2020高考备考物理专题-----热学计算题
2020 年高考物理热学计算专题及答案

2020 年高考物理热学计算专题及答案专题简介:1.物体吸收或放出热量的公式①计算物体吸收热量的公式为:Q 吸=cm (t -t 0)=cm ⊿t 。
②计算物体放出热量的公式为:Q 放=cm (t 0-t )=cm ⊿t 。
其中,Q 吸表示吸收热量,单位是J ;c 表示物体比热容,单位是J/(kg·℃);m 表示质量,单位是kg ;t 0表示物体初始温度,单位是℃;t 表示物体后来的温度,单位是℃。
⊿t =t -t 0表示物体升高了的温度。
⊿t =t 0-t ,表示物理降低了的温度。
2.燃料完全燃烧放出热量的公式①燃料完全燃烧释放出的热量公式为:Q 放=mq 。
②气体燃料完全燃烧释放出的热量公式也可为:Q 放=qV 。
推导过程如下: 说明:①中的公式对固体、液体、气体、均适用。
②只对气体适用。
两个公式的得出都是根据热值的定义式得到的。
其中,Q 放表示燃料完全燃烧放出的热量,单位是J ;q 表示燃料的热值,单位是J/kg ;m 表示质量,单位是kg 。
V 表示体积,单位是m3。
3.热效率公式(1)热机的效率:用来做有用功的那部分能量和燃料完全燃烧放出的能量之比。
热机的效率是热机性能的一个重要指标。
汽车发动机的效率、飞机发动机的效率、轮船发动机的效率均属于热机的效率,其公式为:η=放吸Q Q 。
(2)炉具的热效率:天然气燃烧放出的热量是炉具提供的总热量,Q 总=Q 放,水吸收的热量是有用的热量Q 有=Q 吸,则η=总有Q Q 。
(3)电热水器的效率:电热丝所产生热量为Q 总,总=Q 放,水需要吸收热量为Q 有,有=Q 吸,则η=总有Q Q 。
专题例题:【例题1】(2018•济宁)将盛有凉牛奶的瓶子放在热水中(如图所示),通过 方式改变牛奶的内能,图中乙是250g 牛奶与热水的温度随时间变化的图象,则牛奶在加热过程中吸收的热量为 J .[c 牛奶=4.2×103J/(kg•℃)]【答案】热传递;2.1×104。
2020年高考物理计算题强化专练-热学解析版

计算题强化专练-热学一、计算题(本大题共5小题,共50.0分)1.如图所示,质量为m=6kg的绝热气缸(厚度不计),横截面积为S=10cm2,倒扣在水平桌面上(与桌面有缝隙),气缸内有一绝热的“T”型活塞固定在桌面上,活塞与气缸封闭一定质量的理想气体,活塞在气缸内可无摩擦滑动且不漏气.开始时,封闭气体的温度为t0=27℃,压强P=0.5×105P a,g取10m/s2,大气压强为P0=1.0×105P a.求:①此时桌面对气缸的作用力大小;②通过电热丝给封闭气体缓慢加热到t2,使气缸刚好对水平桌面无压力,求t2的值.2.如图所示,用质量为m=1kg、横截面积为S=10cm2的活塞在气缸内封闭一定质量的理想气体,活塞与气缸壁之间的摩擦忽略不计。
开始时活塞距气缸底的高度为h=10cm且气缸足够高,气体温度为t=27℃,外界大气压强为p0=1.0×105Pa,取g=10m/s2,绝对零度取-273℃.求:(i)此时封闭气体的压强;(ii)给气缸缓慢加热,当缸内气体吸收4.5J的热量时,内能的增加量为2.3J,求此时缸内气体的温度。
3.如图所示,竖直放置的U形管左端封闭,右端开口,左管横截面积为右管横截面积的2倍,在左管内用水银封闭一段长为l,温度为T的空气柱,左右两管水银面高度差为hcm,外界大气压为h0cmHg .(1)若向右管中缓慢注入水银,直至两管水银面相平(原右管中水银没全部进入水平部分),求在右管中注入水银柱的长度h1(以cm为单位);(2)在两管水银面相平后,缓慢升高气体的温度至空气柱的长度变为开始时的长度l,求此时空气柱的温度T′.4.一内壁光滑、粗细均匀的U形玻璃管竖直放置,左端开口,右端封闭,左端上部有一轻活塞.初始时,管内水银柱及空气柱长度如图所示.已知大气压强p0=75cmHg ,环境温度不变.(1)求右侧封闭气体的压强p右;(2)现用力向下缓慢推活塞,直至管内两边水银柱高度相等并达到稳定.求此时右侧封闭气体的压强p右;(3)求第(2)问中活塞下移的距离x.5.如图所示,用细管连接A、B两个绝热的气缸,细管中有一可以自由移动的绝热活塞M,细管容积不计。
解析版-2020年高考物理二轮专项训练热学综合计算题

绝密★启用前2020年高考物理二轮专项训练热学综合计算题1.一定质量的理想气体从外界吸收了4.2×105J的热量,同时气体对外做了6×105J的功,问:(1)气体的内能是增加还是减少?变化量是多少?(2)分子的平均动能是增加还是减少?【答案】(1)减少 1.8×105J(2)减少【解析】(1)气体从外界吸热为Q=4.2×105J,气体对外做功,W=-6×105J,由热力学第一定律ΔU=W+Q=(-6×105J)+(4.2×105J)=-1.8×105J。
