初一数学上册期末试卷及答案
2024北京石景山初一(上)期末数学试卷及答案

2024北京石景山初一(上)期末数 学学校 姓名 准考证号一、选择题(本题共16分,每小题2分)下面各题均有四个选项,符合题意的选项只有..一个. 1.12−的相反数是 (A )12(B )12−(C )2 (D )2−2.以河岸边步行道的平面为基准,河面高 1.8m −,河岸上地面高5m ,则地面比河面高(A )3.2m(B ) 3.2m −(C )6.8m(D ) 6.8m −3.依据第三方平台统计数据,2022年12月至2023年5月,石景山区共有350人享受养老助餐服务(其10 534用科学记数法可表示为 (A )310.53410⨯(B )41.053410⨯(C )31.053410⨯(D )50.1053410⨯4. 如图,从左面看图中四个几何体,得到的图形是四边形的几何体的个数是(A )1(B )2(C )3(D )45. 将三角尺与直尺按如图所示摆放,若α∠的度数比β∠的度数的三倍多10︒,则α∠的度数是(A )20︒ (B )40︒ (C )50︒ (D )70︒6. 下列运算正确的是(A )325+=a b ab (B )2222−=c c(C )2()2−−=−+a b a b(D )22243−=−x y yx x y7.已知:如图O 是直线AB 上一点,OD 和OE 分别平分AOC ∠和BOC ∠,50BOC ∠=︒, 则AOD ∠的度数是(A )50︒ (B )60︒ (C )65︒(D )70︒8. 有理数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是(A )0ab >(B )<−a b (C )20+>a(D )20−>a b二、填空题(本题共16分,每小题2分)9.对单项式“0.5a ”可以解释为:一块橡皮0.5元,买了a 块,共消费0.5a 元.请你再对 “0.5a ”赋予一个实际意义________________________________________________.10. 如图是一数值转换机的示意图,若输入1=−x ,则输出的结果是 .11. 若233m x y −与253m x y −−是同类项,则m 的值为 .12. 若2=x 是关于x 的一元一次方程25−=x m 的解,则m 的值为 .13.A 村和B 村送水,修在 (请在,,D E F 中选择)处可使所用第13题图 第14题图14.如图,正方形广场边长为a 米,广场的四个角都设计了一块半径为r 米的四分之一圆形花坛,请用代数式表示图中广场空地面积 平方米.(用含a 和r的字母表示)15.规定一种新运算:1⊕=+−+a b a b ab ,例如:23232310⊕=+−⨯+=,(1)请计算:2(1)⊕−___________.(2)若32x −⊕=,则x 的值为 .16.a 是不为1的有理数,我们把11a −称为a 的差倒数,如2的差倒数是1112=−−,-1的差倒数是111(1)2=−− .已知113α=−,2α是1α的差倒数,3α是2α的差倒数,4α是3a 的差倒数,……,以此类推,则2023a =___________.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程. 17.计算:312−+−.18.计算:11124()834−⨯−+19.计算:3122(7)2−+⨯−÷. 20.本学期学习了一元一次方程的解法,下面是小亮同学的解题过程: (1)第②步的依据是_________________________________;(2)第_____(填序号)步开始出现错误,请写出这一步正确的式子__________. 21.解方程:52318x x +=−. 22.解方程:211123x x +−−=. 23.先化简,再求值:22(28)(14)x x x −−−−,其中2x =−.24.如图,已知直线l 和直线外两点,A B ,按下列要求作图并回答问题: (1)画射线AB ,交直线l 于点C ;(2)画直线AD l ⊥,垂足为D ;(3)在直线AD 上画出点E ,使DE AD =; (4)连接CE ; (5)通过画图、测量:点A 到直线l 的距离d ≈ cm (精确到0.1);图中有相等的线段(除DE AD =以外)或相等的角,写出你的发现: . 25.列方程解应用题:lA某公司计划为员工购买一批运动服,已知A 款运动服每套180元,B 款运动服每套210元,公司购买了这两种运动服共计50套,合计花费9600元,求公司购买两种款式运动服各多少套? 26.已知:线段=10AB ,C 为线段AB 上的点,点D 是BC 的中点.(1)如图,若=4AC ,求CD 的长.根据题意,补全解题过程:∵10,4AB AC CB ===,AB − , ∴CB = . ∵点D 是BC 的中点,∴CD = =CB .(理由: ) (2)若=3AC CD ,求AC 的长.27. 已知:OA OB ⊥,射线OC 是平面上绕点O 旋转的一条动射线,OD 平分BOC ∠. (1)如图,若40BOC =︒∠,求AOD ∠.(2)若=(0180)BOC αα︒<<︒∠,直接写出AOD ∠的度数.(用含α的式子表示)28. 对于点M ,N ,给出如下定义:在直线MN 上,若存在点P ,使得MP =kNP (k >0),则称点P 是“点M 到点N 的k 倍分点”.例如:如图,点Q 1,Q 2,Q 3在同一条直线上,Q 1Q 2=3,Q 2Q 3=6,则点Q 1是点Q 2到点Q 3的13倍分点,点Q 1是点Q 3到点Q 2的3倍分点.已知:在数轴上,点A ,B ,C 分别表示﹣4,﹣2,2.(1)点B 是点A 到点C 的 倍分点,点C 是点B 到点A 的 倍分点; (2)点B 到点C 的3倍分点表示的数是 ;(3)点D 表示的数是x ,线段BC 上存在点A 到点D 的4倍分点,写出x 的取值范围.参考答案阅卷须知:1.为便于阅卷,本试卷答案中有关解答题的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可.2.若考生的解法与给出的解法不同,正确者可参照评分参考相应给分. 3.评分参考中所注分数,表示考生正确做到此步应得的累加分数. 一、选择题(本题共16分,每小题2分)二、填空题(本题共16分,每小题2分)9.答案不唯一,正确即可 10.3 11.212.1− 13.E ;两点之间线段最短 14. 22()a r π−15.(1)4;(2)1 16.13−三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17.解:原式312=−+ ………………………… 2分 9=. ………………………… 5分 18.解:原式386=−+− ………………………… 3分 1=−. ………………………… 5分19.解:原式82(7)2=−+⨯−⨯ ………………………… 2分 828=−− ………………………… 4分 36=−. ………………………… 5分 20.(1)等式基本性质2; ………………………… 2分 (2)③; ………………………… 3分 609502015x x −−−=. ………………………… 5分 21.解:移项,得53182x x −=−−. ………………………… 2分 合并同类项,得 220x =−. ………………………… 4分 系数化为1,得10x =−. ………………………… 5分 ∴10x =−是原方程的解.22.解:去分母,得 3(21)2(1)6x x +−−=. ………………………… 2分 去括号,得 63226x x +−+=. ………………………… 3分 移项,合并同类项,得 41x =. ………………………… 4分系数化为1,得14x =. ………………………… 5分 ∴14x =是原方程的解. 