2019年四川省泸州中考数学试卷及答案解析
2019年四川省泸州市中考数学试卷(解析版)

2019年四川省泸州市中考数学试卷一、选择题(每题3分,共36分)1.﹣7的绝对值是()A.7 B.﹣7 C.D.﹣2.“五一”期间,某市共接待海内外游客约567000人次,将567000用科学记数法表示为()A.567×103B.56.7×104C.5.67×105D.0.567×1063.下列各式计算正确的是()A.2x•3x=6x B.3x﹣2x=x C.(2x)2=4x D.6x÷2x=3x4.如图是一个由4个相同的正方体组成的立体图形,它的左视图是()A.B.C.D.5.已知点A(a,1)与点B(﹣4,b)关于原点对称,则a+b的值为()A.5 B.﹣5 C.3 D.﹣36.如图,AB是⊙O的直径,弦CD⊥AB于点E.若AB=8,AE=1,则弦CD的长是()A.B.2 C.6 D.87.下列命题是真命题的是()A.四边都是相等的四边形是矩形B.菱形的对角线相等C.对角线互相垂直的平行四边形是正方形D.对角线相等的平行四边形是矩形8.下列曲线中不能表示y与x的函数的是()A.B.C.D.9.已知三角形的三边长分别为a、b、c,求其面积问题,中外数学家曾经进行过深入研究,古希腊的几何学家海伦(Heron,约公元50年)给出求其面积的海伦公式S=,其中p=;我国南宋时期数学家秦九韶(约1202﹣1261)曾提出利用三角形的三边求其面积的秦九韶公式S=,若一个三角形的三边长分别为2,3,4,则其面积是()A.B.C.D.11.如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则tan∠BDE的值是()A.B.C.D.12.已知抛物线y=x2+1具有如下性质:该抛物线上任意一点到定点F(0,2)的距离与到x轴的距离始终相等,如图,点M的坐标为(,3),P是抛物线y=x2+1上一个动点,则△PMF周长的最小值是()A.3 B.4 C.5 D.6二、填空题(本大题共4小题,每题3分,共12分)13.在一个不透明的袋子中装有4个红球和2个白球,这些球除了颜色外无其他差别,从袋子中随机摸出一个球,则摸出白球的概率是.14.分解因式:2m2﹣8=.15.若关于x的分式方程+=3的解为正实数,则实数m的取值范围是.16.在△ABC中,已知BD和CE分别是边AC、AB上的中线,且BD⊥CE,垂足为O.若OD=2cm,OE=4cm,则线段AO的长度为cm.三、解答题(每题6分,共18分)17.计算:(﹣3)2+20190﹣×sin45°.18.如图,点A、F、C、D在同一条直线上,已知AF=DC,∠A=∠D,BC∥EF,求证:AB=DE.19.化简:•(1+)四、本大题共2小题,每小题7分,共14分20.某单位750名职工积极参加向贫困地区学校捐书活动,为了解职工的捐数量,采用随机抽样的方法抽取30名职工作为样本,对他们的捐书量进行统计,统计结果共有4本、5本、6本、7本、8本五类,分别用A、B、C、D、E表示,根据统计数据绘制成了如图所示的不完整的条形统计图,由图中给出的信息解答下列问题:(1)补全条形统计图;(2)求这30名职工捐书本数的平均数、众数和中位数;(3)估计该单位750名职工共捐书多少本?21.某中学为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买甲种书柜3个、乙种书柜2个,共需资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元.(1)甲、乙两种书柜每个的价格分别是多少元?(2)若该校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金4320元,请设计几种购买方案供这个学校选择.五、本大题共2小题,每小题8分,共16分.22.如图,海中一渔船在A处且与小岛C相距70nmile,若该渔船由西向东航行30nmile到达B处,此时测得小岛C位于B的北偏东30°方向上;求该渔船此时与小岛C之间的距离.23.一次函数y=kx+b(k≠0)的图象经过点A(2,﹣6),且与反比例函数y=﹣的图象交于点B(a,4)(1)求一次函数的解析式;(2)将直线AB向上平移10个单位后得到直线l:y1=k1x+b1(k1≠0),l与反比例函数y2=的图象相交,求使y1<y2成立的x的取值范围.六、本大题共两个小题,每小题12分,共24分24.如图,⊙O与Rt△ABC的直角边AC和斜边AB分别相切于点C、D,与边BC 相交于点F,OA与CD相交于点E,连接FE并延长交AC边于点G.(1)求证:DF∥AO;(2)若AC=6,AB=10,求CG的长.25.如图,已知二次函数y=ax2+bx+c(a≠0)的图象经过A(﹣1,0)、B(4,0)、C(0,2)三点.(1)求该二次函数的解析式;(2)点D是该二次函数图象上的一点,且满足∠DBA=∠CAO(O是坐标原点),求点D的坐标;(3)点P是该二次函数图象上位于一象限上的一动点,连接PA分别交BC,y 轴与点E、F,若△PEB、△CEF的面积分别为S1、S2,求S1﹣S2的最大值.2019年四川省泸州市中考数学试卷参考答案与试题解析一、选择题(每题3分,共36分)1.﹣7的绝对值是()A.7 B.﹣7 C.D.﹣【考点】15:绝对值.【分析】根据绝对值的性质解答,当a是负有理数时,a的绝对值是它的相反数﹣a.【解答】解:|﹣7|=7.故选A.2.“五一”期间,某市共接待海内外游客约567000人次,将567000用科学记数法表示为()A.567×103B.56.7×104C.5.67×105D.0.567×106【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:567000=5.67×105,故选:C.3.下列各式计算正确的是()A.2x•3x=6x B.3x﹣2x=x C.(2x)2=4x D.6x÷2x=3x【考点】4I:整式的混合运算.【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=6x2,不符合题意;B、原式=x,符合题意;C、原式=4x2,不符合题意;D、原式=3,不符合题意,故选B4.如图是一个由4个相同的正方体组成的立体图形,它的左视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】根据左视图是从左边看到的图形解答.【解答】解:左视图有2行,每行一个小正方体.故选D.5.已知点A(a,1)与点B(﹣4,b)关于原点对称,则a+b的值为()A.5 B.﹣5 C.3 D.﹣3【考点】R6:关于原点对称的点的坐标.【分析】根据关于原点的对称点,横纵坐标都变成相反数,可得a、b的值,根据有理数的加法,可得答案.【解答】解:由A(a,1)关于原点的对称点为B(﹣4,b),得a=4,b=﹣1,a+b=3,故选:C.6.如图,AB是⊙O的直径,弦CD⊥AB于点E.若AB=8,AE=1,则弦CD的长是()A.B.2 C.6 D.8【考点】M2:垂径定理;KQ:勾股定理.【分析】根据垂径定理,可得答案.【解答】解:由题意,得OE=OB﹣AE=4﹣1=3,CE=CD==,CD=2CE=2,故选:B.7.下列命题是真命题的是()A.四边都是相等的四边形是矩形B.菱形的对角线相等C.对角线互相垂直的平行四边形是正方形D.对角线相等的平行四边形是矩形【考点】O1:命题与定理.【分析】根据矩形的判定定理,菱形的性质,正方形的判定判断即可得到结论.【解答】解:A、四边都相等的四边形是菱形,故错误;B、矩形的对角线相等,故错误;C、对角线互相垂直的平行四边形是菱形,故错误;D、对角线相等的平行四边形是矩形,正确,故选D.8.下列曲线中不能表示y与x的函数的是()A.B.C.D.【考点】E2:函数的概念.【分析】函数是在一个变化过程中有两个变量x,y,一个x只能对应一个y.【解答】解:当给x一个值时,y有唯一的值与其对应,就说y是x的函数,x 是自变量.选项C中的图形中对于一个自变量的值,图象就对应两个点,即y有两个值与x 的值对应,因而不是函数关系.故选C.9.已知三角形的三边长分别为a、b、c,求其面积问题,中外数学家曾经进行过深入研究,古希腊的几何学家海伦(Heron,约公元50年)给出求其面积的海伦公式S=,其中p=;我国南宋时期数学家秦九韶(约1202﹣1261)曾提出利用三角形的三边求其面积的秦九韶公式S=,若一个三角形的三边长分别为2,3,4,则其面积是()A.B.C.D.【考点】7B:二次根式的应用.【分析】根据题目中的秦九韶公式,可以求得一个三角形的三边长分别为2,3,4的面积,从而可以解答本题.【解答】解:∵S=,∴若一个三角形的三边长分别为2,3,4,则其面积是:S==,故选B.11.如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则tan∠BDE的值是()A.B.C.D.【考点】LB:矩形的性质;T7:解直角三角形.【分析】证明△BEF∽△DAF,得出EF=AF,EF=AE,由矩形的对称性得:AE=DE,得出EF=DE,设EF=x,则DE=3x,由勾股定理求出DF==2x,再由三角函数定义即可得出答案.【解答】解:∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∵点E是边BC的中点,∴BE=BC=AD,∴△BEF∽△DAF,∴=,∴EF=AF,∴EF=AE,∵点E是边BC的中点,∴由矩形的对称性得:AE=DE,∴EF=DE,设EF=x,则DE=3x,∴DF==2x,∴tan∠BDE===;故选:A.12.已知抛物线y=x2+1具有如下性质:该抛物线上任意一点到定点F(0,2)的距离与到x轴的距离始终相等,如图,点M的坐标为(,3),P是抛物线y=x2+1上一个动点,则△PMF周长的最小值是()A.3 B.4 C.5 D.6【考点】H3:二次函数的性质;K6:三角形三边关系.【分析】过点M作ME⊥x轴于点E,交抛物线y=x2+1于点P,由PF=PE结合三角形三边关系,即可得出此时△PMF周长取最小值,再由点F、M的坐标即可得出MF、ME的长度,进而得出△PMF周长的最小值.【解答】解:过点M作ME⊥x轴于点E,交抛物线y=x2+1于点P,此时△PMF 周长最小值,∵F(0,2)、M(,3),∴ME=3,FM==2,∴△PMF周长的最小值=ME+FM=3+2=5.故选C.二、填空题(本大题共4小题,每题3分,共12分)13.在一个不透明的袋子中装有4个红球和2个白球,这些球除了颜色外无其他差别,从袋子中随机摸出一个球,则摸出白球的概率是.【考点】X4:概率公式.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解;袋子中球的总数为:4+2=6,∴摸到白球的概率为:=,故答案为:.14.分解因式:2m2﹣8=2(m+2)(m﹣2).【考点】55:提公因式法与公式法的综合运用.【分析】先提取公因式2,再对余下的多项式利用平方差公式继续分解因式.【解答】解:2m2﹣8,=2(m2﹣4),=2(m+2)(m﹣2).故答案为:2(m+2)(m﹣2).15.若关于x的分式方程+=3的解为正实数,则实数m的取值范围是m <6且m≠2.【考点】B2:分式方程的解;C6:解一元一次不等式.【分析】利用解分式方程的一般步骤解出方程,根据题意列出不等式,解不等式即可.【解答】解: +=3,方程两边同乘(x﹣2)得,x+m﹣2m=3x﹣6,解得,x=,由题意得,>0,解得,m<6,∵≠2,∴m≠2,故答案为:m<6且m≠2.16.在△ABC中,已知BD和CE分别是边AC、AB上的中线,且BD⊥CE,垂足为O.若OD=2cm,OE=4cm,则线段AO的长度为4cm.【考点】K5:三角形的重心;KQ:勾股定理.【分析】连接AO并延长,交BC于H,根据勾股定理求出DE,根据三角形中位线定理求出BC,根据直角三角形的性质求出OH,根据重心的性质解答.【解答】解:连接AO并延长,交BC于H,由勾股定理得,DE==2,∵BD和CE分别是边AC、AB上的中线,∴BC=2DE=4,O是△ABC的重心,∴AH是中线,又BD⊥CE,∴OH=BC=2,∵O是△ABC的重心,∴AO=2OH=4,故答案为:4.三、解答题(每题6分,共18分)17.计算:(﹣3)2+20190﹣×sin45°.【考点】2C:实数的运算;6E:零指数幂;T5:特殊角的三角函数值.【分析】首先计算乘方、开方、乘法,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:(﹣3)2+20190﹣×sin45°=9+1﹣3×=10﹣3=718.如图,点A、F、C、D在同一条直线上,已知AF=DC,∠A=∠D,BC∥EF,求证:AB=DE.【考点】KD:全等三角形的判定与性质.【分析】欲证明AB=DE,只要证明△ABC≌△DEF即可.【解答】证明:∵AF=CD,∴AC=DF,∵BC∥EF,∴∠ACB=∠DFE,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AB=DE.19.化简:•(1+)【考点】6C:分式的混合运算.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,约分即可得到结果.【解答】解:原式=•=.四、本大题共2小题,每小题7分,共14分20.某单位750名职工积极参加向贫困地区学校捐书活动,为了解职工的捐数量,采用随机抽样的方法抽取30名职工作为样本,对他们的捐书量进行统计,统计结果共有4本、5本、6本、7本、8本五类,分别用A、B、C、D、E表示,根据统计数据绘制成了如图所示的不完整的条形统计图,由图中给出的信息解答下列问题:(1)补全条形统计图;(2)求这30名职工捐书本数的平均数、众数和中位数;(3)估计该单位750名职工共捐书多少本?【考点】VC:条形统计图;V5:用样本估计总体;W2:加权平均数;W4:中位数;W5:众数.