ΔU为负,说明气体的内能减少了。
所以气体内能减少了1.8×105J。
(2)理想气体不计分子势能,内能减少,说明气体分子的平均动能一定减少。
2.某地强风的风速约为v=20 m/s,设空气密度为ρ=1.3 kg/m3,如果能利用该强风进行发电,并将其动能的20%转化为电能,现考虑横截面积S=20 m2的风车(风车车叶转动形成圆面面积为S),求:(1)利用上述已知量计算电功率的表达式.(2)电功率大小约为多少?(取一位有效数字)【答案】(1)P=ρSv3(2)2×104W【解析】(1)研究时间t内吹到风力发电机上的空气,则空气质量m=ρSvt.空气动能E k=mv2=ρStv3.由能量守恒有:E=20%E k=ρStv3,所以发电机电功率P==ρSv3.(2)代入数据得:P=×1.3×20×203W≈2×104W.3.向一锅开水投入了5个糖馅的甜汤圆,随后投入了5个肉馅的咸汤圆,甜、咸汤圆在沸水中翻滚,象征着封闭系统进入了一个自发的过程,随后,用两只碗各盛了5个汤圆,每碗汤圆中共有六种可能:①全是甜的②全是咸的③1甜4咸④4甜1咸这是四种不平衡的宏观态;⑤2甜3咸⑥3甜2咸这是两种相对平衡的宏观态.两只碗各盛5个汤圆共有32种组合方式,我们称为32个微观态,试问:(1)以上六种宏观态所对应的微观态的个数各是多少?请设计一个图表来表示.(2)以上相对平衡的宏观态出现的概率是多少?【答案】(1)宏观态对应的微观态个数.(2)相对平衡的宏观态出现的概率为.【解析】(1)宏观态对应的微观态个数.(2)相对平衡的宏观态出现的概率为:P==.4.质量一定的某种物质,在压强不变的条件下,由液态Ⅰ向气态Ⅲ(可看成理想气体)变化过程中温度(T)随加热时间(t)变化的关系如图所示.单位时间所吸收的热量可看做不变.(1)以下说法正确的是________.A.在区间Ⅱ,物质的内能不变B.在区间Ⅲ,分子间的势能不变C.从区间Ⅰ到区间Ⅲ,物质的熵增加D.在区间Ⅰ,物质分子的平均动能随着时间的增加而增大(2)在区间Ⅲ,若将压强不变的条件改为体积不变,则温度升高________(选填“变快”“变慢”或“快慢不变”).请说明理由.【答案】(1)BCD(2)变快【解析】(1)因为该物质一直吸收热量,体积不变,不对外做功,所以内能一直增加,A错误,D 正确;又因为区间Ⅱ温度不变,所以分子动能不变,吸收的热量全部转化为分子势能,物体的内能增加,理想气体没有分子力,所以理想气体内能仅与温度有关,分子势能不变,B正确;从区间Ⅰ到区间Ⅲ,分子运动的无序程度增大,物质的熵增加,D正确.(2)根据热力学第一定律ΔU=Q+W根据理想气体的状态方程有=C可知,在吸收相同的热量Q时,压强不变的条件下,V增加,W<0,ΔU1=Q-|W|;体积不变的条件下,W=0,ΔU2=Q;所以ΔU1<ΔU2,体积不变的条件下温度升高变快.5.如图所示,1 mol的理想气体由状态A经状态B、状态C、状态D再回到状态A.BC、DA线段与横轴平行,BA、CD的延长线过原点.(1)气体从B变化到C的过程中,下列说法中正确的是________.A.分子势能增大B.分子平均动能不变C.气体的压强增大D.分子的密集程度增大(2)气体在A→B→C→D→A整个过程中,内能的变化量为________;其中A到B的过程中气体对外做功W1,C到D的过程中外界对气体做功W2,则整个过程中气体向外界放出的热量为________.(3)气体在状态B的体积VB=40 L,在状态A的体积VA=20 L,状态A的温度tA=0 ℃.求:①气体在状态B的温度.②状态B时气体分子间的平均距离.(阿伏加德罗常数N A=6.0×1023mol-1,计算结果保留一位有效数字)【答案】(1)C(2)0W2-W1(3)4×10-9m【解析】(1)理想气体分子势能不计,故A错误;气体从B变化到C的过程中,体积不变,分子的密集程度不变,故D错误;温度升高,分子平均动能增加,故B错误;由=C知压强增大,故C正确.(2)气体在A→B→C→D→A整个过程中,温度不变,故内能的变化量为零;根据ΔU=Q+W=0知Q=(W1-W2),即气体向外界放出的热量为W2-W1.(3)①A到B过程,由=知TB==546 K.②设气体的平均距离为d,则d=≈4×10-9m.6.斜面高0.6 m,倾角为37°,质量是1.0 kg的物体从斜面顶端由静止滑至斜面底端,已知物体与斜面间的动摩擦因数为μ=0.25,g取10 m/s2,求:(1)物体到达斜面底端时的速度;(2)滑动过程中有多少机械能转化为内能.【答案】(1)2m/s(2)2 J【解析】(1)对物体从斜面顶端由静止滑到斜面底端的过程中,由动能定理得WG+W f=mv2,故有mgh-μmg cosθ·=mv2,代入数据求得v=2m/s.(2)摩擦力做的功等于机械能的减少量且全部转化为内能.