23.解:原式2241614x x x =−−−+2217x =−. …………………………4分 当2x =−时,原式22(2)17=⨯−−.9=−. …………………………6分24.解:(1)(2)(3)(4)画图并标出字母如右图所示; ……………… 3分(5)d ≈ cm (精确到0.1);(以答题卡上实际距离为准)……… 4分 CA CE =,ACD ECD ∠=∠,CAD CED ∠=∠. ……………… 6分25.解:设公司购买A 款式运动服x 套,则购买B 款式运动服(50x −)套. …… 1分 根据题意可得,180210(50)9600x x +−=. ………………………… 3分 解得:30x =. 则5020x −=. ………………………… 5分答:公司购买A 款式运动服30套,购买B 款式运动服20套. ……………… 6分 26.解:(1)补全解题过程如下:∵10,4AB AC CB ===,AB − AC ,……………………… 1分 ∴CB = 6 . ……………………… 2分 ∵点D 是BC 的中点, ∴CD =12=CB 3 .(理由:线段中点的定义).…………4分 (2)∵点D 是BC 的中点,∴CD BD =(线段中点的定义). ∵=3AC CD ,∴设CD BD x ==,=3AC x . ……………………… 5分∴10AB AC CD BD =++=. 即:310x x x ++=. 解得,2x =.∴=6AC . …………………………6分27. 解:(1)∵OA OB ⊥,∴90AOB ∠=︒(垂直定义). …………………………2分∵OD 平分BOC ∠,∴12BOD BOC ∠=∠(角平分线定义). …………………………4分 ∵40BOC ∠=︒,∴20BOD ∠=︒.∵AOD AOB BOD ∠=∠−∠,∴70AOD ∠=︒. …………………………5分(2)9090+22αα︒−︒或. …………………………7分28. 解:(1)12,23; …………………………2分 (2)1或4; …………………………4分 (3)5722x −≤≤. …………………………7分。
2024年最新人教版初一数学(上册)期末试卷及答案(各版本)

2024年最新人教版初一数学(上册)期末试卷及答案(各版本)一、选择题:5道(每题1分,共5分)1. 下列数中,最小的数是()A. 1B. 0C. 1D. 22. 已知a > b,则下列不等式成立的是()A. a b > 0B. a + b < 0C. a b < 0D. a + b > 03. 下列哪一个数是有理数()A. √2B. √3C. √5D. √94. 下列哪一个图形是平行四边形()A. 矩形B. 正方形C. 梯形D. 平行四边形5. 下列哪一个数是无理数()A. 0.333B. 0.666C. 0.121212D. 0.1010010001二、判断题5道(每题1分,共5分)1. 任何两个有理数的和都是有理数。
()2. 任何两个无理数的积都是无理数。
()3. 任何两个实数的和都是实数。
()4. 任何两个实数的积都是实数。
()5. 任何两个实数的差都是实数。
()三、填空题5道(每题1分,共5分)1. 两个数的和为10,其中一个数为x,另一个数为______。
2. 两个数的积为15,其中一个数为x,另一个数为______。
3. 两个数的差为8,其中一个数为x,另一个数为______。
4. 两个数的商为3,其中一个数为x,另一个数为______。
5. 两个数的和为6,其中一个数为x,另一个数为______。
四、简答题5道(每题2分,共10分)1. 请简要解释有理数的概念。
2. 请简要解释无理数的概念。
3. 请简要解释实数的概念。
4. 请简要解释平行四边形的性质。
5. 请简要解释矩形的性质。
五、应用题:5道(每题2分,共10分)1. 已知一个数为x,它的相反数为3,求x的值。
2. 已知一个数为x,它的倒数为2,求x的值。
3. 已知一个数为x,它的平方为9,求x的值。
4. 已知一个数为x,它的立方为27,求x的值。
5. 已知一个数为x,它的平方根为3,求x的值。
六、分析题:2道(每题5分,共10分)1. 请分析有理数和无理数的区别。
初中七年级数学上册期末考试题及答案【可打印】

初中七年级数学上册期末考试题及答案【可打印】班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1.若单项式am﹣1b2与的和仍是单项式, 则nm的值是()A. 3B. 6C. 8D. 92.如图, 点D, E分别在线段AB, AC上, CD与BE相交于O点, 已知AB=AC, 现添加以下的哪个条件仍不能判定△ABE≌△ACD()A. ∠B=∠CB. AD=AEC. BD=CED. BE=CD3. ①如图1,AB∥CD,则∠A +∠E +∠C=180°;②如图2,AB∥CD,则∠E =∠A +∠C;③如图3,AB∥CD,则∠A +∠E-∠1=180°;④如图4,AB∥CD,则∠A=∠C +∠P.以上结论正确的个数是()A. 、1个B. 2个C. 3个D. 4个4.如图, 若AB, CD相交于点O, ∠AOE=90°, 则下列结论不正确的是()A. ∠EOC与∠BOC互为余角B. ∠EOC与∠AOD互为余角C. ∠AOE与∠EOC互为补角D. ∠AOE与∠EOB互为补角5.如图所示, 已知∠AOB=64°, OA1平分∠AOB, OA2平分∠AOA1, OA3平分∠AOA2, OA4平分∠AOA3, 则∠AOA4的大小为()A. 1°B. 2°C. 4°D. 8°6.有理数m, n在数轴上分别对应的点为M, N, 则下列式子结果为负数的个数是()①;②;③;④;⑤.A. 2个B. 3个C. 4个D. 5个7.下列图形既是轴对称图形, 又是中心对称图形的是()A. B.C. D.8.如图, 已知在四边形中, , 平分, , , , 则四边形的面积是()A. 24B. 30C. 36D. 429.已知实数a、b满足a+b=2, ab= , 则a﹣b=()A. 1B. ﹣C. ±1D. ±10.将一副直角三角板按如图所示的位置摆放, 使得它们的直角边互相垂直, 则 的度数是( )A. B. C. D.二、填空题(本大题共6小题, 每小题3分, 共18分)1. 若a 、b 为实数, 且b = +4, 则a+b =________.2.如图, AB ∥CD, FE ⊥DB, 垂足为E, ∠1=50°, 则∠2的度数是_____.3. 若 , , , , 则 ________ .4.如果一个数的平方根是a+6和2a ﹣15, 则这个数为________.5. 分解因式: 4ax2-ay2=_____________.6. 已知一组从小到大排列的数据:2, 5, x, y, 2x, 11的平均数与中位数都是7, 则这组数据的众数是________.三、解答题(本大题共6小题, 共72分)1. 解方程:(1)()()371323x x x --=-+ (2)21252x x x +--=-2. 已知关于x 的不等式组 恰有两个整数解,求实数a 的取值范围.3. 如图, 已知点A(-2, 3), B(4, 3), C(-1, -3).(1)求点C到x轴的距离;(2)求三角形ABC的面积;(3)点P在y轴上, 当三角形ABP的面积为6时, 请直接写出点P的坐标.4. 尺规作图: 校园有两条路OA.OB, 在交叉路口附近有两块宣传牌C.D, 学校准备在这里安装一盏路灯, 要求灯柱的位置P离两块宣传牌一样远, 并且到两条路的距离也一样远, 请你帮助画出灯柱的位置P. (不写画图过程, 保留作图痕迹)5. 为了解学生对“垃圾分类”知识的了解程度, 某学校对本校学生进行抽样调查, 并绘制统计图, 其中统计图中没有标注相应人数的百分比. 