【分析】(1)根据题意列式计算得到D类书的人数,补全条形统计图即可;(2)根据次数出现最多的数确定众数,按从小到大顺序排列好后求得中位数;(3)用捐款平均数乘以总人数即可.【解答】解(1)捐D类书的人数为:30﹣4﹣6﹣9﹣3=8,补图如图所示;(2)众数为:6 中位数为:6平均数为:=(4×4+5×6+6×9+7×8+8×3)=6;(3)750×6=4500,即该单位750名职工共捐书约4500本.21.某中学为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买甲种书柜3个、乙种书柜2个,共需资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元.(1)甲、乙两种书柜每个的价格分别是多少元?(2)若该校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金4320元,请设计几种购买方案供这个学校选择.【考点】CE:一元一次不等式组的应用;9A:二元一次方程组的应用.【分析】(1)设甲种书柜单价为x元,乙种书柜的单价为y元,根据:若购买甲种书柜3个、乙种书柜2个,共需资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元列出方程求解即可;(2)设甲种书柜购买m个,则乙种书柜购买(20﹣m)个.根据:所需经费=甲图书柜总费用+乙图书柜总费用、总经费W≤1820且购买的甲种图书柜的数量≥乙种图书柜数量列出不等式组,解不等式组即可的不等式组的解集,从而确定方案.【解答】(1)解:设甲种书柜单价为x元,乙种书柜的单价为y元,由题意得:,解之得:,答:设甲种书柜单价为180元,乙种书柜的单价为240元.(2)解:设甲种书柜购买m个,则乙种书柜购买(20﹣m)个;由题意得:解之得:8≤m≤10因为m取整数,所以m可以取的值为:8,9,10即:学校的购买方案有以下三种:方案一:甲种书柜8个,乙种书柜12个,方案二:甲种书柜9个,乙种书柜11个,方案三:甲种书柜10个,乙种书柜10个.五、本大题共2小题,每小题8分,共16分.22.如图,海中一渔船在A处且与小岛C相距70nmile,若该渔船由西向东航行30nmile到达B处,此时测得小岛C位于B的北偏东30°方向上;求该渔船此时与小岛C之间的距离.【考点】TB:解直角三角形的应用﹣方向角问题;KU:勾股定理的应用.【分析】过点C作CD⊥AB于点D,由题意得:∠BCD=30°,设BC=x,解直角三角形即可得到结论.【解答】解:过点C作CD⊥AB于点D,由题意得:∠BCD=30°,设BC=x,则:在Rt△BCD中,BD=BC•sin30°=x,CD=BC•cos30°=x;∴AD=30x,∵AD2+CD2=AC2,即:(30+x)2+(x)2=702,解之得:x=50(负值舍去),答:渔船此时与C岛之间的距离为50海里.23.一次函数y=kx+b(k≠0)的图象经过点A(2,﹣6),且与反比例函数y=﹣的图象交于点B(a,4)(1)求一次函数的解析式;(2)将直线AB向上平移10个单位后得到直线l:y1=k1x+b1(k1≠0),l与反比例函数y2=的图象相交,求使y1<y2成立的x的取值范围.【考点】G8:反比例函数与一次函数的交点问题;F9:一次函数图象与几何变换.【分析】(1)根据点B的纵坐标利用反比例函数图象上点的坐标特征可求出点B 的坐标,根据点A、B的坐标利用待定系数法即可求出直线AB的解析式;(2)根据“上加下减”找出直线l的解析式,联立直线l和反比例函数解析式成方程组,解方程组可找出交点坐标,画出函数图象,根据两函数图象的上下位置关系即可找出使y1<y2成立的x的取值范围.【解答】解:(1)∵反比例函数y=﹣的图象过点B(a,4),∴4=﹣,解得:a=﹣3,∴点B的坐标为(﹣3,4).将A(2,﹣6)、B(﹣3,4)代入y=kx+b中,,解得:,∴一次函数的解析式为y=﹣2x﹣2.(2)直线AB向上平移10个单位后得到直线l的解析式为:y1=﹣2x+8.联立直线l和反比例函数解析式成方程组,,解得:,,∴直线l与反比例函数图象的交点坐标为(1,6)和(3,2).画出函数图象,如图所示.观察函数图象可知:当0<x<1或x>3时,反比例函数图象在直线l的上方,∴使y1<y2成立的x的取值范围为0<x<1或x>3.六、本大题共两个小题,每小题12分,共24分24.如图,⊙O与Rt△ABC的直角边AC和斜边AB分别相切于点C、D,与边BC 相交于点F,OA与CD相交于点E,连接FE并延长交AC边于点G.(1)求证:DF∥AO;(2)若AC=6,AB=10,求CG的长.【考点】MC:切线的性质.【分析】(1)欲证明DF∥OA,只要证明OA⊥CD,DF⊥CD即可;(2)过点作EM⊥OC于M,易知=,只要求出EM、FM、FC即可解决问题;【解答】(1)证明:连接OD.∵AB与⊙O相切与点D,又AC与⊙O相切与点,∴AC=AD,∵OC=OD,∴OA⊥CD,∴CD⊥OA,∵CF是直径,∴∠CDF=90°,∴DF⊥CD,∴DF∥AO.(2)过点作EM⊥OC于M,∵AC=6,AB=10,∴BC==8,∴AD=AC=6,∴BD=AB﹣AD=4,∵BD2=BF•BC,∴BF=2,∴CF=BC﹣BF=6.OC=CF=3,∴OA==3,∵OC2=OE•OA,∴OE=,∵EM∥AC,∴===,∴OM=,EM=,FM=OF+OM=,∴===,∴CG=EM=2.25.如图,已知二次函数y=ax2+bx+c(a≠0)的图象经过A(﹣1,0)、B(4,0)、C(0,2)三点.(1)求该二次函数的解析式;(2)点D是该二次函数图象上的一点,且满足∠DBA=∠CAO(O是坐标原点),求点D的坐标;(3)点P是该二次函数图象上位于一象限上的一动点,连接PA分别交BC,y 轴与点E、F,若△PEB、△CEF的面积分别为S1、S2,求S1﹣S2的最大值.【考点】HF:二次函数综合题.【分析】(1)由A、B、C三点的坐标,利用待定系数法可求得抛物线解析式;(2)当点D在x轴上方时,则可知当CD∥AB时,满足条件,由对称性可求得D 点坐标;当点D在x轴下方时,可证得BD∥AC,利用AC的解析式可求得直线BD的解析式,再联立直线BD和抛物线的解析式可求得D点坐标;(3)过点P作PH∥y轴交直线BC于点H,可设出P点坐标,从而可表示出PH 的长,可表示出△PEB的面积,进一步可表示出直线AP的解析式,可求得F点的坐标,联立直线BC和PA的解析式,可表示出E点横坐标,从而可表示出△CEF的面积,再利用二次函数的性质可求得S1﹣S2的最大值.【解答】解:(1)由题意可得,解得,∴抛物线解析式为y=﹣x2+x+2;(2)当点D在x轴上方时,过C作CD∥AB交抛物线于点D,如图1,∵A、B关于对称轴对称,C、D关于对称轴对称,∴四边形ABDC为等腰梯形,∴∠CAO=∠DBA,即点D满足条件,∴D(3,2);当点D在x轴下方时,∵∠DBA=∠CAO,∴BD∥AC,∵C(0,2),∴可设直线AC解析式为y=kx+2,把A(﹣1,0)代入可求得k=2,∴直线AC解析式为y=2x+2,∴可设直线BD解析式为y=2x+m,把B(4,0)代入可求得m=﹣8,∴直线BD解析式为y=2x﹣8,联立直线BD和抛物线解析式可得,解得或,∴D(﹣5,﹣18);综上可知满足条件的点D的坐标为(3,2)或(﹣5,﹣18);(3)过点P作PH∥y轴交直线BC于点H,如图2,设P(t,﹣t2+t+2),由B、C两点的坐标可求得直线BC的解析式为y=﹣x+2,∴H(t,﹣t+2),∴PH=y P﹣y H=﹣t2+t+2﹣(﹣t+2)=﹣t2+2t,设直线AP的解析式为y=px+q,∴,解得,∴直线AP的解析式为y=(﹣t+2)(x+1),令x=0可得y=2﹣t,∴F(0,2﹣t),∴CF=2﹣(2﹣t)=t,联立直线AP和直线BC解析式可得,解得x=,即E点的横坐标为,∴S1=PH(x B﹣x E)=(﹣t2+2t)(5﹣),S2=••,∴S1﹣S2=(﹣t2+2t)(5﹣)﹣••=﹣t2+5t=﹣(t﹣)2+,∴当t=时,有S1﹣S2有最大值,最大值为.2019年6月23日。
泸州市2019年中考数学试题及答案

泸州市2019年中考数学试题及答案(满分120分 时间120分钟) 第I 卷(选择题 共36分)一.选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.-8的绝对值为( ) A.8 B.-8 C.81 D.81- 2.将7760000用科学记数法表示为( )A.7.76×105B.7.76×106C.77.6×106D.7.76×107 3.计算323a a ⋅的结果是( )A.54aB.64aC.53aD.63a 4.下列立体图形中,俯视图是三角形的是( )5.函数42-=x y 的自变量x 的取值范围是( )A.2<xB.2≤xC.2>xD.2≥x6.如图,BC ⊥DE ,垂足为点C ,AC ∥BD ,∠B=40°,则∠ACE 的度数为( ) A.40° B.50° C.45° D.60°7.把822-a 分解因式,结果正确的是( )A.)4(22-aB.2)2(2-aC.)2)(2(2-+a aD.2)2(2+a8.四边形ABCD 的对角线AC 与BD 相交于点O ,下列四组条件中,一定能判定四边形ABCD 为平行四边形的是( )A.AD ∥BCB.OA=OC ,OB=ODC.AD ∥BC ,AB=DCD.AC ⊥BD 9.如图,一次函数b ax y +=1和反比例函数xky =2的图象相交于A ,B 两点,则使21y y >成立的x 取值范围是( )A.02<<-x 或40<<xB.2-<x 或40<<xC.2-<x 或4>xD.02<<-x 或4>x10.一个菱形的边长为6,面积为28,则该菱形的两条对角线的长度之和为( ) A.8 B.12 C.16 D.3211.如图,等腰△ABC 的内切圆⊙O 与AB ,BC ,CA 分别相切于点D ,E ,F ,且AB=AC=5,BC=6,则DE 的长是( )A.10103 B.5103 C.553 D.55612.已知二次函数73)1)(1(+-+---=a a x a x y (其中x 是自变量)的图象与x 轴没有公共点,且当1-<x 时,y 随x 的增大而减小,则实数a 的取值范围是( ) A.2<a B.1->a C.21≤<-a D.21<≤-a第II 卷(非选择题 共84分)二.填空题(本大题共4个小题,每小题3分,共12分) 13.4的算术平方根是.14.在平面直角坐标系中,点M (a ,b )与点N (3,-1)关于x 轴对称,则a+b 的值是 15.已知21,x x 是一元二次方程042=--x x 的两实根,则)4)(4(21++x x 的值是.16.如图,在等腰Rt △ABC 中,∠C=90°,AC=15,点E 在边CB 上,CE=2EB ,点D 在边AB 上,CD ⊥AE ,垂足为F ,则AD 的长为.三.本大题共3个小题,每小题6分,共18分.17.计算:︒⨯--++30sin 8)2()1(320π.18.如图,AB ∥CD ,AD 和BC 相交于点O ,OA=OD.求证:OB=OC.19.化简:1)12(+⋅++m mm m 四.本大题共2个小题,每小题7分,共14分20.某市气象局统计了5月1日至8日中午12时的气温(单位:℃),整理后分别绘制成如下图所示的两幅统计图.根据图中给出的信息,解答下列问题:(1)该市5月1日至8日中午时气温的平均数是℃,中位数是℃ (2)求扇形统计图中扇形A 的圆心角的度数;(3)现从该市5月1日至5日的5天中,随机抽取2天,求恰好抽到2天中午12时的气温均低于20℃的概率.21.某出租汽车公司计划购买A 型和B 型两种节能汽车,若购买A 型汽车4辆,B 型汽车7辆,共需310万元;若购买A 型汽车10辆,B 型汽车15辆,共需700万元. (1)A 型和B 型汽车每辆的价格分贝是多少万元?(2)该公司计划购买A 型和B 型两种汽车共10辆,费用不超过285万元,且A 型汽车的数量不少于B 型汽车的数量,请你给出费用最省的方案,并求出该方案所需费用. 五.本大题共2个小题,每小题8分,共16分. 22.若该一次函数的图象与反比例函数xmy =的图象相交于),(11y x C ,),(22y x D 两点,且2123x x -=,求m 的值.23.如图,海中有两个小岛C ,D ,某渔船在海中的A 处测得小岛位于东北方向上,且相距202n mile ,该渔船自西向东航行一段时间到达点B 处,此时测得小岛C 恰好在点B 的正北方向上,且相距50n mile ,又测得点B 与小岛D 相距205n mile. (1)求sin ∠ABD 的值;(2)求小岛C ,D 之间的距离(计算过程中的数据不取近似值).六.本大题共2个小题,每小题12分,共24分.24.如图,AB 为⊙O 的直径,点P 在AB 的延长线上,点C 在⊙O 上,且PA PB PC ⋅=2. (1)求证:PC 是⊙O 的切线;(2)已知PC=20,PB=10,点D 是AB 的中点,DE ⊥AC ,垂足为E ,DE 交AB 于点F ,求EF 的长.25.如图,在平面直角坐标系xOy 中,已知二次函数c bx ax y ++=2的图象经过点A (-2,0),C (0,-6),其对称轴为直线2=x . (1)求该二次函数的解析式; (2)若直线m x y +-=31将△AOC 的面积分成相等的两部分,求m 的值; (3)点B 是该二次函数图象与x 轴的另一个交点,点D 是直线2=x 上位于x 轴下方的动点,点E 是第四象限内该二次函数图象上的动点,且位于直线2=x 右侧.若以点E 为直角顶点的△BED 与△AOC 相似,求点E 的坐标.参考答案一.选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 A B C A D B C B B C D D 二.填空题913.2 14.4 15.16 16.2。
2019年四川省泸州市中考数学试卷(word版-含答案)