有ΔE=W f=μmg cosθ·=0.25×1×10×0.8×J=2 J.7.某同学家新买了一台双门电冰箱,冷藏室容积107 L,冷冻室容积118 L,假设室内空气为理想气体.(1)若室内空气摩尔体积为22.5×10-3m3/mol,阿伏加德罗常数为6.0×1023mol-1,在家中关闭冰箱密封门后,电冰箱的冷藏室和冷冻室内大约共有多少个空气分子?(2)若室内温度为27 ℃,大气压为1×105Pa,关闭冰箱密封门通电工作一段时间后,冷藏室温度降为6 ℃,冷冻室温度降为-9 ℃,此时冷藏室与冷冻室中空气的压强差多大?(3)冰箱工作时把热量从温度较低的冰箱内部传到温度较高的冰箱外部,请分析说明这是否违背热力学第二定律.【答案】(1)6.0×1024个(2)5.0×103Pa(3)不违背【解析】(1)N=N A=×6.0×1023个=6.0×1024个(2)设气体初始温度为t0,压强为p0;后来冷藏室与冷冻室中的温度和压强分别为t1、p1和t2、p2,由于两部分气体分别做等容变化,根据查理定律=,p1=p0同理:p2=p0,得Δp=p1-p2=p0代入数据得Δp=5.0×103Pa(3)不违背热力学第二定律,因为热量不是自发的由低温向高温传递,电冰箱工作过程中要消耗电能.8.用钻头在铁块上钻孔时,可用注入冷却水的方法以防止钻头温度的大幅度升高.今注入20 ℃的水5 kg,10 min后水的温度上升到100 ℃并有部分冷却水变成了水蒸气.如果已知钻头的功率为10 kW,钻头做的功有转变成了水和水蒸气的内能,则将有多少质量的水变成了水蒸气?(已知水的比热容c=4.2×103J·kg-1·℃-1,100 ℃时水的汽化热L=2.26×106J·kg-1)【答案】1.03 kg【解析】根据功率的定义,钻头做的功为W总=Pt=6×106J,而水的内能增量ΔE=cmΔt+Lm′=4.2×103×5×(100-20) ℃+2.26×106m′ J=1.68×106J+2.26×106m′ J(式中m′为变成水蒸气的水的质量).由能量守恒定律可知ηW总=ΔE,即1.68×106J+2.26×106m′ J=6×106×J.解得在这10 min内,变成水蒸气的水的质量为m′≈1.03 kg.9.如图所示,教室内用横截面积为0.2 m2的绝热活塞,将一定质量的理想气体封闭在圆柱形汽缸内,活塞与汽缸之间无摩擦,a状态是汽缸放在冰水混合物(0 ℃)中气体达到的平衡状态,活塞离汽缸底部的高度为0.6 m;b状态是汽缸从容器中移出后达到的平衡状态,活塞离汽缸底部的高度为0.65 m.设室内大气压强始终保持1.0×105Pa,忽略活塞质量.(1)求教室内的温度;(2)若气体从状态a变化到状态b的过程中,内能增加了560 J,求此过程中气体吸收的热量.【答案】(1)295.75 K(2)1 560 J【解析】(1)由题意知气体做等压变化,设教室内温度为T2由=知T2==295.75 K(2)气体对外界做功为W=p0S(h2-h1)=103根据热力学第一定律得Q=ΔU-W=1 560 J10.如图甲所示,用面积为S的活塞在汽缸内封闭着一定质量的空气,活塞上放一砝码,活塞和砝码的总质量为m.现对汽缸缓缓加热,使汽缸内的空气温度从T1升高到T2,空气柱的高度增加了ΔL,已知加热时气体吸收的热量为Q,外界大气压强为p0.求:(1)此过程中被封闭气体的内能变化了多少?(2)汽缸内温度为T1时,气柱的长度为多少?(3)请在图乙的V-T图上大致作出该过程的图象(包括在图线上标出过程的方向).【答案】(1)Q-(p0S+mg)ΔL(2)(3)如图所示【解析】(1)对活塞和砝码:mg+p0S=pS,得p=p0+气体对外做功W=pSΔL=(p0S+mg)ΔL由热力学第一定律ΔU=Q+W,得ΔU=Q-(p0S+mg)ΔL(2)=,=解得L=(3)如图所示11.已知无烟煤的热值约为3.2×107J/kg,一块蜂窝煤约含煤250 g,水的比热容是4.2×103J/(kg·℃).若煤完全燃烧释放出的热有60%被水吸收,求一块蜂窝煤完全燃烧后可将多少水从10 ℃加热到100 ℃?(保留三位有效数字).【答案】12.7 kg【解析】煤完全燃烧放出的能量为:Q1=3.2×107×250×10-3J=8×106J由题意Q1×60%=cmΔt,且Δt=(100-10) ℃=90 ℃,解得m=12.7 kg.12.某同学为测量地表植物吸收太阳能的本领,做了如下实验:用一面积为0.1 m2的水盆盛6 kg的水,经太阳垂直照射15 min,温度升高 5 ℃,若地表植物每秒接收太阳能的能力与水相等,试计算:[已知水的比热容为4.2×103J/(kg·℃)](1)每平方米绿色植物每秒接收的太阳能为多少焦耳?(2)若绿色植物在光合作用下每吸收1 kJ的太阳能可放出0.05 L的氧气,则每公顷绿地每秒可放出多少氧气?