华中科技大学电子线路实验报告三极管的单级共射放大电路
三极管共射放大电路实验报告

实验报告一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)四、操作方法和实验步骤五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得一、实验目的和要求1.掌握放大电路静态工作点的测量与调整方法,了解在不同偏置条件下静态工作点对放大电路性能的影响。
2.学习放大电路的电压放大倍数和最大不失真输出电压的测量方法。
3.学习放大电路输入、输出电阻的测量方法以及频率特性的测量方法。
二、实验内容和原理仿真电路图专业:姓名:学号:日期:地点:实验名称:_______________________________姓名:________________学号:__________________静态工作点变化而引起的饱和失真与截止失真1. 静态工作点的调整和测量: 调节R W1,使Q 点满足要求(I CQ =1.5mA)。
测量个点的静态电压值2. R L =∞及R L =2K 时,电压放大倍数的测量 : 保持静态工作点不变!输入中频段正弦波,示波器监视输出波形,交流毫伏表测出有效值。
3. R L =∞时,最大不失真输出电压V omax (有效值)≥3V : 增大输入信号幅度与调节R W1,用示波器监视输出波形、交流毫伏表测出最大不失真输出电压V omax 。
4. 输入电阻和输出电阻的测量: 采用分压法或半压法测量输入、输出电阻。
5. 放大电路上限频率f H 、下限频率f L 的测量 : 改变输入信号频率,下降到中频段输出电压的0.707倍。
6. 观察静态工作点对输出波形的影响 : 饱和失真、截止失真、同时出现。
三、主要仪器设备示波器、函数信号发生器、12V 稳压源、万用表、实验电路板、三极管9013、电位器、各种电阻及电容器若干等四、操作方法和实验步骤准备工作:a) 修改实验电路◆ 将K 1用连接线短路(短接R 7); ◆ R W2用连接线短路;◆ 在V 1处插入NPN 型三极管(9013);◆ 将R L 接入到A 为R L =2k ,不接入为R L =∞(开路) 。
单级共射放大电路实验报告

单级共射放大电路实验报告
实验电路图如下:
一、调试静态工作点:
实验中测量放大器的静态工作点,应在输入信号为零的情况下进行。
1)没通电前,将放大器输入端与地端短接,接好电源线(注意12V 电源位置)。
2)检查接线无误后,接通电源。
3)用万用表的直流10V 挡测量UE=2V 左右,如果偏差太大可调节静态 工作点(电位器RP )。
然后测量UB 、UC
4)关掉电源,断开开关S ,用万用表的欧姆挡(1×1K )测量RB2。
将 所有测量结果记入表中。
5)根据实验结果可用:IC ≈IE=RE UE
,UBE=UB-UE,UCE=UC-UE ,求出静态工作点。
实验及计算数据如下表: 测量值 计算值 UB(V) UE(V) UC(V) RB2(Ω) UBE (V )
UCE(V) IC (mA )
2.6
2
7.2
60
0.6
5.2
2
1)接通电源,从信号发生器上输出一个频率为1KHZ ,幅值为10mV 的正弦信号加入到放大器输入端。
2)用示波器观察放大器输出电压的波形,在波形不失真的条件下用交流毫伏表
三、测量输入电阻和输出电阻
输入电阻:Ri=Ii Ui =Rs Ui Us Ui /)(-=ui Us Ui
-Rs
输出电阻:Ro=UoL Uo -=UoL
Uo -RL
在输出电压波形不是真的情况下,用交流毫伏表测出uS 、ui 和uL 记入表中。
断开负载电阻RL ,保持uS 不变,测量输出电压Uo ,记入表中 四、电压放大倍数的测量
Au=Ui Uo =101500
=150。
单管共射放大电路实验报告

单管共射放大电路实验报告实验目的,通过实验,了解单管共射放大电路的基本原理和特性,掌握其工作原理和性能参数的测量方法,加深对电子技术的理论知识的理解。
实验仪器和器件,示波器、信号发生器、直流稳压电源、电阻、电容、三极管等。
实验原理,单管共射放大电路是一种常用的放大电路,它由一个三极管和几个外围元件组成。