2019年泸州市中考数学试卷满分120分 时间120分钟 第I 卷(选择题 共36分)一.选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.-8的绝对值为( ) A.8 B.-8 C.81 D.81- 2.将7760000用科学记数法表示为( )A.7.76×105B.7.76×106C.77.6×106D.7.76×107 3.计算323a a ⋅的结果是( )A.54aB.64aC.53aD.63a 4.下列立体图形中,俯视图是三角形的是( )5.函数42-=x y 的自变量x 的取值范围是( )A.2<xB.2≤xC.2>xD.2≥x6.如图,BC ⊥DE ,垂足为点C ,AC ∥BD ,∠B=40°,则∠ACE 的度数为( ) A.40° B.50° C.45° D.60°7.把822-a 分解因式,结果正确的是( )A.)4(22-a B.2)2(2-a C.)2)(2(2-+a a D.2)2(2+a8.四边形ABCD 的对角线AC 与BD 相交于点O ,下列四组条件中,一定能判定四边形ABCD 为平行四边形的是( )A.AD ∥BCB.OA=OC ,OB=ODC.AD ∥BC ,AB=DCD.AC ⊥BD9.如图,一次函数b ax y +=1和反比例函数xky =2的图象相交于A ,B 两点,则使21y y >成立的x 取值范围是( )A.02<<-x 或40<<xB.2-<x 或40<<xC.2-<x 或4>xD.02<<-x 或4>x10.一个菱形的边长为6,面积为28,则该菱形的两条对角线的长度之和为( ) A.8 B.12 C.16 D.3211.如图,等腰△ABC 的内切圆⊙O 与AB ,BC ,CA 分别相切于点D ,E ,F ,且AB=AC=5,BC=6,则DE 的长是( )A.10103 B.5103 C.553 D.55612.已知二次函数73)1)(1(+-+---=a a x a x y (其中x 是自变量)的图象与x 轴没有公共点,且当1-<x 时,y 随x 的增大而减小,则实数a 的取值范围是( ) A.2<a B.1->a C.21≤<-a D.21<≤-a第II 卷(非选择题 共84分)二.填空题(本大题共4个小题,每小题3分,共12分) 13.4的算术平方根是 .14.在平面直角坐标系中,点M (a ,b )与点N (3,-1)关于x 轴对称,则a+b 的值是 15.已知21,x x 是一元二次方程042=--x x 的两实根,则)4)(4(21++x x 的值是 . 16.如图,在等腰Rt △ABC 中,∠C=90°,AC=15,点E 在边CB 上,CE=2EB ,点D 在边AB 上,CD ⊥AE ,垂足为F ,则AD 的长为 .三.本大题共3个小题,每小题6分,共18分.17.计算:︒⨯--++30sin 8)2()1(320π.18.如图,AB ∥CD ,AD 和BC 相交于点O ,OA=OD.求证:OB=OC.19.化简:1)12(+⋅++m mm m四.本大题共2个小题,每小题7分,共14分20.某市气象局统计了5月1日至8日中午12时的气温(单位:℃),整理后分别绘制成如下图所示的两幅统计图.根据图中给出的信息,解答下列问题:(1)该市5月1日至8日中午时气温的平均数是 ℃,中位数是 ℃ (2)求扇形统计图中扇形A 的圆心角的度数;(3)现从该市5月1日至5日的5天中,随机抽取2天,求恰好抽到2天中午12时的气温均低于20℃的概率.21.某出租汽车公司计划购买A 型和B 型两种节能汽车,若购买A 型汽车4辆,B 型汽车7辆,共需310万元;若购买A 型汽车10辆,B 型汽车15辆,共需700万元. (1)A 型和B 型汽车每辆的价格分贝是多少万元?(2)该公司计划购买A 型和B 型两种汽车共10辆,费用不超过285万元,且A 型汽车的数量不少于B 型汽车的数量,请你给出费用最省的方案,并求出该方案所需费用.五.本大题共2个小题,每小题8分,共16分. 22.若该一次函数的图象与反比例函数xmy =的图象相交于),(11y x C ,),(22y x D 两点,且2123x x -=,求m 的值.23.如图,海中有两个小岛C ,D ,某渔船在海中的A 处测得小岛位于东北方向上,且相距202n mile ,该渔船自西向东航行一段时间到达点B 处,此时测得小岛C 恰好在点B 的正北方向上,且相距50n mile ,又测得点B 与小岛D 相距205n mile. (1)求sin ∠ABD 的值;(2)求小岛C ,D 之间的距离(计算过程中的数据不取近似值).六.本大题共2个小题,每小题12分,共24分.24.如图,AB 为⊙O 的直径,点P 在AB 的延长线上,点C 在⊙O 上,且PA PB PC ⋅=2. (1)求证:PC 是⊙O 的切线;(2)已知PC=20,PB=10,点D 是AB 的中点,DE ⊥AC ,垂足为E ,DE 交AB 于点F ,求EF 的长.25.如图,在平面直角坐标系xOy 中,已知二次函数c bx ax y ++=2的图象经过点A (-2,0),C (0,-6),其对称轴为直线2=x . (1)求该二次函数的解析式; (2)若直线m x y +-=31将△AOC 的面积分成相等的两部分,求m 的值; (3)点B 是该二次函数图象与x 轴的另一个交点,点D 是直线2=x 上位于x 轴下方的动点,点E 是第四象限内该二次函数图象上的动点,且位于直线2 x 右侧.若以点E 为直角顶点的△BED 与△AOC 相似,求点E 的坐标.参考答案一.选择题二.填空题9 13.2 14.4 15.16 16.211 / 11。
2019泸州中考数学试题及参考答案

2019泸州中考数学试题及参考答案(总11页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2019年泸州市中考数学试题一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.﹣8的绝对值是( ) A .8B .﹣8C .D .﹣2.将7760000用科学记数法表示为( ) A .×105B .×106C .×106D .×1073.计算3a 2•a 3的结果是( ) A .4a 5B .4a 6C .3a 5D .3a 64.下列立体图形中,俯视图是三角形的是( )A .B .C .D .5.函数y =的自变量x 的取值范围是( )A .x <2B .x ≤2C .x >2D .x ≥26.如图,BC ⊥DE ,垂足为点C ,AC ∥BD ,∠B =40°,则∠ACE 的度数为( ) A .40°B .50°C .45°D .60°7.把2a 2﹣8分解因式,结果正确的是( ) A .2(a 2﹣4) B .2(a ﹣2)2C .2(a +2)(a ﹣2)D .2(a +2)28.四边形ABCD 的对角线AC 与BD 相交于点O ,下列四组条件中,一定能判定四边形ABCD 为平行四边形的是( ) A .AD ∥BCB .OA =OC ,OB =ODC .AD ∥BC ,AB =DC D .AC ⊥BD9.如图,一次函数1y ax b 和反比例函数2ky x的图象相交于A ,B 两点, 则使12y y 成立的x 取值范围是( )A .﹣2<x <0或0<x <4B .x <﹣2或0<x <4C .x <﹣2或x >4D .﹣2<x <0或x >4A.8 B.12 C.16 D.3211.如图,等腰△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,且AB=AC=5,BC=6,则DE的长是()A.B.C.D.12.已知二次函数y=(x﹣a﹣1)(x﹣a+1)﹣3a+7(其中x是自变量)的图象与x轴没有公共点,且当1x时,y随x的增大而减小,则实数a的取值范围是()A.a<2 B.a>﹣1 C.﹣1<a≤2 D.﹣1≤a<2二、填空题(本大题共4个小题,每小题3分,共12分)13.4的算术平方根是.14.在平面直角坐标系中,点M(a,b)与点N(3,﹣1)关于x轴对称,则a+b的值是.15.已知x1,x2是一元二次方程x2﹣x﹣4=0的两实根,则(x1+4)(x2+4)的值是.16.如图,在等腰Rt△ABC中,∠C=90°,AC=15,点E在边CB上,CE=2EB,点D在边AB上,CD⊥AE,垂足为F,则AD的长为.三、本大题共3个小题,每小题6分,共18分.17.(6分)计算:0(1)+2(2)﹣38sin30°.18.(6分)如图,AB∥CD,AD和BC相交于点O,OA=OD.求证:OB=OC.19.(6分)化简:1(2)1mmm m.四、本大题共2个小题,每小题7分,共14分20.(7分)某市气象局统计了5月1日至8日中午12时的气温(单位:℃),整理后分别绘制成如图所示的两幅统计图.根据图中给出的信息,解答下列问题:(1)该市5月1日至8日中午时气温的平均数是C,中位数是C;(2)求扇形统计图中扇形A的圆心角的度数;(3)现从该市5月1日至5日的5天中,随机抽取2天,求恰好抽到2天中午12时的气温均低于20℃的概率.21.(7分)某出租汽车公司计划购买A型和B型两种节能汽车,若购买A型汽车4辆,B 型汽车7辆,共需310万元;若购买A型汽车10辆,B型汽车15辆,共需700万元.(1)A型和B型汽车每辆的价格分别是多少万元(2)该公司计划购买A型和B型两种汽车共10辆,费用不超过285万元,且A型汽车的数量少于B型汽车的数量,请你给出费用最省的方案,并求出该方案所需费用.五、本大题共2个小题,每小题8分,共16分.22.(8分)一次函数y=kx+b的图象经过点A(1,4),B(﹣4,﹣6).(1)求该一次函数的解析式;(2)若该一次函数的图象与反比例函数myx的图象相交于C(x1,y1),D(x2,y2)两点,且3x1=﹣2x2,求m的值.23.(8分)如图,海中有两个小岛C,D,某渔船在海中的A处测得小岛位于东北方向上,且相距20nmile,该渔船自西向东航行一段时间到达点B处,此时测得小岛C恰好在点B的正北方向上,且相距50nmile,又测得点B与小岛D相距20nmile.(1)求sin∠ABD的值;(2)求小岛C,D之间的距离(计算过程中的数据不取近似值).六、本大题共2个小题,每小题12分,共24分.24.(12分)如图,AB为⊙O的直径,点P在AB的延长线上,点C在⊙O上,且PC2=PB •PA.(1)求证:PC是⊙O的切线;(2)已知PC=20,PB=10,点D是AB的中点,DE⊥AC,垂足为E,DE交AB于点F,求EF的长.25.(12分)如图,在平面直角坐标系xOy中,已知二次函数y=ax2+bx+c的图象经过点A (﹣2,0),C(0,﹣6),其对称轴为直线x=2.(1)求该二次函数的解析式;(2)若直线y=﹣x+m将△AOC的面积分成相等的两部分,求m的值;(3)点B是该二次函数图象与x轴的另一个交点,点D是直线x=2上位于x轴下方的动点,点E是第四象限内该二次函数图象上的动点,且位于直线x=2右侧.若以点E为直角顶点的△BED与△AOC相似,求点E的坐标.2019年泸州中考数学试题参考答案及部分试题解析1-5:ABCAD. 6-12:BCBBC DD 13.2 14.4 15.16 16..10.解:∵四边形ABCD是菱形,∴AO=CO=AC,DO=BO=BD,AC⊥BD,∵面积为28,∴AC•BD=2OD•AO=28 ①∵菱形的边长为6,∴OD2+OA2=36 ②,由①②两式可得:(OD+AO)2=OD2+OA2+2OD•AO=36+28=64.∴OD+AO=8,∴2(OD+AO)=16,即该菱形的两条对角线的长度之和为16.故选:C.【点评】本题考查了菱形的性质、勾股定理的运用以及菱形面积公式的运用,解题的关键是利用整体思想求出OD•OA的值,题目的综合性较强,对学生的计算能力要求较高.11.解:连接OA、OE、OB,OB交DE于H,∵等腰△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,∴OA平分∠BAC,OE⊥BC,OD⊥AB,BE=BD,∵AB=AC,∴AO⊥BC,∴点A、O、E共线,即AE⊥BC,∴BE=CE=3,在Rt△ABE中,AE==4,∵BD=BE=3,∴AD=2,设⊙O的半径为r,则OD=OE=r,AO=4﹣r,在Rt△AOD中,r2+22=(4﹣r)2,解得r=,在Rt△BOE中,OB==,∵BE=BD,OE=OD,∴OB垂直平分DE,∴DH=EH,OB⊥DE,∵HE•OB=OE•BE,∴HE===,∴DE=2EH=.故选:D.【点评】本题考查了三角形的内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.也考查了等腰三角形的性质和勾股定12.解:y=(x﹣a﹣1)(x﹣a+1)﹣3a+7=x2﹣2ax+a2﹣3a+6,∵抛物线与x轴没有公共点,∴△=(﹣2a)2﹣4(a2﹣3a+6)<0,解得a<2,∵抛物线的对称轴为直线x=﹣=a,抛物线开口向上,而当x<﹣1时,y随x的增大而减小,∴a≥﹣1,∴实数a的取值范围是﹣1≤a<2.故选:D.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.16.解:过D作DH⊥AC于H,∵在等腰Rt△ABC中,∠C=90°,AC=15,∴AC=BC=15,∴∠CAD=45°,∴AH=DH,∴CH=15﹣DH,∵CF⊥AE,∴∠DHA=∠DFA=90°,∴∠HAF=∠HDF,∴△ACE∽△DHC,∴=,∵CE=2EB,∴CE=10,∴=,∴DH=9,∴AD=9,故答案为:9.【点评】本题考查了相似三角形的判定和性质,等腰直角三角形的判定和性质,正确的作出辅助线是解题的关键.17.(6分)解:原式=1+4﹣2×=1+4﹣1=4.18.证明:∵AB∥CD,∴∠A=∠D,∠B=∠C,在△AOB和△DOC中,,∴△AOB≌△DOC(AAS),∴OB=OC.19.(6分)解:原式=2211m m mm m=2(1)1m mm m=m+120.