(1公顷=104m2)【答案】(1)1.4×103J(2)700 L【解析】根据水升温吸收的热量,便可求出单位面积单位时间吸收的太阳能,进而可求出每公顷绿地每秒放出的氧气.(1)单位面积单位时间吸收的太阳能为P==J/(m2·s)=1.4×103J/(m2·s).(2)氧气的体积为V=×0.05 L=700 L.13.一定质量理想气体经历如图所示的A→B,B→C,C→A三个变化过程,T A=300 K,气体从C→A 的过程中做功为100 J,同时吸热250 J,已知气体的内能与温度成正比.求:(1)气体处于C状态时的温度T C;(2)气体处于C状态时内能E C.【答案】(1)150 K(2)150 J【解析】(1)由图知C到A,是等压变化,根据理想气体状态方程:=,得:T C=TA=150 K(2)根据热力学第一定律:E A-E C=Q-W=150 J 且==,解得:E C=150 J.。
2020年高考热学部分试题

2020年高考热学部分试卷一、单选题(新课标一)1.一定质量的理想气体从状态a 开始,经a b b c c a →→→、、三个过程后回到初始状态a ,其p V -图像如图所示。
已知三个状态的坐标分别为000000(2)(2,)(32)a V p b V p c V p ,、、,。
以下判断正确的是( )A.气体在a b →过程中对外界做的功小于在b c →过程中对外界做的功B.气体在a b →过程中从外界吸收的热量大于在b c →过程中从外界吸收的热量C.在c a →过程中,外界对气体做的功小于气体向外界放出的热量D.气体在c a →过程中内能的减少量大于b c →过程中内能的增加量 二、计算题(全国卷一)[物理——选修3-3](1)分子间作用力F 与分子间距r 的关系如图所示,1r r =时,0F =。
分子间势能由r 决定,规定两分子相距无穷远时分子间的势能为零。
若一分子固定于原点O ,另一分子从距O 点很远处向O 点运动,在两分子间距减小到2r 的过程中,势能_____(填“减小”“不变”或“增大”);在间距由2r 减小到1r 的过程中,势能_____ (填“减小”“不变”或“增大”);在间距等于1r 处,势能_____(填“大于”“等于”或“小于”)零。
(2)甲、乙两个储气罐储存有同种气体(可视为理想气体)。
甲罐的容积为V ,罐中气体的压强为p ;乙罐的容积为2V ,罐中气体的压强为12p 。
现通过连接两罐的细管把甲罐中的部分气体调配到乙罐中去,两罐中气体温度相同且在调配过程中保持不变,调配后两罐中气体的压强相等。
求调配后(i )两罐中气体的压强;(ii)甲罐中气体的质量与甲罐中原有气体的质量之比。
(全国卷二)[物理——选修3–3](1)下列关于能量转换过程的叙述,违背热力学第一定律的有_______,不违背热力学第一定律、但违背热力学第二定律的有_______。
(填正确答案标号)A.汽车通过燃烧汽油获得动力并向空气中散热B.冷水倒入保温杯后,冷水和杯子的温度都变得更低C.某新型热机工作时将从高温热源吸收的热量全部转化为功,而不产生其他影响D.冰箱的制冷机工作时从箱内低温环境中提取热量散发到温度较高的室内(2)潜水钟是一种水下救生设备,它是一个底部开口、上部封闭的容器,外形与钟相似。
2020年高考物理专题复习:热学部分解答题

高考回归复习—热学部分解答题1.一定质量的理想气体,其内能跟热力学温度成正比。
在初始状态A时,体积为V0,压强为p0,温度为T0,此时其内能为U0.该理想气体从状态A经由一系列变化,最终返回到原来状态A,其变化过程的VT图如图所示,其中CA延长线过坐标原点,B、A点在同一竖直线上。
求:(1)该理想气体在状态B时的压强;(2)该理想气体从状态B经由状态C回到状态A的过程中,气体向外界放出的热量。
2.一定质量的理想气体被活塞封闭在汽缸内,如图所示水平放置.活塞的质量m=20 kg,横截面积S=100 cm2,活塞可沿汽缸壁无摩擦滑动但不漏气,开始时汽缸水平放置,活塞与汽缸底的距离L1=12 cm,离汽缸口的距离L2=3 cm.外界气温为27 ℃,大气压强为1.0×105 Pa,将汽缸缓慢地转到开口向上的竖直位置,待稳定后对缸内气体逐渐加热,使活塞上表面刚好与汽缸口相平,取g=10 m/s2,求:(1)此时气体的温度为多少?(2)在对缸内气体加热的过程中,气体膨胀对外做功,同时吸收Q=370 J的热量,则气体增加的内能ΔU 多大?3.如图所示,长为L、横截面积为S、质量为m的筒状小瓶,底朝上漂浮在某液体中。
平衡时,瓶内空气柱长为0.21L,瓶内、外液面高度差为0.10L;再在瓶底放上一质量为m的物块,平衡时,瓶底恰好和液面相平。
已知重力加速度为g,系统温度不变,瓶壁和瓶底厚度可忽略。