在这个电路中,三极管的基极接地,发射极接负电源,集电极接负载电阻,形成了一个共射放大电路。
当输入信号加在基极上时,三极管会产生放大效果,输出信号会在集电极上得到放大。
实验步骤:1. 按照电路图连接实验电路,接通直流电源,调节电源电压和电流,使其符合电路要求。
2. 使用信号发生器产生输入信号,接入电路,观察输出信号在示波器上的波形。
3. 调节信号发生器的频率和幅度,观察输出信号的变化。
4. 测量输入信号和输出信号的幅度,计算电压增益。
5. 改变负载电阻的数值,观察输出信号的变化。
实验结果与分析:在实验中,我们观察到输入信号在经过单管共射放大电路后,输出信号得到了明显的放大。
通过调节信号发生器的频率和幅度,我们发现输出信号的波形随着输入信号的变化而变化,但是整体上保持了放大的特性。
通过测量输入信号和输出信号的幅度,我们计算得到了电压增益的数值,验证了单管共射放大电路的放大性能。
在改变负载电阻的数值后,我们也观察到了输出信号的变化,进一步验证了电路的特性。
实验结论:通过本次实验,我们深入了解了单管共射放大电路的工作原理和特性,掌握了测量其性能参数的方法。
实验结果表明,单管共射放大电路具有良好的放大特性,能够将输入信号放大并输出。
同时,我们也发现了一些问题,比如在一定频率下,输出信号会出现失真等。
这些问题需要进一步的分析和解决。
实验的过程中,我们也遇到了一些困难和挑战,但通过认真的实验操作和思考,最终取得了满意的实验结果。
通过本次实验,我们不仅加深了对电子技术的理论知识的理解,还提高了实验操作的能力和实验分析的能力。
单管共射放大电路实验总结

单管共射放大电路实验总结引言本文是对单管共射放大电路实验的总结与分析。
单管共射放大电路是一种常见的放大电路,其具有放大倍数高、输入阻抗低、输出阻抗高等特点,在电子电路中应用广泛。
本文将从实验目的、实验原理、实验步骤和实验结果四个方面进行详细介绍。
实验目的本次实验的主要目的是掌握单管共射放大电路的工作原理和性能特点,熟悉放大电路的设计和调试过程,培养实际动手操作的能力,以及对实验数据的分析能力。
通过本实验,进一步了解电子器件的基本特性和工作原理,为电子电路设计和实际应用打下坚实基础。
实验原理单管共射放大电路是一种三极管作为放大元件的单级放大电路,其工作原理如下:1.输入信号经耦合电容传入三极管的基极,通过输入电阻Ri控制基极电流。
2.当输入信号为正弦波时,基极电流也为正弦波,进而控制三极管的发射极电流。
3.通过放大作用,使得输出信号的幅度得到放大。
4.由于共射放大电路是由共射极输出的,因此输出信号与输入信号之间存在180°的相位差。
5.通过耦合电容Ce将输出信号取出。
实验步骤1. 实验准备准备实验所需要的材料和仪器设备:三极管、耦合电容、负载电阻、信号源、示波器等。
2. 电路搭建按照给定的电路图,将电阻、电容和三极管等元器件按正确的位置连接好,注意接线的准确性和可靠性。
3. 实验参数设定根据实验要求,设置输入信号源的幅度和频率,选择合适的放大倍数。
4. 电源接入将实验电路接入电源,确认电源电压是否符合要求,并注意应用调压电路稳定电源。
5. 信号测量使用示波器测量输入信号源和输出信号的波形,注意设置好示波器的纵横坐标范围和触发模式。
6. 数据记录与分析记录实验测量到的数据,包括电压、电流和波形等信息。
通过对实验数据的分析,得出分析结论,进一步了解单管共射放大电路的性能特点。
7. 电路调试与改进根据实验数据的分析结果,对电路进行调试和改进,以提高电路的性能和稳定性。
8. 实验总结根据实验结果和观察,总结实验过程中遇到的问题和解决办法,总结实验的结果和得到的经验教训。
共射单管放大电路实验报告

共射单管放大电路实验报告共射单管放大电路实验报告一、实验目的本实验旨在通过搭建共射单管放大电路,了解其工作原理及特性,并通过实验数据分析,探讨电路的放大倍数、输入阻抗和输出阻抗等参数对电路性能的影响。
二、实验原理共射单管放大电路是一种常见的放大电路,由晶体管、电容和电阻等元件组成。
其工作原理是通过输入信号的变化,控制晶体管的工作点,使得输出信号得以放大。
具体来说,当输入信号施加在基极上时,晶体管进入放大状态,输出信号通过负载电阻得以放大。
三、实验步骤1. 按照电路图搭建共射单管放大电路,注意连接正确。