(7分)解:(1)5月1日至8日中午时气温的平均数:(19+16+22+18+21+22+25+26)÷8=℃将8天的温度按低到高排列:16,18,19,21,22,22,25,26,因此中位数为=℃, 故答案为,;(2)因为低于20℃的天数有3天,则扇形统计图中扇形A 的圆心角的度数360°×=135°,答:扇形统计图中扇形A 的圆心角的度数135°;(3)设这个月5月1日至5日的5天中午12时的气温依次即为A 1,A 2,A 3,A 4,A 5, 则抽到2天中午12时的气温,共有(A 1A 2),(A 1A 3),(A 1A 4),(A 1A 5),(A 2A 3),(A 2A 4),(A 2A 5),(A 3A 4),(A 3A 5),(A 4A 5)共10种不同取法, 其中抽到2天中午12时的气温均低于20℃有(A 1A 2),(A 1A 4),(A 2A 4)3种不同取法,因此恰好抽到2天中午12时的气温均低于20℃的概率为.21.解:(1)设A 型汽车每辆的进价为x 万元,B 型汽车每辆的进价为y 万元,依题意,得:473101015700x y x y ,解得2530x y ,答:A 型汽车每辆的进价为25万元,B 型汽车每辆的进价为30万元; (2)设购进A 型汽车m 辆,购进B 型汽车(10﹣m )辆,根据题意得:102530(10)285m mm m ,解得:3≤m <5,∵m 是整数,∴m =3或4,当m =3时,费用:25×3+30×7=285(万元); 当m =4时,费用:25×4+30×6=280(万元).答:最省的方案是购买A 型汽车4辆,购进B 型汽车6辆,该方案所需费用为280万元.22.解:(1)由题意得:446k b k b ,解得:22k b ,∴一次函数解析式为:y =2x +2;(2)联立22y x myx,消去y 得:2x 2+2x ﹣m =0,则x 1+x 2=﹣1,因为3x 1=﹣2x 2,解得123x x ,∴C (2,6),∵反比例函数y =的图象经过C 点,∴m =2×6=12.23.解:(1)过D 作DE ⊥AB 于E ,在Rt △AED 中,AD =20,∠DAE =45°, ∴DE =20×sin45°=20,在Rt △BED 中,BD =20,∴sin ∠ABD ===;(2)过D 作DF ⊥BC 于F ,在Rt △BED 中,DE =20,BD =20, ∴BE =2240BD DE ,∵四边形BFDE 是矩形, ∴DF =EB =40,BF =DE =20,∴CF =BC ﹣BF =30,在Rt △CDF 中,CD =2250DF CF ,∴小岛C ,D 之间的距离为50nmile .【点评】此题考查了解直角三角形的应用﹣方向角问题,关键是根据题意画出图形,作出辅助线,构造直角三角形,“化斜为直”是解三角形的基本思路,常需作垂线(高),原则上不破坏特殊角.24.(1)证明:连接OC ,如图1所示:∵PC 2=PB •PA ,即PAPC PC PB, ∵∠P =∠P ,∴△PBC ∽△PCA ,∴∠PCB =∠PAC ,∵AB 为⊙O 的直径,∴∠ACB =90°,∴∠A +∠ABC =90°,∵OC =OB ,∴∠OBC =∠OCB ,∴∠PCB +∠OCB =90°,即OC ⊥PC ,∴PC 是⊙O 的切线;(2)解:连接OD ,如图2所示:∵PC =20,PB =10,PC 2=PB •PA ,∴PA =222010PC PB =40, ∴AB =PA ﹣PB =30,∵△PBC ∽△PCA ,∴2ACPA BC PC , 设BC =x ,则AC =2x ,在Rt △ABC 中,x 2+(2x )2=302,解得:x =6,即BC =6, ∵点D 是的中点,AB 为⊙O 的直径,∴∠AOD =90°,∵DE ⊥AC ,∴∠AEF =90°,∵∠ACB =90°,∴DE ∥BC ,∴∠DFO =∠ABC ,∴△DOF ∽△ACB,∴12OF BC OD AC , ∴OF =OD =,即AF =, ∵EF ∥BC ,∴14EF AF BC AB , ∴EF =BC =.【点评】本题考查了相似三角形的判定与性质、切线的判定、圆周角定理、等腰三角形的性质、勾股定理、垂径定理等知识;熟练掌握切线的性质和圆周角定理,证明三角形相似是解题的关键.25.解:(1)由已知,得420622a b c c ba ,解得1226abc ,y =x 2﹣2x ﹣6, 同理,直线AC :y =﹣3x ﹣6;(2)联立3613yx y x m ,解得:3(6)8x m , 直线13yx m 与y 轴的交点为(0,m ),S △AOC ==6, 由题意得: 213(6)328m ,解得:m =﹣2或﹣10(舍去﹣10),∴m =﹣2; (3)∵OA =2,OC =6,∴3OC OA, ①当△DEB ∽△AOC 时,则3BE OC DE OA , 如图1,过点E 作EF ⊥直线x =2,垂足为F ,过点B 作BG ⊥EF ,垂足为G , Rt △BEG ∽Rt △EDF ,3BGEB EF ED ,BG =3EF ,设点E (h ,k ),则BG =﹣k ,FE =h ﹣2,﹣k =3(h ﹣2),即k =6﹣3h ,∵点E 在二次函数上,故:h 2﹣2h ﹣6=6﹣3h ,解得: 1h =4,2h =﹣6(舍去),E (4,﹣6);②当△BED ∽△AOC 时,13BE OA ED OC , 过点E 作ME ⊥直线x =2,垂足为M ,过点B 作BN ⊥ME ,垂足为N , 则Rt △BEN ∽Rt △EDM ,则13BNBE EM DE ,则NB =13EM , 设点E (p ,q ),则BN =﹣q ,EM =p ﹣2,则﹣q =13(p ﹣2),解得:p =或(舍去);1E (4,﹣6),2E (,). 【点评】本题考查的是二次函数综合运用,涉及到一次函数、三角形相似等知识点,其中(3),要注意分类求解,避免遗漏.。
2019年四川省泸州市中考数学试题(含解析)

2019年四川省泸州市中考试题解析(满分150分,考试时间120分钟)一、选择题(本大题共12题,每小题3分,共36分)1.(2019四川泸州,1,3分) ﹣8的绝对值是( )A .8B .﹣8C .18D .−18【答案】A【解析】解:﹣8的绝对值是8.故选:A .【知识点】绝对值2. (2019四川泸州,2,3分)将7760000用科学记数法表示为( )A .7.76×105B .7.76×106C .77.6×106D .7.76×107【答案】B【解析】解:将7760000用科学记数法表示为:7.76×106.故选:B .【知识点】科学记数法—表示较大的数3. (2019四川泸州,3,3分)计算3a 2•a 3的结果是( )A .4a 5B .4a 6C .3a 5D .3a 6【答案】C【解析】解:3a 2•a 3=3a 5.故选:C .【知识点】单项式乘单项式4. (2019四川泸州,4,3分)下列立体图形中,俯视图是三角形的是( )【答案】A【解析】解:A 、三棱柱的俯视图是三角形,故此选项正确;B 、圆锥体的俯视图是圆,故此选项错误;C 、球的俯视图是圆,故此选项错误;D 、立方体的俯视图是正方形,故此选项错误;故选:A.【知识点】简单几何体的三视图5.(2019四川泸州,5,3分)函数y=√2x−4的自变量x的取值范围是()A.x<2 B.x≤2 C.x>2 D.x≥2【答案】D【解析】解:根据题意得:2x﹣4≥0,解得x≥2.故选:D.【知识点】二次根式有意义的条件;函数自变量的取值范围6.(2019四川泸州,6,3分)如图,BC⊥DE,垂足为点C,AC∥BD,∠B=40°,则∠ACE的度数为()A.40°B.50°C.45°D.60°【答案】B【解析】解:∵AC∥BD,∠B=40°,∴∠ACB=40°,∵BC⊥DE,∴∠ACE=90°﹣40°=50°,故选:B.【知识点】平行线的性质7.(2019四川泸州,7,3分)把2a2﹣8分解因式,结果正确的是()A.2(a2﹣4)B.2(a﹣2)2C.2(a+2)(a﹣2)D.2(a+2)2【答案】C【解析】解:原式=2(a2﹣4)=2(a+2)(a﹣2),故选:C.【知识点】提公因式法与公式法的综合运用8.(2019四川泸州,8,3分)四边形ABCD的对角线AC与BD相交于点O,下列四组条件中,一定能判定四边形ABCD为平行四边形的是()A.AD∥BC B.OA=OC,OB=ODC.AD∥BC,AB=DC D.AC⊥BD【答案】B【解析】解:∵OA=OC,OB=OD,∴四边形ABCD是平行四边形;故选:B.【知识点】平行四边形的性质;平行四边形的判定9.(2019四川泸州,9,3分)如图,一次函数y1=ax+b和反比例函数y2=kx的图象相交于A,B两点,则使y1>y2成立的x取值范围是()A.﹣2<x<0或0<x<4 B.x<﹣2或0<x<4C.x<﹣2或x>4 D.﹣2<x<0或x>4【答案】B【解析】解:观察函数图象可发现:当x<﹣2或0<x<4时,一次函数图象在反比例函数图象上方,∴使y1>y2成立的x取值范围是x<﹣2或0<x<4.故选:B.【知识点】反比例函数与一次函数的交点10.(2019四川泸州,10,3分)一个菱形的边长为6,面积为28,则该菱形的两条对角线的长度之和为()A.8 B.12 C.16 D.32【答案】【解析】解:如图所示:∵四边形ABCD是菱形,∴AO=CO=12AC,DO=BO=12BD,AC⊥BD,∵面积为28,∴12AC•BD=2OD•AO=28 ①∵菱形的边长为6,∴OD2+OA2=36 ②,由①②两式可得:(OD+AO)2=OD2+OA2+2OD•AO=36+28=64.∴OD+AO=8,∴2(OD+AO)=16,即该菱形的两条对角线的长度之和为16.故选:C.【知识点】菱形的性质;勾股定理;菱形面积公式11.(2019四川泸州,11,3分)如图,等腰△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,且AB=AC=5,BC=6,则DE的长是()A .3√1010B .3√105C .3√55D .6√55【答案】D【解析】解:连接OA 、OE 、OB ,OB 交DE 于H ,如图,∵等腰△ABC 的内切圆⊙O 与AB ,BC ,CA 分别相切于点D ,E ,F ,∴OA 平分∠BAC ,OE ⊥BC ,OD ⊥AB ,BE =BD ,∵AB =AC ,∴AO ⊥BC ,∴点A 、O 、E 共线,即AE ⊥BC ,∴BE =CE =3,在Rt △ABE 中,AE =√52−32=4,∵BD =BE =3,∴AD =2,设⊙O 的半径为r ,则OD =OE =r ,AO =4﹣r ,在Rt △AOD 中,r 2+22=(4﹣r )2,解得r =32,在Rt △BOE 中,OB =√32+(32)2=3√52,∵BE =BD ,OE =OD ,∴OB 垂直平分DE ,∴DH =EH ,OB ⊥DE ,∵12HE •OB =12OE •BE , ∴HE =OE⋅BE OB =3×323√62=3√55, ∴DE =2EH =6√55.故选:D .【知识点】等腰三角形的性质;垂径定理;三角形的内切圆与内心12.(2019四川泸州,12,3分)已知二次函数y=(x﹣a﹣1)(x﹣a+1)﹣3a+7(其中x是自变量)的图象与x轴没有公共点,且当x<﹣1时,y随x的增大而减小,则实数a的取值范围是()A.a<2 B.a>﹣1 C.﹣1<a≤2 D.﹣1≤a<2【答案】D【解析】解:y=(x﹣a﹣1)(x﹣a+1)﹣3a+7=x2﹣2ax+a2﹣3a+6,∵抛物线与x轴没有公共点,∴△=(﹣2a)2﹣4(a2﹣3a+6)<0,解得a<2,∵抛物线的对称轴为直线x=−−2a2=a,抛物线开口向上,而当x<﹣1时,y随x的增大而减小,∴a≥﹣1,∴实数a的取值范围是﹣1≤a<2.故选:D.【知识点】二次函数的性质;抛物线与x轴的交点二、填空题(本大题共4小题,每小题3分,共12分)13.(2019四川泸州,13,3分)4的算术平方根是.【答案】2【解析】解:4的算术平方根是2.故答案为:2.【知识点】算术平方根14.(2019四川泸州,14,3分)在平面直角坐标系中,点M(a,b)与点N(3,﹣1)关于x轴对称,则a+b 的值是.【答案】4【解析】解:∵点M(a,b)与点N(3,﹣1)关于x轴对称,∴a=3,b=1,∴a+b的值是4.故答案为:4.【知识点】关于x轴、y轴对称的点的坐标15.(2019四川泸州,15,3分)已知x1,x2是一元二次方程x2﹣x﹣4=0的两实根,则(x1+4)(x2+4)的值是.【答案】16【解析】解:∵x1,x2是一元二次方程x2﹣x﹣4=0的两实根,∴x1+x2=1,x1x2=﹣4,∴(x1+4)(x2+4)=x1x2+4x1+4x2+16=x1x2+4(x1+x2)+16=﹣4+4×1+16=﹣4+4+16=16,故答案为:16.【知识点】一元二次方程根与系数的关系16.(2019四川泸州,16,3分)如图,在等腰Rt△ABC中,∠C=90°,AC=15,点E在边CB上,CE=2EB,点D在边AB上,CD⊥AE,垂足为F,则AD的长为.【答案】9√2【解析】解:过D作DH⊥AC于H,∵在等腰Rt△ABC中,∠C=90°,AC=15,∴AC=BC=15,∴∠CAD=45°,∴AH=DH,∴CH=15﹣DH,∵CF⊥AE,∴∠DHA=∠DF A=90°,∴∠HAF=∠HDF,∴△ACE∽△DHC,∴DHAC=CHCE,∵CE=2EB,∴CE=10,∴DH15=15−DH10,∴DH=9,∴AD=9√2,故答案为:9√2.【知识点】勾股定理;等腰直角三角形;相似三角形的判定与性质三、解答题(本大题共9小题,满分72分,各小题都必须写出解答过程)17. (2019四川泸州,17,6分)计算:(π+1)0+(﹣2)2−√83×sin30°.【思路分析】原式利用零指数幂、乘方的意义,立方根定义,以及特殊角的三角函数值计算即可求出值. 【解题过程】解:原式=1+4﹣2×12=1+4﹣1=4. 【知识点】实数的运算;零指数幂;特殊角的三角函数值18. (2019四川泸州,18,6分)如图,AB ∥CD ,AD 和BC 相交于点O ,OA =OD .