请根据统计图回答下列问题:(1)求“非常了解”的人数的百分比.(2)已知该校共有1200名学生, 请估计对“垃圾分类”知识达到“非常了解”和“比较了解”程度的学生共有多少人?6. 某网店销售甲、乙两种羽毛球, 已知甲种羽毛球每筒的售价比乙种羽毛球多15元, 王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球, 共花费255元.(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?(2)根据消费者需求, 该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒, 且甲种羽毛球的数量大于乙种羽毛球数量的, 已知甲种羽毛球每筒的进价为50元, 乙种羽毛球每筒的进价为40元.①若设购进甲种羽毛球m筒, 则该网店有哪几种进货方案?②若所购进羽毛球均可全部售出, 请求出网店所获利润W(元)与甲种羽毛球进货量m(筒)之间的函数关系式, 并说明当m为何值时所获利润最大?最大利润是多少?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1.C2.D3.C4.C5.C6.B7、D8、B9、C10、C二、填空题(本大题共6小题, 每小题3分, 共18分)1.5或32.40°3.<4.815.a(2x+y)(2x-y)6.5三、解答题(本大题共6小题, 共72分)1.(1)x=5;(2)x=-72.-4≤a<-3.3、(1)3;(2)18;(3)(0, 5)或(0, 1).4.略.5.(1)20%;(2)6006、(1)该网店甲种羽毛球每筒的售价为60元, 乙种羽毛球每筒的售价为45元;(2)①进货方案有3种, 具体见解析;②当m=78时, 所获利润最大, 最大利润为1390元.。
七年级数学上册期末考试卷及答案(经典)

七年级数学上册期末考试试卷一•选择题(每题3分,共36分)已知4个数中:(-1)200\ |-2|, 一(一 1・5),―兄 其中正数的个数有( )・A. 1B. 2 C ・ 3D ・ 49. 甲、乙两班共有98人,若从甲班调3人到乙班,那么两班人数正好相等.设甲班原有人数是X 人,可列出方程().A ・ 98+x=x —3B ・ 98—x=x —3C ・(98一x ) +3=xD ・(98-x ) +3=x-310. 以下3个说法中:①在同一直线上的4点A 、B 、C 、D 只能表示5条不同的线段:② 经过两点有一条直线,并且只有一条直线;③同一个锐角的补角一左大于它的余角.说法都正确的结论是()・A.②③B.③C.①②D.①11.用一副三角板 (两块)画角,不可能画出的角的度数是()・A. 135° B ・ 75° C ・ 55° D ・ 15°12.如图3,已知B 是线段AC 上的一点,M 是线段的中点,N 是线段AC 的中点,P1. 2. 某种药品的说明书上标明保存温度是(20±2)°C,则该药品在()范国内保存才合适.3. A. 18°C 〜20°C B ・ 20C 〜22°C 多项式 3A 2—fy —1 是(A ・三次四项式 B.三次三项式C. 18°C 〜21°C D ・ 18°C 〜22°C ).C.四次四项式D ・四次三项式 4. 5. 6. 下而不是同类项的是( ). A ・一2与丄 B. 2加与加2 若兀=3是方程a-x=7的解,则“的值是(7 A. 4 B. 7 C ・ 10D.— r — 1 2 x* + 3 3 在解方程——二—=1时,去分母正确的是( 2 3 A. 3 (x-1) -2 (2+3x ) =1c. ^Icrb^crb D. -心与”).).B ・ 3(x-l)+2(2.v4-3)=lC ・ 3 (x-1) +2 (2+3x) =6D ・ 3 (x-1) -2 (2r+3) =6A. B. C. D.8.把图2绕虚线旋转一周形成一个几何体,与它相似的物体是(A.课桌B.灯泡C.篮球D.水桶).如7屯长方/♦从J_f 它所得(■)・图2图3二.填空题(每小题3分,共12分)13•请你写出一个解为x=2的一元一次方程 ____________________ ・14. 在3, — 4, 5, 一6这四个数中,任取两个数相乘,所得的积最大的是 ___________ . 15. 下图(1)表示1张餐桌和6张椅子(每个小半圆代表1张椅子),若按这种方式摆放20张餐桌需要的椅子张数是 ____________ ・三、解答与证明题(本题共72分)17•计算:(本题满分8分)2 3 1(1) —21 — t 3— — — —0. 25 (4 分)3 4 319•解下列方程:(本题满分8分)(1) 2x-3 = x+\ (4 分) (2)»号3 (4 分)20. (本题6分)如图所示,点C 、D 为线段AB 的三等分点,点E 为线段AC 的中点,若 A E CDB21. (本题7分)下面是红旗商场电脑产品的进货单,其中进价一栏被墨迹污染,读了进货li16. 计算:77。
人教版七年级上册数学期末考试试卷附答案

人教版七年级上册数学期末考试试题一、单选题1.2-的值等于()A.2B.12-C.12D.﹣22.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是()A.1枚B.2枚C.3枚D.任意枚3.已知x=y,则下列变形不一定成立的是()A.x+a=y+a B.x ya a=C.x﹣a=y﹣a D.ax=ay4.下列各组数中,互为相反数的是()A.-(-1)与1B.(-1)2与1C.|1|-与1D.-12与15.下列图形中,不是正方体的展开图的是()A.B.C.D.6.下列说法中正确的是()A.两点之间的所有连线中,线段最短B.射线就是直线C.两条射线组成的图形叫做角D.小于平角的角可分为锐角和钝角两类7.某品牌手机的进价为1200元,按原价的八折出售可获利14%,则该手机的原售价为()A.1800元B.1700元C.1710元D.1750元8.中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍”.乙回答说:“最好还是把你的羊给我一只,我们羊数就一样了”.若设甲有x 只羊,则下列方程正确的是()A.x+1=2(x﹣2)B.x+3=2(x﹣1)C.x+1=2(x﹣3)D.1 112xx+-=+9.某中学生军训,沿着与笔直的铁路并列的公路匀速前进,每小时走4500米,一列火车以每小时120千米的速度迎面开来,测得火车与队首学生相遇,到车尾与队末学生相遇共经过60秒,如果队伍长500米,那么火车长()A .1500米B .1575米C .2000米D .2075米10.如图,小明将一个正方形纸片剪去一个宽为4cm 的长条后,再从剩下的长方形纸片上剪去一个宽为5cm 的长条,如果两次剪下的长条面积正好相等,那么每一个长条的面积为()A .162cm B .202cm C .802cm D .1602cm 二、填空题11.数轴上距离原点2个单位长度的点表示的数是_____12.如果把6.48712保留三位有效数字可近似为_________.13.青藏高原是世界上海拔最高的高原,它的面积约为2500000平方千米,数据2500000用科学记数法表示为_______________.14.单项式2323x y -的系数是__________,次数是___________.15.若代数式53m a b 与22n a b -是同类项,那么m +n =______.16.小明每晚19:00都要看新闻联播,这时钟面上时针和分针的夹角的度数为_________度.17.已知|3m ﹣12|+212n ⎛⎫+ ⎪⎝⎭=0,则2m ﹣n=_____.18.