多项式)(x n ϕ具有以下一些有用的性质: 1.)(x n ϕ为最高次数项系数为1的n 次多项式;2. 任一不高于n 次的多项式都可以表示成∑=nk kkx 0)(ϕα;3. 当m n ≠时,0),(=m n ϕϕ;且)(x n ϕ与所有次数小于n 的多项式)(1x p n -正交,即0)()()(1=-⎰dx x p x x n nbaϕρ,其中)(x ρ为权函数;4. 存在递推关系: ,2,1,0),()()()(11=--=-+n x x x x n n n n n ϕβϕαϕ,其中:,2,1,),(),(,)()(),(,,1,0,),(),(0)(,1)(11210=======---⎰n dx x x x x n x x x n n n n n b a n n n n n n n n ϕϕϕϕβρϕϕϕϕϕϕϕαϕϕ这里推论:(1)两个相邻正交多项式2+n ϕ和1+n ϕ无公共根; (2)设0x 为正交多项式1+n ϕ的一个根,则)(02x n +ϕ和)(0x n ϕ异号;5.n 次正交多项式)(x n ϕ有n 个互异实零点,并且都包含在),(b a 中;6. 假设b x x x a n <<<<< 21是正交多项式)(x n ϕ的n 个根,那么在每个区),,(1x a ),(,),,(21b x x x n 内都有)(1x n +ϕ的一个零点。
习题10(答案)《数值分析》(第二版)第10章_习题参考答案

习题参考答案习题一1.(1) 0.05ε=,0.0185r ε=,有2位有效数字 (2) 0.0005ε=,0.000184r ε=,有4位有效数字 (3) 0.000005ε=,0.000184r ε=,有4位有效数字 (4) 0.0000005ε=,0.000184r ε=,有4位有效数字 2.0.0005ε=,0.00016r ε≈;有4位有效数字 3.|d | 1.210.005 3.650.0050.0050.02930.03a ≤⨯+⨯+≈≤4.*1x 有5位有效数字,*2x 有2位有效数字,*3x 有4位有效数字,*4x 有5位有效数字5.(1) ***124()x x x ε++31.0510−=⨯ (2) ***123()x x x ε=0.21479 (3) *2*4()x x ε50.8865410−=⨯6.略。
7.最小刻度x 满足0.002cm x ≤ 8.*3()10000 mm V επ=,*()0.02r V ε= 9.设正方形边长为a ,*2()0.510a ε−≤⨯10.*1()1%0.00333r R ε=⨯≈11.1||||14x =,2||||9.89949x ≈,||||9x ∞= 12.1|||||1.25||0.02|| 5.15||0| 6.42x =++−+=22221/22||||[(1.25)(0.02)( 5.15)(0)] 5.2996x =++−+=||||| 5.15| 5.15x ∞=−=13.||||10A ∞=,1||||9A =,2||||82.05125A ≈14.||||16A ∞=,1||||16A =,2||||12A =15.(1) ||()||1f x ∞=,1||()||8f x =,2||()||f x π=(2) ||()||23f x ∞=,1||()||17f x =,2||()||10.6427f x ≈ 16.略。
四川大学数学学院专业课程介绍范文

in,Functional Analysis,McGraw_Hill Book Company,1973:空间,Banach空间,Hilbert空间(包括有界,紧集,列紧集,完全有界集等)。
Ban 性算子(包括算子范数,有界性,连续性,Hahn-Banach定理,闭图象定理,逆算子定算子Riesz-Schauder理论等)Hilbert空间上的有界线性算子(射影定理、Riesz表示课程名:概率统计名Probability Statistics学分:4:数学分析、线性代数:考试:数学学院各专业概率论基础》(第二版)李贤平高等教育出版社 19971.《概率论》(第一册概率论基础)复旦大学高等教育出版社,1979。
2.《概率论引论》汪仁官北京大学出版社 19943.《概率论及数理统计》(第二版)(上)高等教育出版社 1988:率,条件概率与统计独立性,随机变量与分布函数,数字特征与特征函数,极限定理。
课程名:高等代数-1名:Advanced Algebra-12 学分:5:高中数学:考试:数学数院各专业Linear Algebra》彭国华、李德琅,高等教育出版社,20061。
《高等代数》北京大学数学系几何代数教研空编高等教育出版社2.《高等代数》张禾瑞、郝锅新高等教育出版社3.《Linear Slgebra》B。
Jacob W.H.Freeman Company 1990:高等代数以研究线性方程组为出发点来讨论求解和解的结构和分类等问题,进而研究矩空间,线性映射以及二次型的基本理论。
本课程分两个学期讲授。
高等代数-1的主要和线性映射,线性变换,欧氏空间,线性和双线性型。
课程名:高等代数-2名:Advanced Algebra-22 学分:5:高等代数-1:考试:数学学院各专业Linear Algebra》彭国华、李德琅,高等教育出版社,20061.《高等代数》北京大学数学系几何代数教研空编高等教育出版社2. L.W. Johnson, R.D. Riess J.T. Arnold, Introduction to Linear Algebr , Prentice-Hall Inc. China Machine Press, 2002Lay, Linear Algebra Its Applications (3rd Edition), Pearson Addison Wesley blishing House of Electronics Industry,2003:元多项式、行列式、线性方程组,矩阵代数,二次型,线性空间,线性变换,矩阵法式课程名:解析几何名:Analytic Geometry学分:5:高中数学:考试:数学学院各专业解析几何》廖华奎、王宝富编,科学出版社1.《解析几何》丘维声北京大学出版社。
《数字信号处理》第二版课后答案