2. 调节电源电压,使得晶体管正常工作。
3. 连接信号发生器和示波器,设置合适的频率和振幅。
4. 通过示波器观察输入信号和输出信号的波形,并记录数据。
5. 分别改变输入信号的振幅和频率,记录相应的输出信号数据。
四、实验数据分析通过实验数据的分析,我们可以得出以下结论:1. 放大倍数:通过比较输入信号的振幅和输出信号的振幅,可以得出放大倍数。
在实验中,我们发现放大倍数与输入信号的振幅成正比,但随着输入信号振幅的增大,放大倍数会逐渐饱和,不能无限增大。
2. 输入阻抗:输入阻抗是指电路对外部信号源的阻抗。
在共射单管放大电路中,输入阻抗较低,可以有效地接收外部信号,并将其放大输出。
3. 输出阻抗:输出阻抗是指电路对外部负载的阻抗。
在共射单管放大电路中,输出阻抗较高,可以有效地驱动负载电阻,使得输出信号的失真较小。
五、实验结果分析通过实验数据的分析,我们可以得出以下结论:1. 在合适的工作点下,共射单管放大电路可以实现输入信号的放大,并输出相应的放大信号。
2. 输入信号的振幅和频率对放大倍数有影响,但是其影响是有限的。
3. 输入阻抗和输出阻抗对电路性能有重要影响,合适的阻抗匹配可以提高电路的放大效果。
六、实验总结通过本次实验,我们深入了解了共射单管放大电路的工作原理和特性。
通过实验数据的分析,我们得出了对电路性能的一些结论。
共射极单管放大电路实验报告

共射极单管放大电路实验报告一、实验目的。
本实验旨在通过搭建共射极单管放大电路,掌握共射极放大电路的基本原理,了解其放大特性,并通过实验验证其放大性能。
二、实验原理。
共射极单管放大电路是一种常用的放大电路,其基本原理是利用晶体管的放大特性,实现信号的放大。
在共射极放大电路中,输入信号加在基极上,输出信号则从集电极上取出。
当输入信号加在基极上时,晶体管的输出电流会随之变化,从而实现对输入信号的放大。
三、实验仪器与器材。
1. 三极管(晶体管)×1。
2. 电阻(1kΩ,10kΩ)×2。
3. 电容(0.1μF,10μF)×2。
4. 信号发生器。
5. 示波器。
6. 直流稳压电源。
7. 万用表。
8. 面包板。
9. 连接线。
四、实验步骤。
1. 将三极管、电阻和电容等元器件按照电路图连接在面包板上;2. 将信号发生器的正负极分别连接到输入端,将示波器的探头分别连接到输入端和输出端;3. 调节直流稳压电源,给电路提供适当的电压;4. 调节信号发生器的频率和幅度,观察示波器上的波形变化;5. 记录输入信号和输出信号的波形,并测量其幅度。
五、实验结果与分析。
通过实验观察和记录,我们得到了输入信号和输出信号的波形图,并测量了其幅度。
根据实验数据,我们可以得出共射极单管放大电路的放大倍数、频率响应等性能指标。
六、实验结论。
通过本次实验,我们成功搭建了共射极单管放大电路,并对其放大特性进行了验证。
实验结果表明,共射极单管放大电路具有良好的放大效果和频率响应特性,能够对输入信号进行有效放大,并且在一定频率范围内保持稳定的放大倍数。
七、实验总结。
本次实验使我们深入了解了共射极单管放大电路的工作原理和特性,掌握了搭建和调试放大电路的方法,提高了对电子电路的实际操作能力和理论知识的应用水平。
通过本次实验,我们不仅学到了共射极单管放大电路的基本原理和实验操作技巧,还对电子电路的实际应用有了更深入的了解。
希望通过今后的实验学习,能够进一步提高自己的实验能力和动手能力,为今后的学习和科研打下坚实的基础。
实验三 晶体管单管共射放大电路

实验三晶体管单管共射放大电路实验三 晶体管单管共射放大电路一、 实验目的:1.学习电子线路安装、焊接技术。
2.学会放大器静态工作点的测量和调试方法,分析静态工作点对放大器性能的影响。
3.掌握放大器交流参数:电压放大倍数、输入电阻、输出电阻、最大不失真输出电压和频率特性的测试方法。
4.进一步熟悉常用电子仪器及模拟电路设备的使用方法和晶体管β值测试方法。
二、实验原理:(一)实验电路图3.1中为单管共射基本放大电路。
1.① R B 基极偏流电阻,提供静态工作点所需基极电流。
R B 是由R 1和RW 串联组成,RW 是可变电阻,用来调节三极管的静态工作点,R 1(3K )起保护作用,避免RW 调至0端使基极电流过大,损坏晶体管。