关于x 的方程352x k -+=的解是1x =,则k =________.19.当x=1时,代数式31px qx ++的值为2012,则当x=-1时,代数式31px qx ++的值为_____.20.如图,∠AOC 和∠BOD 都是直角,如果∠DOC=36°,则∠AOB 是__________度三、解答题21.计算(1)(-3)-13+(-12)-|-43|.(2)2108(2)(4)(3)-+÷---⨯-(3)233136402924''''''+︒︒22.解方程(1)()()()228131x x x ---=-(2)225353x x x ---=-23.先化简,再求值222212[32()6]2x y x y ----+,其中1,2x y =-=-.24.一个角的余角比这个角的12少30°,请你计算出这个角的大小.25.如图M 是线段AC 中点,B 在线段AC 上,且AB=2cm ,BC=2AB ,求MC 和BM 长度.26.一艘船从甲码头到乙码头顺流而行,用了2h ;从乙码头返回甲码头逆流而行,用了2.5h .已知水流的速度是3km/h ,求船在静水中的平均速度.(要求列方程解答)27.某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍.乒乓球拍每副定价30元,乒乓球每盒定价5元.经洽谈后,甲店每买一副球拍赠送一盒乒乓球,乙店全部按定价的九折优惠.该班需球拍5副,乒乓球若干盒(不小于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)当购买15盒乒乓球时,请你去办这件事,你打算去哪家商店购买?为什么?28.如图,已知90AOB ∠=︒,OE 平分∠AOB ,60EOF ∠=︒,OF 平分∠BOC .求∠BOC 和∠AOC 的度数.参考答案1.A【详解】根据数轴上某个点与原点的距离叫做这个点表示的数的绝对值的定义,在数轴上,点﹣2到原点的距离是2,所以22-=,故选A .2.B【分析】结合题意,根据两点确定一条直线的性质分析,即可得到答案.【详解】在墙壁上固定一根横放的木条,则至少需要钉子的枚数是2,故选:B .【点睛】本题考查了直线的知识;解题的关键是熟练掌握两点确定一条直线的性质,从而完成求解.3.B【分析】答题时首先记住等式的基本性质,然后对每个选项进行分析判断.【详解】A.C.D的变形均符合等式的基本性质,B项a不能为0,不一定成立.故答案选B.【点睛】本题考查了等式的性质,解题的关键是熟练的掌握等式的性质.4.D【分析】利用相反数的定义,两个数之和为零来判断.【详解】解:A,-(-1)与1不是相反数,选项错误,不符合题意;B,(-1)2与1不是互为相反数,选项错误,不符合题意;C,|-1|与1不是相反数,选项错误,不符合题意;D,-12与1是相反数,选项正确,符合题意;故选D.【点睛】本题考查了相反数,解题的关键是掌握相应的定义即两个数之和为零,这两个数互为相反数.5.D【详解】A、B、C是正方体的展开图,D不是正方体的展开图.故选D.6.A【详解】试题分析:根据线段、射线和角的概念,对选项一一分析,选择正确答案.解:A、两点之间的所有连线中,线段最短,选项正确;B、射线是直线的一部分,选项错误;C、有公共端点的两条射线组成的图形叫做角,选项错误;D、小于平角的角可分为锐角、钝角,还应包含直角,选项错误.故选:A.考点:直线、射线、线段;角的概念.7.C【详解】设手机的原售价为x元,由题意得,0.8x-1200=1200×14%,解得:x=1710.即该手机的售价为1710元.故选:C .8.C【详解】试题解析:∵甲对乙说:“把你的羊给我1只,我的羊数就是你的羊数的两倍”.甲有x 只羊,∴乙有13122x x +++=只,∵乙回答说:“最好还是把你的羊给我1只,我们的羊数就一样了”,∴311,2x x ++=-即x+1=2(x−3).故选:C .9.B【详解】试题解析:设火车长x 千米.60秒160=小时,根据题意得:()1 4.51200.5.60x ⨯+=+解得:x=1.575.1.575千米=1575米.火车的长为1575米.故选B.10.C【分析】首先根据题意,设原来正方形纸的边长是xcm ,则第一次剪下的长条的长是xcm ,宽是4cm ,第二次剪下的长条的长是(x ﹣4)cm ,宽是5cm ;然后根据第一次剪下的长条的面积=第二次剪下的长条的面积,列出方程,求出x 的值是多少,即可求出每一个长条面积为多少.【详解】解:设原来正方形纸的边长是xcm ,则第一次剪下的长条的长是xcm ,宽是4cm ,第二次剪下的长条的长是(x ﹣4)cm ,宽是5cm ,则4x =5(x ﹣4),去括号,可得:4x =5x ﹣20,移项,可得:5x ﹣4x =20,解得x =204x =4×20=80(cm 2)所以每一个长条面积为80cm2.故选:C.【点睛】此题主要考查了一元一次方程的应用,要熟练掌握,首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答是解题的关键.11.-2或2【详解】试题分析:设数轴上与原点的距离等于2的点所表示的数是x,则|x|=2,进而可得出结论.解:数轴上与原点的距离等于2的点所表示的数是x,则|x|=2,解得x=±2.故答案为-2或2.考点:1.数轴;2.绝对值.12.6.49【分析】一个近似数的有效数字是从左边第一个不是0的数字起,后面所有的数字都是这个数的有效数字.近似数6.48712保留三位有效数字,精确到百分位.【详解】解:6.48712保留三位有效数字可近似为:6.49.故答案是:6.49.【点睛】本题考查了近似数和有效数字,从左边第一个不是0的数开始数起,到精确到的数位为止,所有的数字都叫做这个数的有效数字.最后一位所在的位置就是精确度.13.62.510⨯【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【详解】解:2500000=2.5×106.故答案为:2.5×106.【点睛】本题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.14.23-5【分析】根据单项式系数和次数的定义:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数解答即可.【详解】解:单项式2323x y-的系数是23-,次数是5,故答案为:23-,5.【点睛】本题考查单项式的知识,熟知单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数是解题的关键.15.7【分析】根据同类项的概念求解.【详解】解:∵代数式53m a b 与22n a b -是同类项,∴n=5,m=2,∴m+n=2+5=7.故答案为:7.【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.16.150【分析】利用钟表表盘的特征:钟表上12个数字,每相邻两个数字之间的夹角为30°解答即可.【详解】解:19:00,时针和分针中间相差5大格.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴19:00分针与时针的夹角是5×30°=150°.故答案为:150【点睛】本题考查的是钟面角的含义及计算,掌握“钟表上12个数字,每相邻两个数字之间的夹角为30°”是解本题的关键.17.10【详解】解:∵|3m ﹣12|+2(1)2n +=0,∴|3m ﹣12|=0,2(1)2n +=0,∴m=4,n=﹣2,∴2m ﹣n=8﹣(﹣2)=10.故答案为:10【点睛】本题考查了非负数的性质,几个非负数的和等于0,则每个数都等于0,初中范围内的非负数有:绝对值,算术平方根和偶次方.18.6【分析】把x=1代入已知方程,列出关于k 的新方程,通过解新方程来求k 的值.