————第一章———— 时域离散信号与系统理论分析基础本章1.1节“学习要点”和1.2节“例题”部分的内容对应教材第一、二章内容。
为了便于归纳总结,我们将《数字信号处理(第二版)》教材中第一章和第二章的内容合并在一起叙述,这样使读者对时域离散线性时不变系统的描述与分析方法建立一个完整的概念,以便在分析和解决问题时,能全面考虑各种有效的途径,选择最好的解决方案。
1.1 学 习 要 点1.1.1 时域离散信号——序列时域离散信号(以下简称序列)是时域离散系统处理的对象,研究时域离散系统离不开序列。
例如,在时域离散线性时不变系统的时域描述中,系统的单位脉冲响应()n h 就是系统对单位脉冲响应()n δ的响应输出序列。
掌握()n δ的时域和频域特征,对分析讨论系统的时域特性描述函数()n h 和频域特性描述函数()ωj e H 和()z H 是必不可少的。
1. 序列的概念在数字信号处理中,一般用()n x 表示时域离散信号(序列)。
()n x 可看作对模拟信号()t x a 的采样,即()()nT x n x a =,也可以看作一组有序的数据集合。
要点 在数字信号处理中,序列()n x 是一个离散函数,n 为整数,如图1.1所示。
当≠n 整数时,()n x 无定义,但不能理解为零。
当()()nT x n x a =时,这一点容易理解。
当=n 整数时,()()nT x n x a =,为()t x a 在nT t =时刻的采样值,非整数T 时刻未采样,而并非为零。
在学习连续信号的采样与恢复时会看到,()n x 经过低通滤波器后,相邻的()T n nT 1~+之间的()t x a 的值就得到恢复。
例如,()n x 为一序列,取()()2n x n y =,n 为整数是不正确的,因为当=n 奇数时,()n y 无定义(无确切的值)。
2. 常用序列常用序列有六种:①单位脉冲序列()n δ,②矩形序列()n R N ,③指数序列()n u a n,④正弦序列()n ωcos 、()n ωsin ,⑤复指数序列nj eω,⑥周期序列。
数值逼近上机练习答案

实验一1. 分别用循环型Arnoldi 算法和循环型GMRES 算法求解线性方程组Ax b =。
1000110011101111A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦ 1111b ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦取2m =,初始值(0)[0,0,0,0]x T =,迭代终止条件为810ε-=。
要求输出数值近似解和迭代步数。
M-文件Arnoldi 算法function X=Arnoldi(X0,m,A,b,ep)nk=0;while (max(abs(A*X0-b))>=ep)r0=b-A*X0;n=length(b);v=zeros(n,m+1);h=zeros(m,m);p=sqrt(sum(r0.^2));v(:,1)=r0./p;for k=2:m;tmp=0;for i=1:k-1h(i,k-1)=(A*v(:,k-1))'*v(:,i);tmp=tmp+h(i,k-1)*v(:,i);endvk=A*v(:,k-1)-tmp;h(k,k-1)=sqrt(sum(vk.^2));v(:,k)=vk/h(k,k-1);endtmp=0;for i=1:mh(i,m)=(A*v(:,m))'*v(:,i);tmp=tmp+h(i,m)*v(:,i);endvm1=A*v(:,m)-tmp;hm1=sqrt(sum(vm1.^2));v(:,m+1)=vm1/hm1;e1=zeros(m,1);e1(1)=1;y=inv(h)*p*e1;z=v(:,1:m)*y;X0=X0+z;nk=nk+1;endnkX=X0;Command windows:A=[1 0 0 0;1 1 0 0;1 1 1 0;1 1 1 1]b=[1 1 1 1]'m=2x0=[0 0 0 0]'ep=1.0e-8结果:Arnoldi(X0,m,A,b,ep)nk =23ans =1.00000.0000-0.0000-0.0000GMRES算法function X=GMRES(X0,m,A,b,ep)nk=0;while(max(abs(A*X0-b))>=ep)r0=b-A*X0;n=length(b);v=zeros(n,m+1);h=zeros(m,m);p=sqrt(sum(r0.^2));v(:,1)=r0./p;for k=2:m;tmp=0;for i=1:k-1h(i,k-1)=(A*v(:,k-1))'*v(:,i); tmp=tmp+h(i,k-1)*v(:,i);endvk=A*v(:,k-1)-tmp;h(k,k-1)=sqrt(sum(vk.^2));v(:,k)=vk/h(k,k-1);endtmp=0;for i=1:mh(i,m)=(A*v(:,m))'*v(:,i);tmp=tmp+h(i,m)*v(:,i);endvm1=A*v(:,m)-tmp;hm1=sqrt(sum(vm1.^2));v(:,m+1)=vm1/hm1;H=[h;[zeros(1,m-1),hm1]];e1=zeros(m+1,1);e1(1)=1;y=pinv(H)*p*e1;z=v(:,1:m)*y;X0=X0+z;nk=nk+1;endnkX=X0;Command windowsA=[1 0 0 0;1 1 0 0;1 1 1 0;1 1 1 1]b=[1 1 1 1]'m=2x0=[0 0 0 0]'ep=1.0e-8结果:GMRES(X0,m,A,b,ep)nk =12ans =1.0000 0.0000 -0.0000 -0.00001. 用追赶法、线性插值法和双参数法求解n 阶三对角方程组Ax f =。