② R S 是输入电流取样电阻,输入电流I i 流过R S ,在R S 上形成压降,测量R S 两端的电压便可计算出I i 。
③ R C —集电极直流负载电阻。
④ R L —交流负载电阻。
⑤ C1、C2 —耦合电容。
(二)理论计算公式: ① 直流参数计算:CCQ CEQ BQ EQ CQ BEQ BBEQBQ R I VCC V I I I V7.0V ;R V VCC I -=β⋅=≈≈-≈式中:..② 交流参数计算:()CO be B i ViS iVS LC L be'L V'bb EQ 'bb be R R r //R R A R R R A R R R ;r R A 300r (mA)I (mV)26β1r r ≈=*+=='*β-=++≈∥Ω的默认值可取式中:(三)放大电路参数测试方法由于半导体元件的参数具有一定的离散性,即便是同一型号的元件,其参数往往也有较大差异。
设计和制作电路前,必须对使用的元器件参数有全面深入的了解。
有些参数可以通过查阅元器件手册获得;而有些参数,如晶体管的各项有关参数(最重要的是β值),常常需要通过测试获取,为电路设计提供依据。
单管共发射极放大电路实验报告

单管共发射极放大电路实验报告实验目的,通过实验,掌握单管共发射极放大电路的基本原理、特性和测量方法,加深对放大电路的理解。
实验仪器和器材,示波器、信号发生器、直流稳压电源、电阻、电容、三极管等。
实验原理,单管共发射极放大电路是一种常用的放大电路,其原理是利用三极管的放大特性来实现电压信号的放大。
在共发射极放大电路中,输入信号加在基极上,输出信号从集电极上取出,而发射极接地。
通过合适的偏置电压和外接元件,可以实现对输入信号的放大。
实验步骤:1. 按照电路图连接好实验电路,接通直流电源,并调节至合适的工作状态。
2. 使用信号发生器输入正弦波信号,观察输出信号的波形,并调节信号频率和幅度。
3. 使用示波器观察输入信号和输出信号的波形,测量电压增益和输入输出阻抗。
4. 对电路参数进行调节,如改变偏置电压、改变电阻、电容数值等,观察对电路性能的影响。
实验结果与分析:通过实验测量和观察,我们得到了单管共发射极放大电路的输入输出特性曲线,以及电压增益、输入输出阻抗等参数。
在合适的工作状态下,我们观察到输入信号经过放大后,输出信号的幅度明显增大,且波形基本保持一致。
在改变电路参数时,我们也观察到了对电路性能的影响,比如改变偏置电压会导致输出信号的偏移,改变电容数值会影响频率响应等。
实验总结:通过本次实验,我们深入了解了单管共发射极放大电路的基本原理和特性,掌握了测量方法,加深了对放大电路的理解。
在实验中,我们也发现了一些问题和不足,比如电路参数调节时需要注意稳定性,测量时需要注意示波器的设置和测量误差等。
在今后的学习和工作中,我们将进一步加强对放大电路的理论学习,提高实验技能,为将来的工程实践打下坚实的基础。
以上就是本次单管共发射极放大电路实验的报告内容,希望能对大家有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
21.66
21.13 23.48 24.81 24.81 24.93 24.93 24.64 23.43
没有负反馈时,实测 fL = 波形质量 布线工艺 仪器操作 备注
30.4 29.2 28.0 27.6 26.8 26.8 26.8 26.8 25.6(fH = 21.84 940) , fH = 940
4.测量 BJL 单级共射放大电路的通频带。 ①当输入信号 f = 1kHz,输入电压峰-峰值为 100mV,RL = 5.1KΩ时, 在示波器上测 出放大器中频区的输出电压峰-峰值(或计算出电压增益) 。 ②增加输入信号的频率(保持输入电压峰-峰值在 100mV 不变) ,在一定的频率 范围内,输出电压不变;继续增加输入信号的频率,增加到一定频率时,输出电 压开始下降,当其下降到中频区输出电压的 0.707 时,信号发生器所示的频率即 为放大电路的上限截止频率 fH。 ③同理, 减小输入信号的频率 (保持 Vip-p = 100mV 不变) , 在一定的频率方位内, 输出电压不变;继续减小输入信号的频率,减小到一定频率时,输出电压开始下 降,当其下降到中频区输出电压的 0.707 时,信号发生器所指示的频率即为放大 电路的下限截止频率 fL。 ④通频带BW=fH-fL。 5.输入电阻 Ri 的测量 ' 按图连接电路,取R=1kΩ,用示波器读出VS 和Vi,则 ' Ri= ViR/VS -Vi 6.输出电阻 RO 的测量 按图连接电路,取RL=5.1kΩ,用示波器读出RL=∞时的开路电压VO及 RL=5.1kΩ时的输出电压VOL,则 RO=(VO-VOL)RL/VOL