求证:OB =OC .【思路分析】由平行线的性质得出∠A =∠D ,∠B =∠C ,由AAS 证明△AOB ≌△DOC ,即可得出结论.【解题过程】解:证明:∵AB ∥CD ,∴∠A =∠D ,∠B =∠C ,在△AOB 和△DOC 中,{∠A =∠D∠B =∠C OA =OD, ∴△AOB ≌△DOC (AAS ),∴OB =OC .【知识点】全等三角形的判定与性质19.(2019四川泸州,19,6分)化简:(m +2+1m )•m m+1【思路分析】根据分式的运算法则即可求出答案.【解题过程】解:原式=m 2+2m+1m •m m+1=(m+1)2m •m m+1=m +1 【知识点】分式的混合运算20. (2019四川泸州,20,7分)某市气象局统计了5月1日至8日中午12时的气温(单位:℃),整理后分别绘制成如图所示的两幅统计图.根据图中给出的信息,解答下列问题:(1)该市5月1日至8日中午时气温的平均数是 ℃,中位数是 ℃;(2)求扇形统计图中扇形A 的圆心角的度数;(3)现从该市5月1日至5日的5天中,随机抽取2天,求恰好抽到2天中午12时的气温均低于20℃的概率.【思路分析】(1)5月1日至8日中午时气温的平均数:(19+16+22+18+21+22+25+26)÷8=21.125℃,中位数为21+222=21.5℃;(2)扇形统计图中扇形A 的圆心角的度数360°×38=135°; (3)设这个月5月1日至5日的5天中午12时的气温依次即为A 1,A 2,A 3,A 4,A 5,则抽到2天中午12时的气温,共有共10种不同取法,其中抽到2天中午12时的气温均低于20℃有3种不同取法,因此恰好抽到2天中午12时的气温均低于20℃的概率为310.【解题过程】解:(1)5月1日至8日中午时气温的平均数:(19+16+22+18+21+22+25+26)÷8=21.125℃ 将8天的温度按低到高排列:16,18,19,21,22,22,25,26,因此中位数为21+222=21.5℃, 故答案为21.125,21.5;(2)因为低于20℃的天数有3天,则扇形统计图中扇形A 的圆心角的度数360°×38=135°,答:扇形统计图中扇形A 的圆心角的度数135°;(3)设这个月5月1日至5日的5天中午12时的气温依次即为A 1,A 2,A 3,A 4,A 5,则抽到2天中午12时的气温,共有(A 1A 2),(A 1A 3),(A 1A 4),(A 1A 5),(A 2A 3),(A 2A 4),(A 2A 5),(A 3A 4),(A 3A 5),(A 4A 5)共10种不同取法,其中抽到2天中午12时的气温均低于20℃有(A 1A 2),(A 1A 4),(A 2A 4)3种不同取法,因此恰好抽到2天中午12时的气温均低于20℃的概率为310.【知识点】扇形统计图;条形统计图;加权平均数;中位数;列表法与树状图法21. (2019四川泸州,21,7分)某出租汽车公司计划购买A 型和B 型两种节能汽车,若购买A 型汽车4辆,B 型汽车7辆,共需310万元;若购买A 型汽车10辆,B 型汽车15辆,共需700万元.(1)A 型和B 型汽车每辆的价格分别是多少万元?(2)该公司计划购买A 型和B 型两种汽车共10辆,费用不超过285万元,且A 型汽车的数量少于B 型汽车的数量,请你给出费用最省的方案,并求出该方案所需费用.【思路分析】(1)设A 型汽车每辆的进价为x 万元,B 型汽车每辆的进价为y 万元,根据“购买A 型汽车4辆,B 型汽车7辆,共需310万元;若购买A 型汽车10辆,B 型汽车15辆,共需700万元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)根据题意列出不等式组解答即可.【解题过程】解:(1)设A 型汽车每辆的进价为x 万元,B 型汽车每辆的进价为y 万元,依题意,得:{4x +7y =31010x +15y =700, 解得{x =25y =30, 答:A 型汽车每辆的进价为25万元,B 型汽车每辆的进价为30万元;(2)设购进A 型汽车m 辆,购进B 型汽车(10﹣m )辆,根据题意得:{m <10−m 25m +30(10−m)≤285解得:3≤m <5,∵m 是整数,∴m =3或4,当m =3时,该方案所用费用为:25×3+30×7=285(万元);当m =4时,该方案所用费用为:25×4+30×6=280(万元).答:最省的方案是购买A 型汽车4辆,购进B 型汽车6辆,该方案所需费用为280万元.【知识点】二元一次方程组的应用;一元一次不等式组的应用;一次函数的应用22. (2019四川泸州,22,8分)一次函数y =kx +b 的图象经过点A (1,4),B (﹣4,﹣6).(1)求该一次函数的解析式;(2)若该一次函数的图象与反比例函数y =m x 的图象相交于C (x 1,y 1),D (x 2,y 2)两点,且3x 1=﹣2x 2,求m 的值.【思路分析】(1)应用待定系数法可求解;(2)联立两函数解析式,消去y ,得到一个关于x 的一元二次方程,利用根与系数的关系可得到关于m 的方程,即可求得m .【解题过程】解:(1)由题意得:{k +b =4−4k +b =−6解得:{k =2b =2∴一次函数解析式为:y =2x +2;(2)联立{y =2x +2y =m x ,消去y 得:2x 2+2x ﹣m =0,则x 1+x 2=﹣1,因为3x 1=﹣2x 2,解得{x 1=2x 2=−3, ∴C (2,6),∵反比例函数y =m x的图象经过C 点, ∴m =2×6=12.【知识点】待定系数法求函数解析式;反比例函数与一次函数的交点23. (2019四川泸州,23,8分)如图,海中有两个小岛C ,D ,某渔船在海中的A 处测得小岛位于东北方向上,且相距20√2nmile ,该渔船自西向东航行一段时间到达点B 处,此时测得小岛C 恰好在点B 的正北方向上,且相距50nmile ,又测得点B 与小岛D 相距20√5nmile .(1)求sin ∠ABD 的值;(2)求小岛C ,D 之间的距离(计算过程中的数据不取近似值).【思路分析】(1)过D 作DE ⊥AB 于E ,解直角三角形即可得到结论;(2)过D 作DF ⊥BC 于F ,解直角三角形即可得到结论.【解题过程】解:(1)过D 作DE ⊥AB 于E ,在Rt △AED 中,AD =20√2,∠DAE =45°,∴DE =20√2×sin45°=20,在Rt △BED 中,BD =20√5,∴sin ∠ABD =ED BD =2020√5=√55; (2)过D 作DF ⊥BC 于F ,在Rt △BED 中,DE =20,BD =20√5,∴BE =√BD 2−DE 2=40,∵四边形BFDE 是矩形,∴DF =EB =40,BF =DE =20,∴CF =BC ﹣BF =30,在Rt △CDF 中,CD =√DF 2+CF 2=50,∴小岛C ,D 之间的距离为50nmile .【知识点】解直角三角形的应用﹣方向角问题24. (2019四川泸州,24,12分)如图,AB 为⊙O 的直径,点P 在AB 的延长线上,点C 在⊙O 上,且PC 2=PB •P A .(1)求证:PC 是⊙O 的切线;(2)已知PC =20,PB =10,点D 是AB̂的中点,DE ⊥AC ,垂足为E ,DE 交AB 于点F ,求EF 的长.【思路分析】(1)连接OC ,△PBC ∽△PCA ,得出∠PCB =∠P AC ,由圆周角定理得出∠ACB =90°,证出∠PCB +∠OCB =90°,即OC ⊥PC ,即可得出结论;(2)连接OD ,由相似三角形的性质得出AC BC =PA PC =2,设BC =x ,则AC =2x ,在Rt △ABC 中,由勾股定理得出方程,得出BC =6√5,证出DE ∥BC ,得出△DOF ∽△ACB ,得出OF OD =BC AC =12,得出OF =12OD =152,即AF =152,再由平行线得出EF BC =AF AB =14,即可得出结果. 【解题过程】解:(1)证明:连接OC ,如图1所示:∵PC 2=PB •P A ,即PA PC =PC PB ,∵∠P =∠P ,∴△PBC ∽△PCA ,∴∠PCB =∠P AC ,∵AB 为⊙O 的直径,∴∠ACB =90°,∴∠A+∠ABC=90°,∵OC=OB,∴∠OBC=∠OCB,∴∠PCB+∠OCB=90°,即OC⊥PC,∴PC是⊙O的切线;(2)解:连接OD,如图2所示:∵PC=20,PB=10,PC2=PB•P A,∴P A=PC2PB=20210=40,∴AB=P A﹣PB=30,∵△PBC∽△PCA,∴ACBC=PAPC=2,设BC=x,则AC=2x,在Rt△ABC中,x2+(2x)2=302,解得:x=6√5,即BC=6√5,∵点D是AB̂的中点,AB为⊙O的直径,∴∠AOD=90°,∵DE⊥AC,∴∠AEF=90°,∵∠ACB=90°,∴DE∥BC,∴∠DFO=∠ABC,∴△DOF∽△ACB,∴OFOD=BCAC=12,∴OF=12OD=152,即AF=152,∵EF∥BC,∴EF BC =AF AB =14, ∴EF =14BC =3√52.【知识点】勾股定理;垂径定理;圆周角定理;切线的判定与性质;相似三角形的判定与性质25. (2019四川泸州,25,12分)如图,在平面直角坐标系xOy 中,已知二次函数y =ax 2+bx +c 的图象经过点A (﹣2,0),C (0,﹣6),其对称轴为直线x =2.(1)求该二次函数的解析式;(2)若直线y =−13x +m 将△AOC 的面积分成相等的两部分,求m 的值;(3)点B 是该二次函数图象与x 轴的另一个交点,点D 是直线x =2上位于x 轴下方的动点,点E 是第四象限内该二次函数图象上的动点,且位于直线x =2右侧.若以点E 为直角顶点的△BED 与△AOC 相似,求点E 的坐标.【思路分析】(1)把点A 、C 坐标及对称轴x =2代入二次函数表达式,即可求解;(2)求出直线y =−13x +m 与y 轴的交点为(0,m ),由S △AOC =12×2×6=6,12×38(m +6)(m +6)=3,即可求解;(3)分△DEO ∽△AOC 、△BED ∽△AOC 两种情况,分别求解即可.【解题过程】解:(1)由已知得:{4a −2b +c =0c =−6−b 2a=2,解得:{a =12b =−2c =−6, 故抛物线的表达式为:y =12x 2﹣2x ﹣6,同理可得直线AC 的表达式为:y =﹣3x ﹣6;(2)联立{y =−3x −6y =−13x +m ,解得:x =−38(m +6), 直线y =−13x +m 与y 轴的交点为(0,m ),S △AOC =12×2×6=6, 由题意得:12×38(m +6)(m +6)=3,解得:m =﹣2或﹣10(舍去﹣10),∴m =﹣2;(3)∵OA =2,OC =6,∴OC OA=3, ①当△DEO ∽△AOC 时,则BE DE =OC OA =3,如图1,过点E 作EF ⊥直线x =2,垂足为F ,过点B 作BG ⊥EF ,垂足为G ,则Rt △BEG ∽Rt △EDF ,则BG EF =EB ED =3,则BG =3EF ,设点E (h ,k ),则BG =﹣k ,FE =h ﹣2,则﹣k =3(h ﹣2),即k =6﹣3h ,∵点E 在二次函数上,故:12h 2﹣2h ﹣6=6﹣3h , 解得:h =4或﹣6(舍去﹣6),则点E (4,﹣6);②当△BED ∽△AOC 时,BE ED =OA OC =13, 过点E 作ME ⊥直线x =2,垂足为M ,过点B 作BN ⊥ME ,垂足为N ,则Rt △BEN ∽Rt △EDM ,则BN EM =BE DE =13,则NB =13EM ,设点E (p ,q ),则BN =﹣q ,EM =p ﹣2, 则﹣q =13(p ﹣2),解得:p =5+√1453或5−√1453(舍去); 故点E 坐标为(4,﹣6)或(5+√1453,1−√1459).【知识点】二次函数综合题;一次函数;三角形相似。
四川省泸州市2019年中考数学试题(含解析)