求:(1)液体密度ρ;(2)大气压强p0。
4.如图所示,哑铃状玻璃容器由两段完全相同的粗管和一段细管连接而成,容器竖直放置。
容器粗管的截面积为S1=2cm2,细管的截面积S2=1cm2,开始时粗细管内水银长度分别为h1=h2=2cm。
整个细管长为h=4cm,封闭气体长度为L=6cm,大气压强取p0=76cmHg,气体初始温度为27C 。
求:(1)若要使水银刚好离开下面的粗管,封闭气体的温度应为多少K?(2)若在容器中再倒入同体积的水银,且使容器中封闭气体长度L仍为6cm不变,封闭气体的温度应为多少K?5.某一热学装置如图所示,左侧容器开口;横截面积为左侧容器15的右管竖直放置,上端封闭,导热良好,管长L0=1.5m,粗细均匀,底部有细管与左侧连通,初始时未装液体,右管里面气体压强等于大气压。
高中物理热学计算题以及答案

1. 问题:一个容积为V的容器中充满了1mol的气体,此时容器的温度为T1,请计算容器中气体的平均动能。
答案:平均动能=(3/2)nRT1,其中n为气体的物质的量,R为气体常数。
2. 一个容积为V的容器中装满了水,水的温度为t℃,水的重量为m,水的热容为c,此时将容器中的水加热,经过一段时间后,水的温度升高到T℃,请计算:
(1)水加热的总热量
Q=mc(T-t)
(2)水加热的平均热量
Qavg=Q/t
3..一元系统中,向容器中加入了$m$克汽油,汽油的温度为$T_1$,容器中的水的温度为$T_2$,汽油和水的比容为$V_1$和$V_2$,如果汽油和水的温度最终变为$T_3$,那么汽油的最终温度$T_4$为多少?
解:$T_4=\frac{mT_1V_1+T_2V_2}{mV_1+V_2}T_3$
4. 一定体积的气体在温度为273K,压强为100kPa时,改变温度到273K,压强到400kPa,求气体的体积。
解:由比容量关系可得:
V2/V1=P2/P1
V2=V1×P2/P1
V2=V1×400/100
V2=4V1
答案:V2=4V1。
高考物理选考热学计算题(一)含答案与解析

高考物理选考热学计算题(一)组卷老师:莫老师评卷人得分一.计算题(共50小题)1.开口向上、内壁光滑的汽缸竖直放置,开始时质量不计的活塞停在卡口处,气体温度为27℃,压强为0.9×105 Pa,体积为1×10﹣3m3,现缓慢加热缸内气体,试通过计算判断当气体温度为67℃时活塞是否离开卡口。
(已知外界大气压强p0=1×105Pa)2.铁的密度ρ=7.8×103kg/m3、摩尔质量M=5.6×10﹣2 kg/mol,阿伏加德罗常数NA=6.0×1023mol﹣1.可将铁原子视为球体,试估算:(保留一位有效数字)①1 克铁含有的分子数;②铁原子的直径大小.3.如图所示,一个上下都与大气相通的直圆筒,内部横截面积为S=0.01m2,中间用两个活塞A和B封住一定质量的气体。
A、B都可沿圆筒无摩擦地上下滑动,且不漏气。
A的质量不计,B的质量为M,并与一劲度系数为k=5×103N/m的较长的弹簧相连。
已知大气压p0=1×105Pa,平衡时两活塞之间的距离l0=0.6m,现用力压A,使之缓慢向下移动一段距离后保持平衡。
此时用于压A的力F=500N.求活塞A下移的距离。
4.如图,密闭性能良好的杯盖扣在盛有少量热水的杯身上,杯盖质量为m,杯身与热水的总质量为M,杯子的横截面积为S.初始时杯内气体的温度为T0,压强与大气压强p0相等.因杯子不保温,杯内气体温度将逐步降低,不计摩擦.(1)求温度降为T1时杯内气体的压强P1;(2)杯身保持静止,温度为T1时提起杯盖所需的力至少多大?(3)温度为多少时,用上述方法提杯盖恰能将整个杯子提起?5.如图,上端开口、下端封闭的足够长的细玻璃钌竖直放置,﹣段长为l=15.0cm 的水银柱下方封闭有长度也为l的空气柱,已知大气压强为p0=75.0cmHg;如果使玻璃管绕封闭端在竖直平面内缓慢地转动半周.求在开口向下时管内封闭空气柱的长度.6.如图所示为一种减震垫,由12个形状相同的圆柱状薄膜气泡组成,每个薄膜气泡充满了体积为V1,压强为p1的气体,若在减震垫上放上重为G的厚度均匀、质量分布均匀的物品,物品与减震垫的每个薄膜表面充分接触,每个薄膜上表面与物品的接触面积均为S,不计每个薄膜的重,大气压强为p0,气体的温度不变,求:(i)每个薄膜气泡内气体的体积减少多少?(ii)若撤去中间的两个薄膜气泡,物品放上后,每个薄膜上表面与物品的接触面积增加了0.2S,这时每个薄膜气泡的体积又为多大?7.一足够高的内壁光滑的导热气缸竖直地浸放在盛有冰水混合物的水槽中,用不计质量的活塞封闭了一定质量的理想气体,活塞的面积为1.5×10﹣3m2,如图1所示,开始时气体的体积为3.0×10﹣3m3,现缓慢地在活塞上倒上一定质量的细沙,最后活塞静止时气体的体积恰好变为原来的三分之一.设大气压强为1.0×105Pa.重力加速度g取10m/s2,求:(1)最后气缸内气体的压强为多少?(2)最终倒在活塞上细沙的总质量为多少千克?(3)在P﹣V图上(图2)画出气缸内气体的状态变化过程(并用箭头标出状态变化的方向).8.如图所示,竖直放置的气缸,活塞横截面积为S=0.01m2,厚度不计。