【详解】解:把x=1代入,得3×1-k+5=2,解得k=6.故答案是:6.【点睛】本题考查了一元一次方程的解的定义.把方程的解代入原方程,等式左右两边相等.19.-2010【分析】由当x=1时,代数式31px qx ++的值为2012,可得2011p q +=,把x=-1代入代数式31px qx ++整理后,再把2011p q +=代入计算即可.【详解】因为当1x =时,3112012px qx p q ++=++=,所以2011p q +=,所以当1x =-时,311()1201112010px qx p q p q ++=--+=-++=-+=-.【点睛】本题考查了求代数式的值,把所给字母代入代数式时,要补上必要的括号和运算符号,然后按照有理数的运算顺序计算即可,熟练掌握有理数的运算法则是解答本题的关键.在求代数式的值时,一般先化简,再把各字母的取值代入求值.有时题目并未给出各个字母的取值,而是给出一个或几个式子的值,这时可以把这一个或几个式子看作一个整体,将待求式化为含有这一个或几个式子的形式,再代入求值.运用整体代换,往往能使问题得到简化.20.144【分析】根据∠AOC 和∠BOD 都是直角,∠DOC=36°,可得∠AOD 的度数,从而求得结果.【详解】∵∠AOC=∠BOD=90º,∠DOC=36°∴∠AOD=∠AOC-∠DOC=54°∴∠AOB =∠AOD+∠BOD =144°.故答案为36°.点睛:本题是基础应用题,只需学生熟练掌握角的大小关系,即可完成.21.(1)-71;(2)-20;(3)641'︒.【分析】(1)根据有理数的加减法可以解答本题;(2)根据有理数的乘方、有理数的乘除法和加减法可以解答本题;(3)根据度分秒的换算进行计算即可.(1)解:(-3)-13+(-12)-|-43|=-3-13-12-43=-71;(2)解:2108(2)(4)(3)-+÷---⨯-108412=-+÷-10212=-+-=-20;(3)解:233136402924''''''+︒︒636060'''=︒641'=︒.【点睛】本题考查了有理数的混合运算以及度分秒的换算,注意:1°60'=,160'''=.22.(1)13x =(2)38x =-【分析】(1)去括号,移项,合并同类项,系数化为1;(2)去分母,移项,合并同裂项,系数化为1.(1)()()()228131x x x ---=-,去括号得248833x x x --+=-,整理得13x =(2)225353x x x ---=-,去分母得122535533x x x -+=--,整理得38x =-【点睛】本题考查方程的化简求解,需熟练掌握其运算方法.23.22532x y ---,14-【分析】先去小括号,再去中括号得到化简后的结果,再将未知数的值代入计算.【详解】解:原式=222232()32x y x y --+--=22532x y ---,当1,2x y =-=-时,原式=()()2251232---⨯--=14-.【点睛】此题考查了整式的化简求值,正确掌握整式去括号的计算法则,是解题的关键.24.这个角的度数是80°.【分析】设这个角的度数为x ,根据互余的两角的和等于90°表示出它的余角,然后列出方程求.【详解】设这个角的度数为x ,则它的余角为(90°-x ),由题意得:12x-(90°-x )=30°,解得:x=80°.答:这个角的度数是80°.25.MC 的长度是3cm ;BM 的长度是1cm .【分析】先根据AB=2cm ,BC=2AB 求出BC 的长,进而得出AC 的长,由M 是线段AC 中点求出AM ,再由BM=AM-AB 即可得出结论.【详解】解:∵AB=2cm ,BC=2AB ,∴BC=4cm ,∴AC=AB+BC=2+4=6(cm),∵M 是线段AC 中点,∴MC=AM=12AC=3(cm),∴BM=AM-AB=3-2=1(cm).故MC 的长度是3cm ;BM 的长度是1cm .【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.26.在静水中的速度为27km/h【分析】等量关系为:顺水速度⨯顺水时间=逆水速度⨯逆水时间.即2⨯(静水速度+水流速度) 2.5=⨯(静水速度-水流速度).【详解】解:设船在静水中的平均速度为x km/h ,根据往返路程相等,列得2(3) 2.5(3)x x +=-,解得27x =.答:在静水中的速度为27km/h .【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,列出方程求解.27.(1)购买20盒乒乓球时,两种优惠办法付款一样(2)购买15盒乒乓球时,去甲店较合算,见解析【分析】(1)根据总价=单价×数量结合两家店给出的优惠政策,即可用含x 的代数式表示出在两家店购买所需费用;(2)根据在两家店购买所需费用相同,即可得出关于x 的一元一次方程,解之即可得出结论.(1)解:设购买x 盒乒乓球时,两种优惠办法付款一样.依题意得,()()3055530550.9x x ⨯+-⨯=⨯+⨯,解得:x =20,所以,购买20盒乒乓球时,两种优惠办法付款一样.(2)当购买15盒时:甲店需付款:()3051555200⨯+-⨯=(元),乙店需付款:()3051550.9202.5⨯+⨯⨯=(元),因为200202.5<,所以购买15盒乒乓球时,去甲店较合算.【点睛】本题考查了一元一次方程的应用以及列代数式,解题的关键是:(1)根据各数量之间的关系,用含x 的代数式表示出在两家店购买所需费用;(2)找准等量关系,正确列出一元一次方程.28.∠BOC 和∠AOC 的度数分别为30°,120︒【分析】根据角平分线的定义得到1452BOE AOB ∠=∠=︒,∠BOC=2∠BOF ,再计算出15BOF EOF BOE ∠=∠-∠=︒,然后根据∠BOC=2∠BOF ,∠AOC=∠BOC+∠AOB 进行计算.【详解】解:∵OE 平分∠AOB ,OF 平分∠BOC ,∴1452BOE AOB ∠=∠=︒,∠BOC=2∠BOF ,∵604515BOF EOF BOE ∠=∠-∠=︒-︒=︒,∴230BOC BOF ∠=∠=︒,3090120AOC BOC AOB ∠=∠+∠=︒+︒=︒.即∠BOC 和∠AOC 的度数分别为30°,120︒.【点睛】本题主要考查了角的计算以及角平分线的定义,正确应用角平分线的定义是解题关键.。
2024年最新人教版七年级数学(上册)期末试卷及答案(各版本)

2024年最新人教版七年级数学(上册)期末试卷一、选择题(每小题2分,共20分)1. 下列数中,最小的正整数是()A. 1B. 2C. 3D. 42. 下列数中,最大的负整数是()A. 1B. 2C. 3D. 43. 下列数中,是正分数的是()A. 3/4B. 3/4C. 3/2D. 3/24. 下列数中,是负分数的是()A. 3/4B. 3/4C. 3/25. 下列数中,是整数的是()A. 3/4B. 3/4C. 3/2D. 3/26. 下列数中,是正数的是()A. 3/4B. 3/4C. 3/2D. 3/27. 下列数中,是负数的是()A. 3/4B. 3/4C. 3/2D. 3/28. 下列数中,是分数的是()A. 3/4B. 3/4C. 3/2D. 3/29. 下列数中,是正整数的是()A. 3/4B. 3/4D. 3/210. 下列数中,是负整数的是()A. 3/4B. 3/4C. 3/2D. 3/2二、填空题(每小题2分,共20分)11. 下列数中,是整数的是()A. 3/4B. 3/4C. 3/2D. 3/212. 下列数中,是正数的是()A. 3/4B. 3/4C. 3/2D. 3/213. 下列数中,是负数的是()A. 3/4B. 3/4C. 3/2D. 3/214. 下列数中,是分数的是()B. 3/4C. 3/2D. 3/215. 下列数中,是正整数的是()A. 3/4B. 3/4C. 3/2D. 3/216. 下列数中,是负整数的是()A. 3/4B. 3/4C. 3/2D. 3/217. 下列数中,是整数的是()A. 3/4B. 3/4C. 3/2D. 3/218. 下列数中,是正数的是()A. 3/4B. 3/4C. 3/2D. 3/219. 下列数中,是负数的是()A. 3/4B. 3/4C. 3/2D. 3/220. 下列数中,是分数的是()A. 3/4B. 3/4C. 3/2D. 3/2三、解答题(每小题5分,共25分)21. 解答:请计算下列各式的值。