五、实验内容
1.组装电路 按照上图,在面包板上组装 BJT 单级共射放大电路,经检查无误后,接通 预先调整好的直流电源+12V。
3
2.观察波形 用示波器同时观察 v1 和 v2 的电压波形,比较他们的幅值和相位。 ① 从信号发生器输入 f = 1kHZ,Vi-pp=100mv 的正弦电压接到放大电路的输 入端,同时接双踪示波器的 CH1 通道,将放大电路的输入电压接 CH2 通 道,调整电位器 Rp,使示波器上显示的输入电压波形打到最大不失真,在 荧光屏上观察他们的幅值大小和相位。 ② 测试电路的增益电压 Av, 在示波器上直接测量输出电压 Vop-p,计算电压增 益。 3.测量电路在现行放大状态时的静态工作点 关闭信号发生器,即 vi= 0,用万用表测量此时的静态工作点,填入下表中。 VE/V ICQ /mA VCEQ/V VBE/V
四、实验原理及参考电路
1.参考电路如图所示:
Rb11 Rp 100k 20k b c T1
+
Rc1 5.1k + C2 10F
+VCC +12V
C1
+ +
10F Rb12
e Re11
vi 10k
-
51
+
vo1
RL
-
Re12 1k
Ce 47F
5.1k
2.静态工作点的估算与调整 静态工作点是指输入交流信号为零时桑拿机关的基极电流 IBQ、集电极电流 ICQ 和管压降 VCEQ。 根据上图所示的直流通路可得出: 开路电压 VBB = Rb12VCC/(Rb11+Rb12) 内阻 RB = Rb11//Rb12、
4
姓名 电路参数记录 RB1 76.31kΩ RB2
学号 三极管型号 S9018 10kΩ RC 5.1kΩ RE
班级 三极管β值 1kΩ RF
160 51Ω
CB CC CE 47μF VCC 12V 10μF 10μF 放大倍数测量 测试条件: vipp = 28 mV (1kHz) 27.2mV 放大倍数计算值 输入电压 vipp(mV) 472mV 17.35 输出电压 vOPP (mV) 输入电阻测量 测试条件:1kHz, 60mV;串联电阻=2kΩ 64mV 输入电阻计算值 电压 1 vSPP 13.6mV 0.54 kΩ 电压 2 viPP 输出电阻测量 测试条件: vipp = 28 mV (1kHz) 开路输出电压 (mV) 652mV 输出电阻计算值 带负载输出电压 472mV 1.93 kΩ (mV) 通频带测量 测试条件:vipp = 28 mV 有反馈 测试频率点(Hz) 输入电压 输出电压 放大 (mV) (mV) 倍数 fL = 56 20 30 50 100 500 1k 3k 10k 100k 500k fH = 700k 28.8 28.4 27.6 27.6 27.2 27.2 27.2 26.4 27.2 328 424 480 480 480 480 464 392 336 110 11.39 14.93 17.39 17.39 17.65 17.65 17.06 14.85 12.35 28.4 344 12.11 电压增 益 (dB) 无反馈 输入电压 输出电压 放大 电压增益 (mV) (mV) 倍数 (dB) 29.2(fL =110) 664 22.74 27.14
华中技大学 《电子线路设计、 测试与实验》 实验报告
实验名称: 院(系) : 专业班级: 姓名: 学号: 时间: 地点: 实验成绩: 指导教师:
三极管的单级共射放大电路
2013 年 4 月 23 日
1
一、实验目的
1、掌握三极管放大电路静态工作点的测量和调整方法 2、了解电路参数变化对静态工作点的影响 3、掌握三极管放大电路主要性能指标的测试方法 4、学习通频带的测量方法 5、学习使用仿真软件对放大电路进行仿真的方法
七、思考题
1、判断下列波形的失真类型
5