【2020】最新高考物理热学复习试题-Word版试卷及答案解析

一、选择题1. 一位质量为60 kg的同学为了表演“轻功”(1)关于气球内气体的压强,下列说法正确的是B.是由于气体重力而产生的C.是由于气体分子之间的斥力而产生的(2)在这位同学慢慢站上轻质塑料板中间位置的过程中,球内气体温度可视为不变。
下列说法正确的是A.球内气体体积变大B.球内气体体积变小C.球内气体内能变大(3) 为了估算气球内气体的压强,这位同学在气球的外表面涂上颜料,在轻质塑料板面和气球一侧表面贴上间距为2.0 cm的方格纸。
表演结束后,留下气球与方格纸接触部分的“印迹”如图所示若表演时大气压强为1.013105Pa,取g=10 m/s2,则气球内气体的压强为7. 假如全世界60亿人同时数1 g水的分子个数,每人每小时可以数5 000个,不间断地数,则完成任务所需时间最接近(阿伏加德罗常数NA取6×1023 mol-1) ( )A.10年B.1千年C.10万年D.1千万年答案: CA.弯管左管内外水银面的高度差为hC.若把弯管向下移动少许,右管内的水银柱沿管壁上升D.若环境温度升高,右管内的水银柱沿管壁上升答案: ACD9.已知地球半径约为 6.4×106 m,空气的摩尔质量约为29×10-3kg/mol,一个标准大气压约为1.0×105 Pa.利用以上数据可估算出地球表面大气在标准状况下的体积为 ( )A.4×1016 m3B.4×1018 m3C.4×1020 m3D.4×1022 m3答案: B10.对一定量的气体,下列说法正确的是( )A.气体的体积是所有气体分子的体积之和B.气体分子的热运动越剧烈,气体温度就越高C.气体对器壁的压强是由大量气体分子对器壁不断碰撞而产生的答案: BC11.已知理想气体的内能与温度成正比,如图所示的实线为汽缸内一定质量的理想气体由状态1到状态2的变化曲线则在整个过程中气缸内气体的内能 ( )B.先减小后增大C.单调变化D.保持不变答案:B12.下列说法正确的是( )B.热量只能从高温物体向低温物体传递C.遵守热力学第一定律的过程一定能实现D.做功和热传递是改变物体内能的两种方式答案: D13.地面附近有一正在上升的空气团,它与外界的热交换忽略不计,已知大气压强随高度增加而降低,则该气团在此上升过程中(不计气团内分子间的势能) ( )A.体积减小,温度降低B.体积减小,温度不变C.体积增大,温度降低D.体积增大,温度不变答案: C(2)往一杯清水中滴入一滴红墨水,一段时间后,整杯水都变成了红色.这一现象在物理学中称为现象,是由于分子的而产生的,这一过程是沿着分子热运动的无序性的方向进行的.答案: (1)大分子引力 (2)扩散无规则运动(热运动) 增加15.如图所示,喷雾器内有10 L水,上部封闭有1 atm的空气2 L.关闭喷雾阀门,用打气筒向喷雾器内再充入1 atm的空气3 L(设外界环境温度一定,空气可看作理想气体).(1)当水面上方气体温度与外界温度相等时,求气体压强,并从微观上解释气体压强变化的原因.答案:(1)2.5 atm 温度不变,分子平均动能不变,单位体积内分子数增加,所以压强增加(2)吸热气体对外做功而内能不变,根据热力学第一定律可知气体吸热16.(I)下列说法正确的是(A)气体的内能是分子热运动的动能和分子间的势能之和;(C)功可以全部转化为热,但热量不能全部转化为功;(D)热量能够自发地从高温物体传递到低温物体,但不能自发地从低温物体传递到高温物体;(E)一定量的气体,在体积不变时,分子每秒平均碰撞次数随着温度降低而减小;(1)氦气在停止加热前的体积;(2)氦气在停止加热较长一段时间后的体积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年物理高考备考热学计算题专题1考情分析本专题主要解决的是分子动理论和热力学定律,并从宏观和微观角度理解固、液、气三态的性质。
新课程标准对本部分内容要求较低,《考试说明》明确提出“在选考中不出现难题”,高考命题的形式基本上都是小题的拼盘。
高考对本部分内容考查的重点和热点有以下几个方面:①气体实验定律的理解和简单计算②热力学定律的理解和简单计算③固体、液体、气体微观量的估算预测高考会涉及在以下方面:利用阿伏伽德罗常数进行微观量估算;以简答形式或者计算题形式命题;以理想气体为研究对象考查气体性质和热力学定律的问题,以计算题的形式命题。