2019年四川省泸州市中考数学试卷一.选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)﹣8的绝对值是()A.8 B.﹣8 C.D.﹣2.(3分)将7760000用科学记数法表示为()A.7.76×105B.7.76×106C.77.6×106D.7.76×1073.(3分)计算3a2•a3的结果是()A.4a5B.4a6C.3a5D.3a64.(3分)下列立体图形中,俯视图是三角形的是()A.B.C.D.5.(3分)函数y=的自变量x的取值范围是()A.x<2 B.x≤2C.x>2 D.x≥26.(3分)如图,BC⊥DE,垂足为点C,AC∥BD,∠B=40°,则∠ACE的度数为()A.40°B.50°C.45°D.60°7.(3分)把2a2﹣8分解因式,结果正确的是()A.2(a2﹣4)B.2(a﹣2)2C.2(a+2)(a﹣2)D.2(a+2)28.(3分)四边形ABCD的对角线AC与BD相交于点O,下列四组条件中,一定能判定四边形ABCD为平行四边形的是()A.AD∥BC B.OA=OC,OB=ODC.AD∥BC,AB=DC D.AC⊥BD9.(3分)如图,一次函数y1=ax+b和反比例函数y2=的图象相交于A,B两点,则使y1>y2成立的x取值范围是()A.﹣2<x<0或0<x<4 B.x<﹣2或0<x<4C.x<﹣2或x>4 D.﹣2<x<0或x>410.(3分)一个菱形的边长为6,面积为28,则该菱形的两条对角线的长度之和为()A.8 B.12 C.16 D.3211.(3分)如图,等腰△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,且AB=AC=5,BC=6,则DE的长是()A.B.C.D.12.(3分)已知二次函数y=(x﹣a﹣1)(x﹣a+1)﹣3a+7(其中x是自变量)的图象与x 轴没有公共点,且当x<﹣1时,y随x的增大而减小,则实数a的取值范围是()A.a<2 B.a>﹣1 C.﹣1<a≤2D.﹣1≤a<2二.填空题(本大题共4个小题,每小题3分,共12分)13.(3分)4的算术平方根是.14.(3分)在平面直角坐标系中,点M(a,b)与点N(3,﹣1)关于x轴对称,则a+b 的值是.15.(3分)已知x1,x2是一元二次方程x2﹣x﹣4=0的两实根,则(x1+4)(x2+4)的值是.16.(3分)如图,在等腰Rt△ABC中,∠C=90°,AC=15,点E在边CB上,CE=2EB,点D在边AB上,CD⊥AE,垂足为F,则AD的长为.三.本大题共3个小题,每小题6分,共18分.17.(6分)计算:(π+1)0+(﹣2)2﹣×sin30°.18.(6分)如图,AB∥CD,AD和BC相交于点O,OA=OD.求证:OB=OC.19.(6分)化简:(m+2+)•.四.本大题共2个小题,每小题7分,共14分20.(7分)某市气象局统计了5月1日至8日中午12时的气温(单位:℃),整理后分别绘制成如图所示的两幅统计图.根据图中给出的信息,解答下列问题:(1)该市5月1日至8日中午时气温的平均数是℃,中位数是℃;(2)求扇形统计图中扇形A的圆心角的度数;(3)现从该市5月1日至5日的5天中,随机抽取2天,求恰好抽到2天中午12时的气温均低于20℃的概率.21.(7分)某出租汽车公司计划购买A型和B型两种节能汽车,若购买A型汽车4辆,B 型汽车7辆,共需310万元;若购买A型汽车10辆,B型汽车15辆,共需700万元.(1)A型和B型汽车每辆的价格分别是多少万元?(2)该公司计划购买A型和B型两种汽车共10辆,费用不超过285万元,且A型汽车的数量少于B型汽车的数量,请你给出费用最省的方案,并求出该方案所需费用.五.本大题共2个小题,每小题8分,共16分.22.(8分)一次函数y=kx+b的图象经过点A(1,4),B(﹣4,﹣6).(1)求该一次函数的解析式;(2)若该一次函数的图象与反比例函数y=的图象相交于C(x1,y1),D(x2,y2)两点,且3x1=﹣2x2,求m的值.23.(8分)如图,海中有两个小岛C,D,某渔船在海中的A处测得小岛位于东北方向上,且相距202019年四川省泸州市中考数学试卷一.选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)﹣8的绝对值是()A.8 B.﹣8 C.D.﹣2.(3分)将7760000用科学记数法表示为()A.7.76×105B.7.76×106C.77.6×106D.7.76×1073.(3分)计算3a2•a3的结果是()A.4a5B.4a6C.3a5D.3a64.(3分)下列立体图形中,俯视图是三角形的是()A.B.C.D.5.(3分)函数y=的自变量x的取值范围是()A.x<2 B.x≤2C.x>2 D.x≥26.(3分)如图,BC⊥DE,垂足为点C,AC∥BD,∠B=40°,则∠ACE的度数为()A.40°B.50°C.45°D.60°7.(3分)把2a2﹣8分解因式,结果正确的是()A.2(a2﹣4)B.2(a﹣2)2C.2(a+2)(a﹣2)D.2(a+2)28.(3分)四边形ABCD的对角线AC与BD相交于点O,下列四组条件中,一定能判定四边形ABCD为平行四边形的是()A.AD∥BC B.OA=OC,OB=ODC.AD∥BC,AB=DC D.AC⊥BD9.(3分)如图,一次函数y1=ax+b和反比例函数y2=的图象相交于A,B两点,则使y1>y2成立的x取值范围是()A.﹣2<x<0或0<x<4 B.x<﹣2或0<x<4C.x<﹣2或x>4 D.﹣2<x<0或x>410.(3分)一个菱形的边长为6,面积为28,则该菱形的两条对角线的长度之和为()A.8 B.12 C.16 D.3211.(3分)如图,等腰△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,且AB=AC=5,BC=6,则DE的长是()A.B.C.D.12.(3分)已知二次函数y=(x﹣a﹣1)(x﹣a+1)﹣3a+7(其中x是自变量)的图象与x 轴没有公共点,且当x<﹣1时,y随x的增大而减小,则实数a的取值范围是()A.a<2 B.a>﹣1 C.﹣1<a≤2D.﹣1≤a<2二.填空题(本大题共4个小题,每小题3分,共12分)13.(3分)4的算术平方根是.14.(3分)在平面直角坐标系中,点M(a,b)与点N(3,﹣1)关于x轴对称,则a+b 的值是.15.(3分)已知x1,x2是一元二次方程x2﹣x﹣4=0的两实根,则(x1+4)(x2+4)的值是.16.(3分)如图,在等腰Rt△ABC中,∠C=90°,AC=15,点E在边CB上,CE=2EB,点D在边AB上,CD⊥AE,垂足为F,则AD的长为.三.本大题共3个小题,每小题6分,共18分.17.(6分)计算:(π+1)0+(﹣2)2﹣×sin30°.18.(6分)如图,AB∥CD,AD和BC相交于点O,OA=OD.求证:OB=OC.19.(6分)化简:(m+2+)•.四.本大题共2个小题,每小题7分,共14分20.(7分)某市气象局统计了5月1日至8日中午12时的气温(单位:℃),整理后分别绘制成如图所示的两幅统计图.根据图中给出的信息,解答下列问题:(1)该市5月1日至8日中午时气温的平均数是℃,中位数是℃;(2)求扇形统计图中扇形A的圆心角的度数;(3)现从该市5月1日至5日的5天中,随机抽取2天,求恰好抽到2天中午12时的气温均低于20℃的概率.21.(7分)某出租汽车公司计划购买A型和B型两种节能汽车,若购买A型汽车4辆,B型汽车7辆,共需310万元;若购买A型汽车10辆,B型汽车15辆,共需700万元.(1)A型和B型汽车每辆的价格分别是多少万元?(2)该公司计划购买A型和B型两种汽车共10辆,费用不超过285万元,且A型汽车的数量少于B型汽车的数量,请你给出费用最省的方案,并求出该方案所需费用.五.本大题共2个小题,每小题8分,共16分.22.(8分)一次函数y=kx+b的图象经过点A(1,4),B(﹣4,﹣6).(1)求该一次函数的解析式;(2)若该一次函数的图象与反比例函数y=的图象相交于C(x1,y1),D(x2,y2)两点,且3x1=﹣2x2,求m的值.23.(8分)如图,海中有两个小岛C,D,某渔船在海中的A处测得小岛位于东北方向上,且相距20nmile,该渔船自西向东航行一段时间到达点B处,此时测得小岛C恰好在点B的正北方向上,且相距50nmile,又测得点B与小岛D相距20nmile.(1)求sin∠ABD的值;(2)求小岛C,D之间的距离(计算过程中的数据不取近似值).六.本大题共2个小题,每小题12分,共24分.24.(12分)如图,AB为⊙O的直径,点P在AB的延长线上,点C在⊙O上,且PC2=PB•P A.(1)求证:PC是⊙O的切线;(2)已知PC=20,PB=10,点D是的中点,DE⊥AC,垂足为E,DE交AB于点F,求EF的长.25.(12分)如图,在平面直角坐标系xOy中,已知二次函数y=ax2+bx+c的图象经过点A(﹣2,0),C(0,﹣6),其对称轴为直线x=2.(1)求该二次函数的解析式;(2)若直线y=﹣x+m将△AOC的面积分成相等的两部分,求m的值;(3)点B是该二次函数图象与x轴的另一个交点,点D是直线x=2上位于x轴下方的动点,点E是第四象限内该二次函数图象上的动点,且位于直线x=2右侧.若以点E为直角顶点的△BED与△AOC相似,求点E的坐标.2019年四川省泸州市中考数学试卷参考答案与试题解析一.选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.【解答】解:﹣8的绝对值是8.故选:A.2.【解答】解:将7760000用科学记数法表示为:7.76×106.故选:B.3.【解答】解:3a2•a3=3a5.故选:C.4.【解答】解:A、三棱柱的俯视图是三角形,故此选项正确;B、圆锥体的俯视图是圆,故此选项错误;C、球的俯视图是圆,故此选项错误;D、立方体的俯视图是正方形,故此选项错误;故选:A.5.【解答】解:根据题意得:2x﹣4≥0,解得x≥2.故选:D.6.【解答】解:∵AC∥BD,∠B=40°,∴∠ACB=40°,∵BC⊥DE,∴∠ACE=90°﹣40°=50°,故选:B.7.【解答】解:原式=2(a2﹣4)=2(a+2)(a﹣2),故选:C.8.【解答】解:∵OA=OC,OB=OD,∴四边形ABCD是平行四边形;故选:B.9.【解答】解:观察函数图象可发现:当x<﹣2或0<x<4时,一次函数图象在反比例函数图象上方,∴使y1>y2成立的x取值范围是x<﹣2或0<x<4.故选:B.10.【解答】解:如图所示:∵四边形ABCD是菱形,∴AO=CO=AC,DO=BO=BD,AC⊥BD,∵面积为28,∴AC•BD=2OD•AO=28 ①∵菱形的边长为6,∴OD2+OA2=36 ②,由①②两式可得:(OD+AO)2=OD2+OA2+2OD•AO=36+28=64.∴OD+AO=8,∴2(OD+AO)=16,即该菱形的两条对角线的长度之和为16.故选:C.11.【解答】解:连接OA、OE、OB,OB交DE于H,如图,∵等腰△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,∴OA平分∠BAC,OE⊥BC,OD⊥AB,BE=BD,∵AB=AC,∴AO⊥BC,∴点A、O、E共线,即AE⊥BC,∴BE=CE=3,在Rt△ABE中,AE==4,∵BD=BE=3,∴AD=2,设⊙O的半径为r,则OD=OE=r,AO=4﹣r,在Rt△AOD中,r2+22=(4﹣r)2,解得r=,在Rt△BOE中,OB==,∵BE=BD,OE=OD,∴OB垂直平分DE,∴DH=EH,OB⊥DE,∵HE•OB=OE•BE,∴HE===,∴DE=2EH=.故选:D.12.【解答】解:y=(x﹣a﹣1)(x﹣a+1)﹣3a+7=x2﹣2ax+a2﹣3a+6,∵抛物线与x轴没有公共点,∴△=(﹣2a)2﹣4(a2﹣3a+6)<0,解得a<2,∵抛物线的对称轴为直线x=﹣=a,抛物线开口向上,而当x<﹣1时,y随x的增大而减小,∴a≥﹣1,∴实数a的取值范围是﹣1≤a<2.故选:D.二.填空题(本大题共4个小题,每小题3分,共12分)13.【解答】解:4的算术平方根是2.故答案为:2.14.【解答】解:∵点M(a,b)与点N(3,﹣1)关于x轴对称,∴a=3,b=1,则a+b的值是:4.故答案为:4.15.【解答】解:∵x1,x2是一元二次方程x2﹣x﹣4=0的两实根,∴x1+x2=1,x1x2=﹣4,∴(x1+4)(x2+4)=x1x2+4x1+4x2+16=x1x2+4(x1+x2)+16=﹣4+4×1+16=﹣4+4+16=16,故答案为:16.16.【解答】解:过D作DH⊥AC于H,∵在等腰Rt△ABC中,∠C=90°,AC=15,∴AC=BC=15,∴∠CAD=45°,∴AH=DH,∴CH=15﹣DH,∵CF⊥AE,∴∠DHA=∠DF A=90°,∴∠HAF=∠HDF,∴△ACE∽△DHC,∴=,∵CE=2EB,∴CE=10,∴=,∴DH=9,∴AD=9,故答案为:9.三.本大题共3个小题,每小题6分,共18分.17.【解答】解:原式=1+4﹣2×=1+4﹣1=4.18.【解答】证明:∵AB∥CD,∴∠A=∠D,∠B=∠C,在△AOB和△DOC中,,∴△AOB≌△DOC(AAS),∴OB=OC.19.【解答】解:原式=•=•=m+1四.本大题共2个小题,每小题7分,共14分20.【解答】解:(1)5月1日至8日中午时气温的平均数:(19+16+22+18+21+22+25+26)÷8=21.125℃将8天的温度按低到高排列:16,18,19,21,22,22,25,26,因此中位数为=21.5℃,故答案为21.125,21.5;(2)因为低于20℃的天数有。
四川泸州2019中考试题数学卷(解析版)

一、选择题(共12小题)1.6的相反数为()A.﹣6 B.6 C.16D.16【答案】A.【解析】试题分析:6的相反数为:﹣6.故选A.考点:相反数.2.计算223a a结果是()A.24a B.23a C.22a D.3【答案】C.【解析】试题分析:223a a=22a.故选C.考点:合并同类项.3.下列图形中不是轴对称图形的是()A.B.C.D.【答案】C.【解析】试题分析:根据轴对称图形的概念可知:A,B,D是轴对称图形,C不是轴对称图形,故选C.考点:轴对称图形.4.将5570000用科学记数法表示正确的是()A.5.57×105B.5.57×106C.5.57×107D.5.57×108【答案】B.【解析】试题分析:5570000=5.57×106.故选B.考点:科学记数法—表示较大的数.5.下列立体图形中,主视图是三角形的是()A.B.C.D.【答案】A.考点:简单几何体的三视图.6.数据4,8,4,6,3的众数和平均数分别是()A.5,4 B.8,5 C.6,5 D.4,5【答案】D.【解析】试题分析:∵4出现了2次,出现的次数最多,∴众数是4;这组数据的平均数是:(4+8+4+6+3)÷5=5;故选D.考点:众数;算术平均数.7.在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2只,红球6只,黑球4只,将袋中的球搅匀,闭上眼睛随机从袋中取出1只球,则取出黑球的概率是()A.12B.14C.13D.16【答案】C.【解析】试题分析:根据题意可得:口袋里共有12只球,其中白球2只,红球6只,黑球4只,故从袋中取出一个球是黑球的概率:P(黑球)=412=13,故选C.考点:概率公式.8.如图,?ABCD的对角线AC、BD相交于点O,且AC+BD=16,CD=6,则△ABO的周长是()A.10 B.14 C.20 D.22【答案】B.【解析】试题分析:∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,DC=AB=6,∵AC+BD=16,∴AO+BO=8,∴△ABO的周长是:14.故选B.考点:平行四边形的性质.9.