2024北京朝阳区初一(上)期末数学试卷及答案

2024北京朝阳初一(上)期末数 学(选用)(考试时间90分钟 满分100分)考生须知1.本试卷共6页.在试卷和答题卡上准确填写学校名称、班级、姓名和考号. 2.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.3.在答题卡上,选择题用2B 铅笔作答,其他试题用黑色字迹签字笔作答. 4.考试结束,将本试卷、答题卡和草稿纸一并交回. 一、选择题(共24分,每题3分)下面1-8题均有四个选项,其中符合题意的选项只有一个. 1.2−的绝对值为( )A .2−B .2−−C .12− D .22.2023年我国规模以上内容创作生产营业收人累计值前三个季度分别约为6500亿元13000亿元,20000亿元,合计约39500亿元.将39500用科学记数法表示应为( ) A .239510⨯ B .43.9510⨯ C .33.9510⨯ D .50.39510⨯ 3.若34x y −与a x y 是同类项,则a 的值为( ) A .2− B .2 C .3 D .44.下列图形中可以作为一个正方体的展开图的是( )A B CD5.如果a b =,那么下列等式一定成立的是( ) A .33a b +=− B .0a b += C .44a b= D .1ab = 6.已知α∠与β∠互为补角,并且α∠的2倍比β∠大30︒,则,αβ∠∠分别为( )A .70︒,110︒B .40︒,50︒C .75︒,115︒D .50︒,130︒7.,a b 是有理数,它们在数轴上的对应点的位置如图所示.下列各式正确的是( )A .b a a b −<−<<B .a b a b −<−<<C .b a a b <−<<−D .b b a a <−<−<8.对幻方的研究体现了中国古人的智慧.如图1是一个幻方的图案,其中9个格中的点数分别为1,2,3,4,5,6,7,8,9.每一横行、每一竖列、每一斜对角线上的点数的和都是15.如图2是一个没有填完整的幻方,如果它处于同一横行、同一竖列、同一斜对角线上的3个数的和都相等,那么正中间的方格中的数字为( )A .5B .1C .0D .1−二、填空题(共24分,每题3分)9.如果60m 表示向东走60m ,那么80m −表示______.10.请写出一个次数为3,系数是负数的单项式:______. 11.计算:2(2)43−÷⨯=______. 12.计算:48296021''︒+︒=______.13.北京冬季某一天的温差是10℃,若这天的最高气温是t ℃,则最低气温是______℃.(用含t 的式子表示)14.举例说明“若,a b 是有理数,则a b a +>”是错误的,请写出一个b 的值:b =______.15.如图,一艘快艇S 从灯塔O 南偏东60︒的方向上的某点出发,绕着灯塔O 逆时针方向以每个时间单位3︒的转速旋转1周,当14AOS BOS ∠=∠时,快艇S 旋转了______个时间单位.16.某社区为增强居民体质,体现以人民为中心的理念,准备到一家健身器材专卖店购置一批健身器材供居民健身使用.该专卖店推出两种优惠活动,并规定只能选择其中一种. 活动一:所购商品按原价打八折;活动二:所购商品按原价每满..400元减100元.(如:所购商品原价为400元,可减100元,需付款300元;所购商品原价为900元,可减200元,需付款700元)(1)若购买一件原价为550元的健身器材,更合算的选择方式为活动______;(2)若购买一件原价为(01200)a a <<元的健身器材,选择活动二比选择活动一更合算,则a 的取值范围是______.三、解答题(共52分,第17-24题,每题5分,第25-26题,每题6分) 17.如图,已知线段AB 和点,C D 是线段AB 的中点.(1)根据要求画图: ①画直线DC ; ②画射线BC ;③连接AC 并延长到点E ,使CE AC =;④连接BE .(2)(1)中线段,DC BE 之间的等量关系是______. 18.计算:()()81021−+++−.19.计算:()12112236⎛⎫−−⨯−⎪⎝⎭. 20.当x 取何值时,式子37x +与式子322x −的值相等?21.解方程:21224x x+−=. 22.先化简,再求值:()()2222545x x x x −−−−+,其中2x =−.23.小明家经营一家文化创意产品商店,他在课余时间关注了文化创意背包和文化创意摆件两种商品的销售情况,如下表:元,那么售出文化创意背包和文化创意摆件各多少件?24.如图,长方形的一组邻边长分别为10,(1015)m m <<,在长方形的内部放置4个完全相同的小长方形纸片(图中阴影所示),这样得到长方形ABCD 和长方形EFGH .(1)线段,FG EF 之间的等量关系是______;(2)记长方形ABCD 的周长为1C ,长方形EFGH 的周长为2C ,对于任意的m 值,12C C +的值是否为一个确定的值?若是一个确定的值,请写出这个值,并说明理由;若不是一个确定的值,请举出反例. 25.已知AOB ∠与COD ∠共顶点,,O AOB COD αβ∠=∠=.(1)如图1,点,,A O C 在一条直线上,若60,30,OM αβ=︒=︒为AOD ∠的平分线,ON 为COB ∠的平分线,求MON ∠的度数;(2)若2,,AOB COD αβ=∠∠绕点O 运动到如图2所示的位置,OE 为BOD ∠的平分线,用等式表示AOD ∠与COE ∠之间的数量关系,并说明理由.26.对于数轴上的两条线段,给出如下定义:若其中一条线段的中点恰好是另一条线段的一个三等分点,则称这两条线段互为友好线段.(1)在数轴上,点A 表示的数为-4,点B 表示的数为2,点1C 表示的数为52−,点2C 表示的数为2−,点3C 表示的数为4,在线段123,,BC BC BC 中,与线段AB 互为友好线段的是______; (2)在数轴上,点,,,A B C D 表示的数分别为39,2,,22x xx x −−−−,且,A B 不重合.若线段,AB CD 互为友好线段,直接写出x 的值.参考答案一、选择题(共24分,每题3分)9.向西走80m 10.答案不唯一,如3x − 11.3 12.10850'︒ 13.10t − 14.答案不唯一,如1b =− 15.34或50 16.(1)一 (2)400500a ≤<或8001000a ≤<三、解答题(共52分,第17-24题,每题5分,第25-26题,每题6分)17,解:(1)根据要求所画的图形如图所示:(2)12DC BE =. 18.解:原式()()102811293=++−+−=−=.19.解:()121126824236⎛⎫−−⨯−=−++=⎪⎝⎭. 20.解:根据题意,得37322x x +=−. 32327x x +=−. 525x =. 5x =.所以当5x =时,式子37x +与式子322x −的值相等.21.解:21224x x+=. ()2218x x +−=.428x x +−=. 36x =. 2x =.22.