2题型展示①气缸类:1.如图,一竖直放置的气缸上端开口,气缸壁内有卡口a和b,a、b间距为h,a距缸底的高度为H;活塞只能在a、b间移动,其下方密封有一定质量的理想气体。
已知活塞质量为m,面积为S,厚度可忽略;活塞和汽缸壁均绝热,不计他们之间的摩擦。
开始时活塞处于静止状态,上、下方气体压强均为p0,温度均为T0。
现用电热丝缓慢加热气缸中的气体,直至活塞刚好到达b处。
求此时气缸内气体的温度以及在此过程中气体对外所做的功。
重力加速度大小为g。
2.如图,容积为V的汽缸由导热材料制成,面积为S的活塞将汽缸分成容积相等的上下两部分,汽缸上部通过细管与装有某种液体的容器相连,细管上有一阀门K。
开始时,K关闭,汽缸内上下两部分气体的压强均为p0,现将K打开,容器内的液体缓慢地流入汽缸,当流入的液体体积为时,将K关闭,活塞平衡时其下方气体的体积减小了,不计活塞的质量和体积,外界温度保持不变,重力加速度大小为g。
求流入汽缸内液体的质量。
3.(10分)如图,一容器由横截面积分别为2S和S的两个汽缸连通而成,容器平放在地面上,汽缸内壁光滑。
整个容器被通过刚性杆连接的两活塞分隔成三部分,分别充有氢气、空气和氮气。
平衡时,氮气的压强和体积分别为p0和V0,氢气的体积为2V0,空气的压强为p。
现缓慢地将中部的空气全部抽出,抽气过程中氢气和氮气的温度保持不变,活塞没有到达两汽缸的连接处,求:(1)抽气前氢气的压强;(2)抽气后氢气的压强和体积。
②玻璃管类:4.(10分)如图,一粗细均匀的细管开口向上竖直放置,管内有一段高度为2.0 cm的水银柱,水银柱下密封了一定量的理想气体,水银柱上表面到管口的距离为2.0 cm。
若将细管倒置,水银柱下表面恰好位于管口处,且无水银滴落,管内气体温度与环境温度相同。
已知大气压强为76 cmHg,环境温度为296 K。
(1)求细管的长度;(2)若在倒置前,缓慢加热管内被密封的气体,直到水银柱的上表面恰好与管口平齐为止,求此时密封气体的温度。
5.如图所示,两端开口、粗细均匀的足够长玻璃管插在大水银槽中,管的上部有一定长度的水银,两段空气柱被封闭在左右两侧的竖直管中。
开启上部连通左右水银的阀门A,当温度为300K平衡时水银的位置如图,其中左侧空气柱长度,左侧空气柱底部的水银面与水银槽液面高度差为,左右两侧顶部的水银面的高度差为,大气压为求:右管内气柱的长度,关闭阀门A,当温度升至405K时,左侧竖直管内气柱的长度大气压强保持不变③阅读理解及建模类6.如图是一种气压保温瓶的结构示意图。
其中出水管很细,体积可忽略不计,出水管口与瓶胆口齐平,用手按下按压器时,气室上方的小孔被堵塞,使瓶内气体压强增大,水在气压作用下从出水管口流出。
最初瓶内水面低于出水管口10 cm,此时瓶内气体(含气室)的体积为2.0×102 cm3,已知水的密度为1.0×103 kg/m3,按压器的自重不计,大气压强p0=1.01×105 Pa,取g=10 m/s2。
求:(1)要使水从出水管口流出,瓶内水面上方的气体压强的最小值;(2)当瓶内气体压强为1.16×105 Pa时,瓶内气体体积的压缩量。
(忽略瓶内气体的温度变化)7、热等静压设备广泛用于材料加工中。
该设备工作时,先在室温下把惰性气体用压缩机压入到一个预抽真空的炉腔中,然后炉腔升温,利用高温高气压环境对放入炉腔中的材料加工处理,改善其性能。
一台热等静压设备的炉腔中某次放入固体材料后剩余的容积为0.13 m3,炉腔抽真空后,在室温下用压缩机将10瓶氩气压入到炉腔中。
已知每瓶氩气的容积为3.2×10-2 m3,使用前瓶中气体压强为1.5×107 Pa,使用后瓶中剩余气体压强为2.0×106 Pa;室温温度为27 ℃。
氩气可视为理想气体。
(1)求压入氩气后炉腔中气体在室温下的压强;(2)将压入氩气后的炉腔加热到1 227 ℃,求此时炉腔中气体的压强。
8.如图所示,总长度为15cm的气缸放置在水平桌面上。
活塞的质量,横截面积,活塞可沿气缸壁无摩擦地滑动但不漏气,开始时活塞与气缸底的距离12cm。
外界气温为,大气压强为将气缸缓慢地转到开口向上的竖直位置,待稳定后对缸内气体逐渐加热,使活塞上表面刚好与气缸口相平,取,求:活塞上表面刚好与气缸口相平时气体的温度为多少?在对气缸内气体加热的过程中,吸收了189J的热量,则气体增加的内能是多少?热学计算题专题答案与解析1.【答案】【解析】由于活塞处于平衡状态所以可以利用活塞处于平衡状态,求封闭气体的压强,然后找到不同状态下气体参量,计算温度或者体积。
开始时活塞位于a处,加热后,汽缸中的气体先经历等容过程,直至活塞开始运动。
设此时汽缸中气体的温度为T1,压强为p1,根据查理定律有①根据力的平衡条件有②联立①②式可得③此后,汽缸中的气体经历等压过程,直至活塞刚好到达b处,设此时汽缸中气体的温度为T2;活塞位于a处和b处时气体的体积分别为V1和V2。