若关于x的一元二次方程222(1)10x k x k有实数根,则k的取值范围是()A.k≥1B.k>1 C.k<1 D.k≤1【答案】D.考点:根的判别式.10.以半径为1的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是()A.38B.34C.24D.28【答案】D.【解析】试题分析:如图1,∵OC=1,∴OD=1×sin30°=1 2;如图2,∵OB=1,∴OE=1×sin45°=2 2;如图3,∵OA=1,∴OD=1×cos30°=32,则该三角形的三边分别为:12、22、32,∵222123()()()222,∴该三角形是以12、22为直角边,32为斜边的直角三角形,∴该三角形的面积是12×12×22=28,故选D.考点:正多边形和圆;分类讨论.11.如图,矩形ABCD的边长AD=3,AB=2,E为AB的中点,F在边BC上,且BF=2FC,AF分别与DE、DB相交于点M,N,则MN的长为()A.225B.9220C.324D.425【答案】B.考点:相似三角形的判定与性质;矩形的性质.12.已知二次函数22y ax bx (a ≠0)的图象的顶点在第四象限,且过点(﹣1,0),当a ﹣b 为整数时,ab 的值为()A .34或1 B .14或1 C .34或12D .14或34【答案】A .考点:二次函数的性质;函数及其图象.二、填空题(共4小题)13.分式方程4103x x的根是.【答案】x=﹣1.【解析】试题分析:方程两边都乘以最简公分母x (x ﹣3)得:4x ﹣(x ﹣3)=0,解得:x=﹣1,经检验:x=﹣1是原分式方程的解,故答案为:x=﹣1.考点:分式方程的解.14.分解因式:2242aa=.【答案】22(1)a .【解析】试题分析:原式=22(21)aa =22(1)a ,故答案为:22(1)a .考点:提公因式法与公式法的综合运用.15.若二次函数2241y xx 的图象与x 轴交于A (1x ,0)、B (2x ,0)两点,则1211x x 的值为.【答案】4.【解析】试题分析:设y=0,则22410xx ,∴一元二次方程的解分别是点A 和点B 的横坐标,即1x ,2x ,∴12422x x ,1212x x ,∴1211x x =1212x x x x =212=4,故答案为:4.考点:抛物线与x 轴的交点.16.如图,在平面直角坐标系中,已知点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是.【答案】6.考点:三角形的外接圆与外心;动点型;最值问题.三、解答题(共9小题)17.计算:02 (21)12sin60(2).【答案】2.【解析】试题分析:直接利用特殊角的三角函数值以及结合零指数幂的性质以及二次根式的性质分别化简进而求出答案.试题解析:原式=312342=1﹣3+4=2.考点:实数的运算;零指数幂;特殊角的三角函数值.18.如图,C是线段AB的中点,CD=BE,CD∥BE.求证:∠D=∠E.【答案】证明见解析.考点:全等三角形的判定与性质.19.化简:322 (1)12aaa a.【答案】24a.【解析】试题分析:先对括号内的式子进行化简,再根据分式的乘法进行化简即可解答本题.试题解析:原式=(1)(1)32(1)12a a aa a=(2)(2)2(1)12a a aa a=24a.考点:分式的混合运算.20.为了解某地区七年级学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,从该地区随机抽取部分七年级学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名同学只能选择其中一类节目),并调查得到的数据用下面的表和扇形图来表示(表、图都没制作完成)节目类型新闻体育动画娱乐戏曲人数36 90 a b 27根据表、图提供的信息,解决以下问题:(1)计算出表中a、b的值;(2)求扇形统计图中表示“动画”部分所对应的扇形的圆心角度数;(3)若该地区七年级学生共有47500人,试估计该地区七年级学生中喜爱“新闻”类电视节目的学生有多少人?【答案】(1)162,135;(2)108°;(3)3800.考点:扇形统计图;用样本估计总体.21.某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B商品共用了880元.(1)A、B两种商品的单价分别是多少元?(2)已知该商店购买B商品的件数比购买A商品的件数的2倍少4件,如果需要购买A、B 两种商品的总件数不少于32件,且该商店购买的A、B两种商品的总费用不超过296元,那么该商店有哪几种购买方案?【答案】(1)A种商品的单价为16元、B种商品的单价为4元;(2)有两种方案:方案(1):m=12,2m﹣4=20 即购买A商品的件数为12件,则购买B商品的件数为20件;方案(2):m=13,2m﹣4=22 即购买A商品的件数为13件,则购买B商品的件数为22件.【解析】试题分析:(1)设A种商品的单价为x元、B种商品的单价为y元,根据等量关系:①购买60件A商品的钱数+30件B商品的钱数=1080元,②购买50件A商品的钱数+20件B商品的钱数=880元分别列出方程,联立求解即可.(2)设购买A商品的件数为m件,则购买B商品的件数为(2m﹣4)件,根据不等关系:①购买A、B两方案(1):m=12,2m﹣4=20 即购买A商品的件数为12件,则购买B商品的件数为20件;方案(2):m=13,2m﹣4=22 即购买A商品的件数为13件,则购买B商品的件数为22件.考点:一元一次不等式组的应用;二元一次方程组的应用.22.如图,为了测量出楼房AC的高度,从距离楼底C处603米的点D(点D与楼底C在同一水平面上)出发,沿斜面坡度为i=1:3的斜坡DB前进30米到达点B,在点B处测得楼顶A的仰角为53°,求楼房AC的高度(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈43,计算结果用根号表示,不取近似值).【答案】15603.【解析】试题分析:如图作BN⊥CD于N,BM⊥AC于M,先在RT△BDN中求出线段BN,在RT△ABM中求出AM,再证明四边形CMBN是矩形,得CM=BN即可解决问题.考点:解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.23.如图,一次函数y=kx+b(k<0)与反比例函数myx的图象相交于A、B两点,一次函数的图象与y轴相交于点C,已知点A(4,1)(1)求反比例函数的解析式;(2)连接OB(O是坐标原点),若△BOC的面积为3,求该一次函数的解析式.【答案】(1)4yx;(2)132y x.【解析】试题分析:(1)由点A的坐标结合反比例函数系数k的几何意义,即可求出m的值;(2)设点B的坐标为(n,4n),将一次函数解析式代入反比例函数解析式中,利用根与系数的关系可找出n、k的关系,由三角形的面积公式可表示出来b、n的关系,再由点A在一次函数图象上,可找出k、b的关系,联立3个等式为方程组,解方程组即可得出结论.考点:反比例函数与一次函数的交点问题.24.如图,△ABC内接于⊙O,BD为⊙O的直径,BD与AC相交于点H,AC的延长线与过点B 的直线相交于点E,且∠A=∠EBC.(1)求证:BE是⊙O的切线;(2)已知CG∥EB,且CG与BD、BA分别相交于点F、G,若BG?BA=48,FG=2,DF=2BF,求AH的值.【答案】(1)证明见解析;(2)83 3.【解析】试题分析:(1)欲证明BE是⊙O的切线,只要证明∠EBD=90°.(2)由△ABC∽△CBG,得B C A BB G B C求出BC,再由△BFC∽△BCD,得2BC=BF?BD求出BF,CF,CG,GB,再通过计算发现CG=AG,进而可以证明CH=CB,求出AC即可解决问题.试题解析:(1)连接CD,∵BD是直径,∴∠BCD=90°,即∠D+∠CBD=90°,∵∠A=∠D,∠A=∠EBC,∴∠CBD+∠EBC=90°,∴BE⊥BD,∴BE是⊙O切线.(2)∵CG∥EB,∴∠BCG=∠EBC,∴∠A=∠BCG,∵∠CBG=∠ABC∴△ABC∽△CBG,∴BC ABBG BC,即2BC=BG?BA=48,∴BC=43,∵CG∥EB,∴CF⊥BD,∴△BFC∽△BCD,∴2BC=BF?BD,∵DF=2BF,∴BF=4,在RT△BCF中,CF=22BC FB=42,考点:圆的综合题;三角形的外接圆与外心;切线的判定.25.如图,在平面直角坐标系中,点O为坐标原点,直线l与抛物线2y mx nx相交于A(1,33),B(4,0)两点.(1)求出抛物线的解析式;(2)在坐标轴上是否存在点D,使得△ABD是以线段AB为斜边的直角三角形?若存在,求出点D的坐标;若不存在,说明理由;(3)点P是线段AB上一动点,(点P不与点A、B重合),过点P作PM∥OA,交第一象限内的抛物线于点M,过点M作MC⊥x轴于点C,交AB于点N,若△BCN、△PMN的面积S△BCN、S△PMN满足S△BCN=2S△PMN,求出MNNC的值,并求出此时点M的坐标.【答案】(1)2343y x x;(2)D(1,0)或(0,33112)或(0,33112);(3)2,M(21,263).【解析】试题分析:(1)由A、B两点的坐标,利用待定系数法可求得抛物线解析式;(2)分D在x轴上和y轴上,当D在x轴上时,过A作AD⊥x轴,垂足D即为所求;当D点在y 轴上时,设出D 点坐标为(0,d ),可分别表示出AD 、BD ,再利用勾股定理可得到关于d 的方程,可求得d 的值,从而可求得满足条件的D 点坐标;②当点D 在y 轴上时,设D (0,d ),则221(33)AD d ,2224BD d ,且222(41)(33)36AB ,∵△ABD 是以AB 为斜边的直角三角形,∴222AD BDAB ,即2221(33)436d d ,解得d=33112,∴D 点坐标为(0,33112)或(0,33112);综上可知存在满足条件的D 点,其坐标为(1,0)或(0,33112)或(0,33112);(3)如图2,过P 作PF ⊥CM 于点F ,∵PM ∥OA ,∴Rt △ADO ∽Rt △MFP ,∴MF AD PF OD =33,∴MF=33PF ,在Rt △ABD 中,BD=3,AD=33,∴tan ∠ABD=3,∴∠ABD=60°,设BC=a ,则CN=3a ,在Rt △PFN 中,∠PNF=∠BNC=30°,∴tan ∠PNF=33PFPN,∴FN=3PF ,∴MN=MF+FN=43PF,考点:二次函数综合题;分类讨论;动点型;存在型;压轴题.。
四川省泸州市中学考试数学试卷(word版含问题详解)

合用文档2019 年泸州市中考数学试卷满分 120 分 时间 120 分钟第 I 卷(选择题共 36 分)一.选择题(本大题共 12 个小题,每题3 分,共 36 分 .在每题给出的四个选项中,只有一项为哪一项吻合题目要求的)1.-8 的绝对值为()C.1 18D.82.将 7760000 用科学记数法表示为( )A.7.76 ×105B.7.76 106××106×1073.计算 3a 2a 3 的结果是()A. 4a 5B. 4a 6C. 3a 5D. 3a 64.以下立体图形中,俯视图是三角形的是()5.函数 y 2x 4 的自变量 x 的取值范围是()A. x2 B. x2 C. x 2 D. x 26.如图, BC ⊥DE ,垂足为点 C ,AC ∥ BD ,∠ B=40°,则∠ ACE 的度数为( )A.40 °B.50 °C.45 °D.60 °7.把 2a 28分解因式,结果正确的选项是( )A. 2(a 2 4)B. 2(a2)2C. 2(a 2)(a 2)D. 2(a2)28.四边形 ABCD 的对角线 AC 与 BD 订交于点 O ,以下四组条件中, 必然能判断四边形ABCD为平行四边形的是()A.AD ∥BCB.OA=OC , OB=ODC.AD ∥BC ,AB=DCD.AC ⊥BD9.如图,一次函数 y 1 ax b 和反比率函数 y 2k的图象订交于 A ,B 两点,则使 y 1 y 2成立的 x 取值范围是(x)A. 2 x 0 或 0 x 4B. x2 或 0 x 4C. x2 或 x 4D. 2 x0 或 x 410.一个菱形的边长为 6,面积为 28,则该菱形的两条对角线的长度之和为()11.如图,等腰 △ ABC 的内切圆⊙ O 与 AB ,BC ,CA 分别相切于点D ,E ,F ,且 AB=AC=5 ,BC=6 ,则 DE 的长是( )3 103 103 5 6 5A.B.5C.5D.51012.已知二次函数y (x a 1)( x a 1) 3a 7 (其中x是自变量)的图象与x 轴没有公共点,且当x1时, y 随 x 的增大而减小,则实数 a 的取值范围是()A. a 2B. a1C. 1 a 2D. 1 a 2第 II卷(非选择题共84分)二.填空题(本大题共 4 个小题,每题 3 分,共 12 分)13.4 的算术平方根是.14.在平面直角坐标系中,点M (a, b)与点 N( 3, -1)关于x轴对称,则a+b 的值是15.已知x1, x2是一元二次方程x2x 4 0 的两实根,则( x14)( x24) 的值是.16.如图,在等腰Rt△ ABC 中,∠ C=90°, AC=15 ,点 E 在边 CB 上, CE=2EB ,点 D 在边AB 上, CD ⊥ AE ,垂足为 F,则 AD 的长为.三.本大题共 3 个小题,每题 6 分,共 18 分 .17.计算:(1)0( 2)2 3 8sin 30 .18.如图, AB ∥ CD , AD 和 BC 订交于点O,OA=OD. 求证: OB=OC.1m19.化简:( m2)m m1四.本大题共 2 个小题,每题7 分,共 14 分20.某市气象局统计了 5 月 1 日至 8 日中午 12 时的气温(单位:℃),整理后分别绘制成以以下列图所示的两幅统计图 .