解:原式2222454591x r x x x x =−−+++=++. 当2x =−时,原式13=−.23.解:根据题意可得每件文化创意背包单价260元,每件文化创意摆件单价80元. 设小明家的文化创意产品商店售出文化创意背包x 件. 根据题意,得()26080153000x x +−=. 解得10x =. 所以155x −=.答:小明家的文化创意产品商店售出文化创意背包10件,文化创意摆件5件. 24.解:(1)2EF FC =;(2)1240C C +=. 说明:设FG a =. 根据题意可知2EF a =. 所以()226C FG EF a =+=.因为长方形的一组邻边长分别为10,m , 所以102,2,10BC a AB m a m a =−=−−=. 所以()122028C AB BC m a =+=+−. 所以1220286C C m a a +=+−+2022m a =+−()202m a =+− 40=.25.解:(1)因为点,,A O C 在一条直线上,所以180AOC ∠=︒. 因为60,30αβ=︒=︒,所以150,120AOD COB ∠=︒∠=︒. 因为OM 为AOD ∠的平分线,ON 为COB ∠的平分线,所以1175,6022DOM AOD CON COB ∠=∠=︒∠=∠=︒. 所以30DON CON COD ∠=∠−∠=︒. 所以45MON DOM DON ∠=∠−∠=︒. (2)2AOD COE ∠=∠.说明:如图,因为OE 为BOD ∠的平分线,所以12DOE BOD ∠=∠. 因为COE DOE COD ∠=∠−∠,所以12COE BOD COD ∠=∠−∠.因为2αβ=,所以1122COE BOD α∠=∠−. 因为AOD DOB AOB DOB α∠=∠−∠=∠−, 所以2AOD COE ∠=∠. 26.解:(1)12,BC BC .(2)225,7,9,26.。
初中七年级数学上册期末考试卷及答案【完整版】

初中七年级数学上册期末考试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若2n +2n +2n +2n =2,则n=( )A .﹣1B .﹣2C .0D .142.实数a 、b 在数轴上的位置如图所示,且|a|>|b|,则化简2a a b -+的结果为( )A .2a+bB .-2a+bC .bD .2a-b3.如图,AB CD ⊥,且AB CD =.E 、F 是AD 上两点,CE AD ⊥,BF AD ⊥.若CE a =,BF b =,EF c =,则AD 的长为( )A .a c +B .b c +C .a b c -+D .a b c +-4.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%.那么商店在这次交易中( )A .亏了10元钱B .赚了10钱C .赚了20元钱D .亏了20元钱5.实效m ,n 在数轴上的对应点如图所示,则下列各式子正确的是( )A .m n >B .||n m ->C .||m n ->D .||||m n <6.下列图形中,不能通过其中一个四边形平移得到的是( )A .B .C .D .7.如图,△ABC 的面积为3,BD :DC =2:1,E 是AC 的中点,AD 与BE 相交于点P ,那么四边形PDCE 的面积为( )A .13B .710C .35D .1320 8.如图,△ABC ≌△ADE ,若∠B=70°,∠C=30°,∠DAC=35°,则∠EAC 的度数为( )A .40°B .45°C .35°D .25°9.一副直角三角板如图放置,点C 在FD 的延长线上,AB//CF ,∠F=∠ACB=90°,则∠DBC 的度数为( )A .10°B .15°C .18°D .30° 10.一个多边形的内角和与外角和相等,则这个多边形是( )A .四边形B .五边形C .六边形D .八边形二、填空题(本大题共6小题,每小题3分,共18分)1.若0abc >,化简ac b abc a b c abc +++结果是________. 2.袋中装有6个黑球和n 个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为34”,则这个袋中白球大约有________个. 3.关于x 的不等式组430340a x a x +>⎧⎨-≥⎩恰好只有三个整数解,则a 的取值范围是_____________.4.如图所示,把一张长方形纸片沿EF 折叠后,点D C ,分别落在点D C '',的位置.若65EFB ︒∠=,则AED '∠等于________.5.如图,在△ABC 中,AF 平分∠BAC ,AC 的垂直平分线交BC 于点E ,∠B=70°,∠FAE=19°,则∠C=______度.6.已知13a a +=,则221+=a a__________; 三、解答题(本大题共6小题,共72分)1.解下列方程(1)12225y y y -+-=- (2)()()()22431233x x x ---=-+2.已知关于x 的方程23x m m x -=+与12x +=3x ﹣2的解互为倒数,求m 的值.3.如图,∠BAD=∠CAE=90°,AB=AD ,AE=AC ,AF ⊥CB ,垂足为F .(1)求证:△ABC ≌△ADE ;(2)求∠FAE 的度数;(3)求证:CD=2BF+DE .4.如图,直线AB,CD相交于点O,OD平分∠BOE,OF平分∠AOE(1)判断OF与OD的位置关系,并进行证明.(2)若∠AOC:∠AOD=1:5,求∠EOF的度数.5.某初级中学正在展开“文明城市创建人人参与,志愿服务我当先行”的“创文活动”为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查.根据调查数据绘制了如下所示不完整统计图.条形统计图中七年级、八年级、九年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该年级被抽到的志愿者数与样本容量的比.(1)请补全条形统计图;(2)若该校共有志愿者600人,则该校九年级大约有多少志愿者?6.某电脑经销商计划购进一批电脑机箱和液晶显示器,若购电脑机箱10台和液液晶显示器8台,共需要资金7000元;若购进电脑机箱2台和液示器5台,共需要资金4120元.(1)每台电脑机箱、液晶显示器的进价各是多少元?(2)该经销商购进这两种商品共50台,而可用于购买这两种商品的资金不超过22240元.根据市场行情,销售电脑机箱、液晶显示器一台分别可获利10元和160元.该经销商希望销售完这两种商品,所获利润不少于4100元.试问:该经销商有哪几种进货方案?哪种方案获利最大?最大利润是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分) 1、A2、C3、D4、A5、C6、D7、B8、B9、B10、A二、填空题(本大题共6小题,每小题3分,共18分)1、4或02、23、4332a ≤≤ 4、50°5、246、7三、解答题(本大题共6小题,共72分)1、(1)711=y (2)x=0 2、353、(1)证明见解析;(2)∠FAE=135°;4、(1)OF ⊥OD ,证明详略;(2)∠EOF =60°.5、(1)作图见解析;(2)120.6、(1)每台电脑机箱、液晶显示器的进价各是60元,800元;(2)利润最大为4400元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学上册期末试卷及答案
满分:100分考试时间:100分钟
注意:
1.选择题答案请用2B铅笔填涂在答题卡相应位置上.
2.非选择题答案必须用0.5毫米黑色墨水签字笔写在答题卷上的指定位置,在其他位置答题一律无效.