根据盖—吕萨克定律有④式中V1=SH⑤V2=S(H+h)⑥联立③④⑤⑥式解得⑦从开始加热到活塞到达b处的过程中,汽缸中的气体对外做的功为⑧2、【答案】【解析】本题考查玻意耳定律、关联气体、压强及其相关的知识点。
设活塞再次平衡后,活塞上方气体的体积为错误!未找到引用源。
,压强为错误!未找到引用源。
;下方气体的体积为错误!未找到引用源。
,压强为错误!未找到引用源。
在活塞下移的过程中,活塞上、下方气体的温度均保持不变,由玻意耳定律得错误!未找到引用源。
①错误!未找到引用源。
②由已知条件得错误!未找到引用源。
③错误!未找到引用源。
④设活塞上方液体的质量为m ,由力的平衡条件得错误!未找到引用源。
⑤联立以上各式得错误!未找到引用源。
⑥3、【答案】(1)p 10=12(p 0+p ) (2)00104=2p p V V p p++() 【解析】(1)设抽气前氢气的压强为p 10,根据力的平衡条件得(p 10–p )·2S =(p 0–p )·S ① 得p 10=12(p 0+p )②(2)设抽气后氢气的压强和体积分别为p 1和V 1,氢气的压强和体积分别为p 2和V 2,根据力的平衡条件有p 2·S =p 1·2S ③ 由玻意耳定律得p 1V 1=p 10·2V 0④ p 2V 2=p 0·V 0⑤由于两活塞用刚性杆连接,故V 1–2V 0=2(V 0–V 2)⑥联立②③④⑤⑥式解得101124p p p =+⑦ 00104=2p p V V p p++()⑧ 4、【答案】(1)L =41 cm (2)T =312 K【解析】(1)设细管的长度为L ,横截面的面积为S ,水银柱高度为h ;初始时,设水银柱上表面到管口的距离为h 1,被密封气体的体积为V ,压强为p ;细管倒置时,气体体积为V 1,压强为p 1。
由玻意耳定律有pV =p 1V 1 ①由力的平衡条件有p =p 0+ρgh ②p 1=p 0–ρgh ③式中,ρ、g 分别为水银的密度和重力加速度的大小,p 0为大气压强。
由题意有V =S (L –h 1–h ) ④V 1=S (L –h ) ⑤由①②③④⑤式和题给条件得L =41 cm ⑥(2)设气体被加热前后的温度分别为T 0和T ,由盖–吕萨克定律有 10V V T T ⑦由④⑤⑥⑦式和题给数据得T =312 K ⑧5.【答案】解:左管内气体压强:, 右管内气体压强:, ,解得右管内外液面高度差为:,右管内气柱长度为:;设玻璃管截面积S ,由理想气体状态方程,有:, 即:,解得:。
答:右管内气柱的长度为50cm 。
关闭阀门A ,当温度升至405K 时,左侧竖直管内气柱的长度为60cm 。
【解析】分别以两部分气体为研究对象,求出两部分气体压强,然后由几何关系求出右管内气柱的长度。
以左管内气体为研究对象,由理想气体状态方程可以求出空气柱的长度。
求出各气体压强是正确解题的关键,熟练应用理想气体状态方程即可正确解题。
6、【答案】(1)1.02×105 Pa (2)25.9 cm 3【解析】(1)由题意知,瓶内、外气体压强以及水的压强存在以下关系:p 内=p 0+p 水=p 0+ρgh 水代入数据得p 内=1.02×105 Pa 。
(2)当瓶内气体压强为p =1.16×105 Pa 时,设瓶内气体的体积为V 。
由玻意耳定律得p 0V 0=pV ,压缩量为ΔV =V 0-V ,已知瓶内原有气体体积V 0=2.0×102 cm 3,解得ΔV =25.9 cm 3。
7、【答案】(1)p 2=3.2×107 Pa (2)p 3=1.6×108 Pa【解析】(1)设初始时每瓶气体的体积为V 0,压强为p 0;使用后气瓶中剩余气体的压强为p 1。
假设体积为V 0、压强为p 0的气体压强变为p 1时,其体积膨胀为V 1。
由玻意耳定律p 0V 0=p 1V 1 ①被压入进炉腔的气体在室温和p 1条件下的体积为10V V V '=- ②设10瓶气体压入完成后炉腔中气体的压强为p 2,体积为V 2。
由玻意耳定律p 2V 2=10p 11V ' ③联立①②③式并代入题给数据得p 2=3.2×107 Pa ④(2)设加热前炉腔的温度为T 0,加热后炉腔温度为T 1,气体压强为p 3,由查理定律 3210p p T T = ⑤联立④⑤式并代入题给数据得 p 3=1.6×108 Pa ⑥8.【答案】解:以封闭气体为研究对象,当气缸水平放置时,气体初状态参量: ,,,当气缸口朝上时,活塞到达气缸口时,活塞受力分析如图所示。
有则解得气体末状态参量:,? 由理想气体的状态方程:代入数据得:当气缸开口向上竖直位置时,未加热稳定时,设气体的长度为,则:代入数据得:加热后,气体做等压膨胀,气体对外力做功:解得由热力学第一定律:代入数据联立得:答:活塞上表面刚好与气缸口相平时气体的温度为450K;气体增加的内能是129J。