依照图中给出的信息,解答以下问题:(1)该市 5 月 1 日至 8 日中中午气温的平均数是℃,中位数是℃(2)求扇形统计图中扇形 A 的圆心角的度数;(3)现从该市 5 月 1 日至 5 日的 5 天中,随机抽取 2 天,求恰好抽到 2 天中午 12 时的气温均低于20℃的概率 .21.某出租汽车公司计划购买 A 型和 B 型两种节能汽车,若购买 A 型汽车 4 辆, B 型汽车 7 辆,共需310 万元;若购买 A 型汽车 10 辆, B 型汽车 15 辆,共需 700 万元 .(1) A 型和 B 型汽车每辆的价格分贝是多少万元?(2)该公司计划购买 A 型和 B 型两种汽车共10 辆,花销不高出285 万元,且 A 型汽车的数量很多于 B 型汽车的数量,请你给出花销最省的方案,并求出该方案所需花销.五.本大题共 2 个小题,每题8 分,共 16 分 .22.若该一次函数的图象与反比率函数y m的图象订交于 C (x1, y1 ) , D( x2 , y2 ) 两点,且x3x1 2x2,求m的值.23.如图,海中有两个小岛C, D,某渔船在海中的 A 处测得小岛位于东北方向上,且相距20 2 n mile,该渔船自西向东航行一段时间到达点 B 处,此时测得小岛 C 恰幸好点 B 的正北方向上,且相距50n mile ,又测得点 B 与小岛 D 相距 20 5 n mile.(1)求 sin∠ ABD 的值;(2)求小岛C,D 之间的距离(计算过程中的数据不取近似值).六.本大题共 2 个小题,每题12 分,共 24 分 .24.如图, AB 为⊙ O 的直径,点P 在 AB 的延长线上,点 C 在⊙ O 上,且PC2PB PA .(1)求证: PC 是⊙ O 的切线;(2)已知 PC=20, PB=10,点 D 是AB的中点, DE ⊥ AC ,垂足为 E,DE 交 AB 于点 F,求 EF的长.25.如图,在平面直角坐标系xOy 中,已知二次函数y ax2bx c 的图象经过点A(-2,0),C( 0, -6),其对称轴为直线x 2 .(1)求该二次函数的剖析式;1 x m 将△AOC的面积分成相等的两部分,求m 的值;(2)若直线y3(3)点 B 是该二次函数图象与x 轴的另一个交点,点 D 是直线x 2 上位于 x 轴下方的动点,点 E 是第四象限内该二次函数图象上的动点,且位于直线x 2 右侧.若以点E为直角极点的△ BED 与△AOC 相似,求点 E 的坐标 .参照答案一.选择题题号123456789101112答案A B C A D B C B B C D D二.填空题16. 92四川省泸州市中学考试数学试卷(word版含问题详解)合用文档文案大全11 / 11。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用前四川省泸州市2019年初中毕业会考、高级中等学校招生考试数 学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共36分)一.选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.8-的绝对值是( )A .8B .8-C .18D .182.将7 760 000用科学记数法表示为 ( ) A .57.7610 B .67.7610C .677.610D .77.7610 3.计算233a a 的结果是( )A .54aB .64aC .53aD .63a4.下列立体图形中,俯视图是三角形的是( )ABC D 5.函数24y x 的自变量x 的取值范围是( ) A .2x <B .2xC .2x >D .2x6.如图,BC DE ⊥,垂足为点C ,AC BD ∥,40B =,则ACE 的度数为( )A .40B .50C .45D .60 7.把228a 分解因式,结果正确的是( )A .22(4)aB .22()2aC .()(222)a aD .22()2a8.四边形ABCD 的对角线AC 与BD 相交于点O ,下列四组条件中,一定能判定四边形ABCD 为平行四边形的是( )A .AD BC ∥B .OA OC ,OB OD C .AD BC ∥,ABDCD .AC BD ⊥9.如图,一次函数1y ax b 和反比例函数2ky x的图象相交于A ,B 两点,则使12y y >成立的x 取值范围是( )A .20x <<或04x <<B .2x <-或04x <<C .2x <-或4x >D .20x <<或4x >10.一个菱形的边长为6,面积为28,则该菱形的两条对角线的长度之和为( )A .8B .12C .16D .32 11.如图,等腰ABC △的内切圆O 与AB ,BC ,CA 分别相切于点D ,E ,F ,且5AB AC ,6BC ,则DE 的长是( )ABC D 12.已知二次函数11((3))7y x a x a a (其中x 是自变量)的图象与x 轴没有公共点,且当1x <-时,y 随x 的增大而减小,则实数a 的取值范围是( )A .2a <B .1a >-C .12a<D.12a <第Ⅰ卷(非选择题 共84分) 毕业学校_____________ 姓名________________ 考生号________________________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效-------------二.填空题(本大题共4个小题,每小题3分,共12分) 13.4的算术平方根是 .14.在平面直角坐标系中,点,()M a b 与点1(3,)N 关于x 轴对称,则a b 的值是 .15.已知1x ,2x 是一元二次方程240x x 的两实根,则12()(44)x x 的值是 .16.如图,在等腰Rt ABC △中,90C =,15AC ,点E 在边CB 上,2CE EB ,点D 在边AB 上,CD AE ⊥,垂足为F ,则AD 的长为 .三.本大题共3个小题,每小题6分,共18分.17.计算:023()()128sin30 .18.如图,AB CD ∥,AD 和BC 相交于点O ,OA OD .求证:OB OC .19.化简:(112)m m mm .四.本大题共2个小题,每小题7分,共14分.20.某市气象局统计了5月1日至8日中午12时的气温(单位:℃),整理后分别绘制成如图所示的两幅统计图.根据图中给出的信息,解答下列问题:(1)该市5月1日至8日中午时气温的平均数是 ℃,中位数是 ℃; (2)求扇形统计图中扇形A 的圆心角的度数;(3)现从该市5月1日至5日的5天中,随机抽取2天,求恰好抽到2天中午12时的气温均低于20℃的概率.21.某出租汽车公司计划购买A 型和B 型两种节能汽车,若购买A 型汽车4辆,B 型汽车7辆,共需310万元;若购买A 型汽车10辆,B 型汽车15辆,共需700万元. (1)A 型和B 型汽车每辆的价格分别是多少万元?(2)该公司计划购买A 型和B 型两种汽车共10辆,费用不超过285万元,且A 型汽车的数量少于B 型汽车的数量,请你给出费用最省的方案,并求出该方案所需费用.五.本大题共2个小题,每小题8分,共16分. 22.一次函数ykx b 的图象经过点()1,4A ,()4,6B .(1)求该一次函数的解析式;(2)若该一次函数的图象与反比例函数my x的图象相交于11(),C x y ,22(),D x y 两点,且2132x x=-,求m 的值.23.如图,海中有两个小岛C ,D ,某渔船在海中的A 处测得小岛位于东北方向上,且相距nmile ,该渔船自西向东航行一段时间到达点B 处,此时测得小岛C 恰好在点B 的正北方向上,且相距50nmile ,又测得点B 与小岛D相距nmile .(1)求sin ABD 的值;(2)求小岛C ,D 之间的距离(计算过程中的数据不取近似值).六.本大题共2个小题,每小题12分,共24分.24.如图,AB 为O 的直径,点P 在AB 的延长线上,点C 在O 上,且2PC PB PA .(1)求证:PC 是O 的切线; (2)已知20PC,10PB ,点D 是AB 的中点,DE AC ⊥,垂足为E ,DE 交AB 于点F ,求EF 的长.25.如图,在平面直角坐标系xOy 中,已知二次函数2yax bx c 的图象经过点0()2,A ,6(0,)C ,其对称轴为直线2x .(1)求该二次函数的解析式; (2)若直线13yx m 将AOC △的面积分成相等的两部分,求m 的值; (3)点B 是该二次函数图象与x 轴的另一个交点,点D 是直线2x 上位于x 轴下方的动点,点E 是第四象限内该二次函数图象上的动点,且位于直线2x 右侧.若以点E 为直角顶点的BED △与AOC △相似,求点E 的坐标.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效-------------四川省泸州市2019年初中毕业会考、高级中等学校招生考试数学答案解析第Ⅰ卷一.选择题 1.【答案】A【解析】:8的绝对值是8。
故选:A 2.【答案】B【解析】将7760000用科学记数法表示为:67.7610。
故选:B 3.【答案】C【解析】23533a a a =。
故选:C 4.【答案】A【解析】A 、三棱柱的俯视图是三角形,故此选项正确;B 、圆锥体的俯视图是圆,故此选项错误;C 、球的俯视图是圆,故此选项错误;D 、立方体的俯视图是正方形,故此选项错误。
故选:A 5.【答案】D【解析】根据题意得:240x ,解得2x 。
故选:D6.【答案】B【解析】∵AC BD ∵∥,40B ,40ACB ∴,BCDE ∵,904050ACE ∴。
故选:B7.【答案】C 【解析】原式224222a a a =。
故选:C8.【答案】B【解析】OA OC ∵,OB OD ,∴四边形ABCD 是平行四边形。
故选:B 9.【答案】B【解析】观察函数图象可发现:当2x <-或04x <<时,一次函数图象在反比例函数图象上方,∴使12y y >成立的x 取值范围是2x <-或04x <<。
故选:B 10.【答案】C【解析】如图所示:∵四边形ABCD 是菱形,12AO COAC ∴,12DO BO BD ∴,AC BD ⊥,∵面积为28,12282AC BD OD AO ∴①,∵菱形的边长为6,2236OD OA ∴②,由①②两式可得:2222362864OD AO OD OA OD AO ()。
8OD AO ∴,216OD AO ∴()=,即该菱形的两条对角线的长度之和为16。
故选:C 11.【答案】D【解析】连接OA 、OE 、OB ,OB 交DE 于H ,如图,∵等腰ABC △的内切圆O 与AB ,BC ,CA 分别相切于点D ,E ,F ,OA ∴平分BAC ,OE BC ,OD AB ,BE BD ,AB AC ∵,AO BC ∴,∴点A 、O 、E 共线,即AEBC ,3BE CE ∴,在Rt ABE △中,22534AE,3BD BE ∵,2AD ∴,设O 的半径为r ,则OD OE r ,4AO r ,在Rt AOD △中,22224r r =(),解得32r ,在Rt BOE △中,22335OB322,BE BD ∵,OE OD ,OB ∴垂直平分DE ,DH EH ∴,OB DE ⊥,112HE OBOE BE ∵,3320353255E BE HE OB ∴,6525DE EH∴。
故选:D 12.【答案】D 【解析】221137236yx a x a a x ax a a ,∵抛物线与x 轴没有公共点,2Δ224360a a a ∴=﹣<,解得2a ∴<,∵抛物线的对称轴为直线22a xa ,抛物线开口向上,而当1x <-时,y 随x 的增大而减小,1a ∴,∴实数a 的取值范围是12a <。
故选:D第Ⅰ卷二.填空题 13.【答案】2【解析】4的算术平方根是2 14.【答案】4【解析】∵点M a b (,)与点31N (,-)关于x 轴对称,3a ∴,1b ,则a b 的值是:4 15.【答案】16【解析】1x ∵,2x 是一元二次方程240x x =的两实根,121x x ∴,124x x ,1244x x ∴ 12124416x x x x1212416x x x x44116 4416 1616.【答案】【解析】过D 作DH AC ⊥于H ,∵在等腰Rt ABC △中,90C ,15AC ,15AC BC ∴, 45CAD ∴, AH DH ∴,15CH DH ∴, CFAE ∵,90DHADFA ∴,HAF HDF ∴,ACE DHC ∴△∽△,DH CHAC CE∴, 2CE EB ∵, 10CE ∴=, 151510DH DH∴, 9DH ∴,AD ∴=三.本大题共3个小题,每小题6分,共18分.17.【答案】原式11424218.【答案】证明:AB CD ∵∥,A D ∴,BC ,在AOB △和DOC △中,A D B C OA OD,AOB DOC AAS ∴△≌△(), OB OC ∴19.【答案】原式2211m m mm m2(1)1m mm m1m四.本大题共2个小题,每小题7分,共14分 20.【答案】(1)5月1日至8日中午时气温的平均数:(1916221721222526)821C +++++++÷=,将8天的温度按低到高排列:16,17,19,21,22,22,25,26,因此中位数为212221.52C +=; (2)因为低于20℃的天数有3天,所以扇形统计图中扇形A 的圆心角度数为:33601358;答:扇形统计图中扇形A 的圆心角的度数是135(3)设这个月1日至5日5天中午12时的气温依次记为1A ,2A ,3A ,4A ,5A ,随机抽取2天中午l2时的气温,共有:12A A ,,13A A ,,14A A ,,15A A ,,15A A ,,23A A ,,24A A ,,25A A ,,34A A ,,35A A ,,45A A ,10种不同的取法,其中中午12时气温低于20℃的为1A ,2A ,4A ,而恰好有两天中午12时气温均低于20℃的情况有12A A ,,14A A ,,24A A ,3种不同的取法,因此恰好抽到2天中午12时气温均低于20℃的概率为310。