一、选择题本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上
1.-2的相反数是
A.2
B.-2
C. 12
D.-12
2.2021年南京国际马拉松全程约为42 195米,将42 195用科学记数法表示为
A.42.195×103
B.4.2195×104
C.42.195×104
D.4.2195×105
3.下列各组单项式中,同类项一组的是
A.3x2y与3xy2
B.2abc与-3ac
C.2xy与2ab
D.-2xy与3yx
4.如图,将一张长方形纸片ABCD沿EF折叠,点D、C分别落在点D′、C′处,若
∠1=56°,则∠DEF的度数是
A.56°
B.62°
C.68°
D.124°
5.如图所示,将图中阴影三角形由甲处平移至乙处,下面平移方法中正确的是
A.先向上移动1格,再向右移动1格
B.先向上移动3格,再向右移动1格
C.先向上移动1格,再向右移动3格
D.先向上移动3格,再向右移动3格
6.我们用有理数的运算研究下面问题.规定:水位上升为正,水位下降为负;几天后为正,几天前为负.如果水位每天下降4cm,那么3天后的水位变化用算式表示正确的是
A.+4×+3
B.+4×-3
C.-4×+3
D.-4×-3
7.有理数a在数轴上的位置如图所示,下列各数中,可能在0到1之间的是
A.-a
B.│a│
C.│a│-1
D.a+1
8.如图,一个几何体上半部为正四棱锥,下半部为正方体,且有一个面涂有颜色.下列图形中,是该几何体的表面展开图的是
二、填空题本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卷相应位置上
9.单项式-12a2b的系数是▲ .
10.比较大小:-π▲ - 3.14. 填“<”、“=”或“>”
11.若∠1=36°30′,则∠1的余角等于▲ °.
12.已知关于x的一元一次方程3m-4x=2的解是x=1,则m的值是▲ .
13.下表是同一时刻4个城市的国际标准时间,那么北京与多伦多的时差为▲ h.
城市伦敦北京东京多伦多
国际标准时间 0 +8 +9 -4
14.写出一个主视图、左视图和俯视图完全相同的几何体:▲ .
15.2021年12月17日,大报恩寺遗址公园正式向社会开放.经物价部门核准,旅游旺季门票价格上浮40%,上浮后的价格为168元.若设大报恩寺门票价格为x元,则根据题意可列方程▲ .
16.若2a-b=2,则6-8a+4b = ▲ .
17.已知线段AB=6 cm,AB所在直线上有一点C,若AC=2BC,
则线段AC的长为▲ cm.
18.如图,在半径为 a 的大圆中画四个直径为 a 的小圆,则图中
阴影部分的面积为▲ 用含 a 的代数式表示,结果保留π.
三、解答题本大题共9小题,共64分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤
19.8分计算:
112-712+56×36; 2-32+16÷-2×12.
20.6分先化简,再求值:23a2b-ab2--ab2+2a2b,其中a=2、b=-1.
21.8分解方程:
13x+1=9; 2 2x-13 =1- 2x-16.
22.6分读句画图并回答问题:
1过点A画AD⊥BC,垂足为D.比较AD与AB的大小:AD ▲ AB;
2用直尺和圆规作∠CDE,使∠CDE=∠ABC,且与AC交于点E.此时DE与AB的位置关
系是
▲ .
23.6分一个几何体的三个视图如图所示单位:cm.
1写出这个几何体的名称:▲ ;
2若其俯视图为正方形,根据图中数据计算这个几何体的表面积.
24.6分下框中是小明对课本P108练一练第4题的解答.
请指出小明解答中的错误,并写出本题正确的解答.
25.8分如图,直线AB、CD 相交于点O,OF平分∠AOE ,OF⊥CD,垂足为O.
1若∠AOE=120°,求∠BOD的度数;
2写出图中所有与∠AOD互补的角:▲ .
26.8分如图,点A、B分别表示的数是6、-12,M、N、P为数轴上三个动点,它们同
时都向右运动.点M从点A出发,速度为每秒2个单位长度,点N从点B出发,速度为点M 的3倍,点P从原点出发,速度为每秒1个单位长度.
1当运动3秒时,点M、N、P分别表示的数是▲ 、▲ 、▲ ;
2求运动多少秒时,点P到点M、N的距离相等?
27.8分钟面角是指时钟的时针与分针所成的角.如图,图①、图②、图③三个钟面上
的时刻分别记录了某中学的早晨上课时间7:30、中午放学时间11:50、下午放学时间17:00.
1分别写出图中钟面角的度数:∠1= ▲ °、∠2= ▲ °、∠3= ▲ °;
2在某个整点,钟面角可能会等于90°,写出可能的一个时刻为▲ ;
3请运用一元一次方程的知识解决问题:钟面上,在7:30~8:00之间,钟面角等于90°的时刻是多少?
一、选择题每小题2分,共计16分
题号 1 2 3 4 5 6 7 8
答案 A B D B B C C D
二、填空题每小题2分,共计20分
9.-12 10.< 11.53.5 12.2 13.12
14.正方体答案不唯一 15.1+40% x=168 16.-2
17.4或12 18.πa2-2a2
三、解答题本大题共9题,共计64分
19.8分
解:1原式=12×36-712×36+56×36 1分
=18-21+30 3分
=27. 4分
2原式=-9+16×-12×12 2分
=-9-4 3分
=-13. 4分
20.6分
解:原式=6a2b-2ab2+ab2-2a2b 2分
=4a2b-ab2. 4分
当a=2、b=-1时,
原式=4×22×-1-2×-12=-16-2=-18. 6分
21.8分
解:13x+3=9. 1分
3x=6. 3分
x=2. 4分
222x-1=6-2x-1. 1分
4x-2=6-2x+1. 2分
6x=9. 3分
x=32. 4分
22.6分
解:
1画图正确,AD
2画图正确,DE∥AB. 6分
23.6分
解:1长方体; 2分
22×3×3+3×4+3×4=66 cm2. 6分
答:这个几何体的表面积是66 cm2.
24.6分
解:小明的错误是“他设中的x和方程中的x表示的意义不同”. 2分正确的解答:设这个班共有x名学生.
根据题意,得 x6-x8=2. 4分
解这个方程,得 x=48. 5分
答:这个班共有48名学生. 6分
25.8分
解:
1因为OF平分∠AOE,∠AOE=120°,
所以∠AOF=12∠AOE=60°. 2分
因为OF⊥CD,
所以∠COF=90°. 3分
所以∠AOC=∠COF-∠AOF=30°. 4分
因为∠AOC和∠BOD是对顶角,
所以∠BOD=∠AOC=30°. 5分
2∠AOC、∠BOD、∠DOE. 8分
26.8分
解:112、6、3; 3分
2设运动t秒后,点P到点M、N的距离相等.
①若P是MN的中点,则t--12+6t=6+2t-t,
解得t=1. 6分
②若点M、N重合,则-12+6t=6+2t,
解得t=92. 8分
答:运动1或92秒后,点P到点M、N的距离相等.
27.8分
解:145,55,150; 3分
2如:3点;答案不唯一 4分
3设从7:30开始,经过x分钟,钟面角等于90°.
根据题意,得6x-0.5x-45=90. 6分
解得 . 7分
答:钟面上,在7:30~8:00之间,钟面角等于90°的时刻是7:54611. 8分感谢您的阅读,祝您生活愉快。