答: (a)图中出现饱和失真与截止失真,原因是输入信号幅值过大 (b)图中出现饱和失真,原因是静态工作点过高 (c)图中出现截止失真,原因是静态工作点过低 2、测量放大电路静态工作点时,如果测得VCEQ<0.5V,说明三极管处在 什么工作状态?如果VCEQ≈VCC,三极管处在什么工作状态? 答:VCEQ<0.5V,说明三极管处在饱和工作状态,如果VCEQ≈VCC,三极 管处在截止工作状态。 3、在该实验所示的电路图当中,上偏置固定电阻起了什么作用?既然有了RP, 不要该固定电阻可否?为什么? 答:上偏置固定电阻起保护电路的作用,如果去掉该电阻,将RP调到很高时, VB会很高,可能烧毁三极管,很显然,不能去掉改偏置固定电阻。 4、负载电阻变化时,对放大电路静态工作点有无影响?对电压增益有无影响? 答:负载电阻变化时,对放大电路静态工作点没有影响,对电压增益有影响。
2
则 I BQ =(VBB–VBEQ)/( RB +(1+β)( Re1 +Re2)) ICQ = βIBQ VCEQ ≈ VCC – (RC + Re1 +Re2)ICQ 当管子确定后,改变 VCC、RB、RB2、RC、 (或 RE)中任一参数值,都会导致静态 工作点的变化。当电路参数确定后,静态工作点主要通过 RP 调整。工作点偏高, 输出信号易产生饱和失真;工作点偏低,输出波形易产生截止失真。但当输入信 号过大时,管子将工作在非线性区,输出波形会产生双向失真。当输出波形不很 大时,静态工作点的设置应偏低,以减小电路的表态损耗. 3.放大电路电压增益的测量 放大电路电压增益 Av 是指输出电压与输入电压的有效值之比,即 Av =Vo /Vi 对于该电路,放大电路的电压增益 Av 为 Av= -β(RC // RL) /( rbe + (1 + β)Re1) 当三极管跟负载电阻选定后,Av 主要取决于静态工作点 ICQ。 4.输入电阻的测量 对于上述参考电路图所示参数,放大电路输入电阻为: Ri = Rb11//Rb12//[rbe + (1 + β)Re1] 三极管输入电阻 rbe 为: rbe = 300 + (1+β)CQ 测量原理为:在信号源与放大电路之间串一个已知阻值的电阻 R,用万用表 分别测出 R 两端的电压 V’s 和 Vi,则输入电阻为: Ri = Vi / Ii = Vi R / V’s – V 5.输出电阻的测量 输出电阻的测量原理为:用万用表分别测量放大器的开路电压 VO 和负载电阻上 的电压 VOL,则输出电阻 RO 可通过计算求得。 RO =( VO – VOL)RL /VOL 当 RL = RO 时,测量误差最小。 6.幅频特性的测量 放大器的幅频特性是指放大器的增益与输入信号频率之间的关系曲线。 一般用逐 点法进行测量。在保持输入信号幅值不变的情况下,改变输入信号的频率,住店 测量不同频率点的电压增益。利用各点数据,在单对数坐标纸上描绘出幅频特性 曲线。通常将电压增益下降到中频增益的 0.707 时所以对应的频率称为该放大电 路的上限、下限截止频率,用 fH 和 fL 表示,则该放大电路的通频带为: BW = fH - fL ≈ fH
六、实验结果
1.组装电路与静态工作点的测量 调节电位器,当 Rb1=76.31 kΩ时,达到最大不失真状态,静态工作点测量数据如下: VE/V 1.021 ICQ /mA 0.98 VCEQ/V 5.79 VBE/V 0.691
2.放大倍数、输入输出电阻、通频带的测量 放大倍数、输入输出电阻、通频带的测量数据如下:
八、小结
本次实验关键之处在于静态工作点的调节,即找到最大不失真电压。之后的测量 中, 除通频带的测量外, 其他都较为简单。 在通频带的测量中, 输入电压不稳定, 会随着频率的变化而变化,若要不断调整稳压源使输入电压为定值较为困难,因 而保持了稳压源的电压, 而让输入电压有少量变化, 对放大倍数的影响应该不大。 实验中另一个问题是,测量通频带时,当把信号源频率调为 30Hz 及以下时,示 波器无法调出正常波形,因而未测 20、30Hz 时的数据。
二、实验元器件
三极管 电阻 电容 电位器 3DG6 51Ω、1kΩ、11kΩ、100kΩ 10μF 100kΩ 1只 各一只; 5.1kΩ 2 只; 47μF 1只 2只 1只