线性代数纯手写笔记
《线性代数》学习笔记三

主 题: 《线性代数》学习笔记 内 容:《线性代数》学习笔记三——矩阵的概念、运算、分块矩阵1. 矩阵概念定义:由mxn 个数a ij (i-1.2,……,m;j=1.2,……,n)排成m 行n 列的数表 ⎪⎪⎪⎪⎪⎭⎫⎝⎛=mn m m n n a a a a a a a a a A 212222111211称为一个mxn 矩阵,a ij 称为第i 行第j 列上的元素,可简记作A=(a ij )mxn 或Amxn ,当m=n 时也称Amxn 为n 阶方阵,可记为An 。
当m=1时,Amxn=(a 11,a 12,……a 1n )称为行矩阵,当n=1时,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=12111m mxna a a A 称为列矩阵,有元素皆为0的矩阵称为零矩阵,记作0。
对于n 阶方阵An ,称a n ,a 22 ,…,nn a 为A 的全对角线上元素称∑=ni ii a 1为分阵A 的迹,记作tr A ,即tr A =1nii i a 。
当n 阶方阵A 的主对角线以下(上)的所有元素皆为零称A 为上(下)三角形矩阵,除主对角线上元素外其元素皆为零的方阵为对角形矩阵,主对角线上有元素皆为1的对角形矩阵称为单位方阵,记作F 即⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=100010001F 2.矩阵运算1加法A=(ij a )mxn ,B=(ig b )mxn 则A+B=(a ij +b ij )mxn即只有两个矩阵都是mxn 矩阵,也称为同型矩阵,才能做加法运算。
称(-a ij )mxn 为A 的负矩阵,记作-A ,即-A=(-a ij )mxn 。
由此可定义A -B=A+(-B )=(a ij -bij )mxn 。
证与数的加、减运算类似,矩阵的加法运算满足 (1)A+B=B+A (交换律)(2)(A+B )+C=A+(B+C )(结合律) (3)A+O=O+A=A ,(4)A+(-A )=(-A )+A=O 2.数乘:设K 是一个数, mxnijmxnA a 则R 与矩阵A 相乘定义为111212122212n n ijmxnm m mnka ka ka ka ka ka kAka ka kaka也就是ka 是指用k 去乘A 的每一个元素,另证,其满足以下规律: (1)K (A+B )=KA+KB ,(K+L )A=KA+LA ,(分配律) (2)(KL )A=K (LA )=L (KA ),(结合律), (3)若KA=0,则K=0或A=0。
考研数学线性代数手写笔记

隽卷轴对 埔
d
里
蝉 竹触 © 闭 C 八
哺
八
商愆酏 翅 癫 <娣榭蹊 八啪 一 夜娴© 蜘 t!枘碑堤 微
(· &i i t ój j j Éj & > 1 > t & , l s t ! d M
1
LJ; 1
1 1
AJ 1
A
八
月
A"
1
Aj
1
[
铀赫佴醐
,
F
k
wi f i q
&=
亡
创 制
Jill
@f q w Ê
觳入 罗耗僻 A W禾我让仟
苄 \
,
人0 4 入住°
A\
"
与 与
兼 多当A 吕 o 对不能弘 A · 荻8 - o 4 瓷A 和 却粼川 s o
> x -
a
2国
/ ¢i t h 1/ 14 ®Ptìi gM
a
\
77
3 虽t
八j乙肘 A
萨 八 八 良+ 9
男沫豹力毛亭泌 朗 荫 心
z3
黄 已知八 良 t 与沟司逐短 瞬 W掌硝
只 阳目 园国
k M' A0
j 0 0
1
11
巨
厂
:犍 ® f c 胪 时穿易患花 ( t i. j
r
M
0i L
豸
名 国
.
目届
零
卅车间
74 囤川 麟 9· Pl 花中
断腐元 囤
糙角囝闲 祥 不同 1爿啄盈凶钰 间闲
) ( 日 六 ' " 一
考研线性代数笔记

考研线性代数笔记考研线性代数笔记1、行列式1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;2. 代数余子式的性质:①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0;③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D -=-;将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)22(1)n n D D -=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =;将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -? -;③、上、下三角行列式(= ◥◣):主对角元素的乘积;④、◤和◢:副对角元素的乘积(1)2(1)n n -? -;⑤、拉普拉斯展开式:A O A C ABC B O B ==、(1)m n C A O AA B B O B C==- ⑥、范德蒙行列式:大指标减小指标的连乘积;⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nn k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;7. 证明0A =的方法:①、A A =-;②、反证法;③、构造齐次方程组0Ax =,证明其有非零解;④、利用秩,证明()r A n <;⑤、证明0是其特征值;2、矩阵1. A 是n 阶可逆矩阵:0A ≠(是非奇异矩阵);()r A n =(是满秩矩阵) ?A 的行(列)向量组线性无关; ?齐次方程组0Ax =有非零解;?n b R ?∈,Ax b =总有唯一解;A 与E 等价;A 可表示成若干个初等矩阵的乘积; ?A 的特征值全不为0;T A A 是正定矩阵;A 的行(列)向量组是n R 的一组基; ?A 是n R 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3. 1**111**()()()()()()T T T T A A A A A A ----=== ***111()()()T T TAB B A AB B A AB B A ---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ?? ?= ? ??,则:Ⅰ、12s A A A A =;Ⅱ、111121s A A A A ----??= ? ? ??;②、111A O A O O B O B ---??=;(主对角分块)③、111O A O B B O A O ---??= ? ?;(副对角分块)④、11111A C A A CB O B OB -----??-??=;(拉普拉斯)⑤、11111A O A O C B B CA B -----??= ? ?-;(拉普拉斯)3、矩阵的初等变换与线性方程组1. 一个m n ?矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nE OF OO= ;等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵A 、B ,若()()r A r B A B = ? ; 2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若(,)(,)rA E E X ,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且1x A b -=;4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ??Λ= ? ??λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)Ei j Ei j -=,例如:1111111-= ? ? ? ?????;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k-=,例如:1111(0)11k k k -=≠ ? ? ? ???;⑤、倍加某行或某列,符号(())E i j k,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --???? ? ?=≠ ? ? ? ?????;5. 矩阵秩的基本性质:①、0()min(,)m n r A m n ?≤≤;②、()()T r A r A =;③、若A B ,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩)⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※)⑥、()()()r A B r A r B +≤+;(※)⑦、()min((),())r AB r A rB ≤;(※)⑧、如果A 是m n ?矩阵,B 是n s ?矩阵,且0AB =,则:(※)Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)?行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ?? ?的矩阵:利用二项展开式;二项展开式:01110()nn nn m n m mn n n n m m n mn n n n n n m a b C a C a b C a b C a b C b C a b -----=+=++ ++++=∑;注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====-m n n n n n n n m n C C C m m n mⅢ、组合的性质:11112---+-===+==∑nmn m mm m r nr r nnn n nnn n r C C CC CCrC nC ;③、利用特征值和相似对角化: 7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1nr A n r A r A n r A n = ??==-??<-?;②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ? =;③、*1A A A -=、1*n A A-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0;③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ?矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程;②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程;10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解;③、特解:自由变量赋初值后求得;11. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n na x a x a xb a x a x a x b a x a x a x b +++= ??+++= +++=?;②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ?????? ??? ? ??? ?=?= ??? ? ??? ???????(向量方程,A 为m n ?矩阵,m 个方程,n 个未知数)③、()1212n n x x a a a x β?? ? ?= ? ???(全部按列分块,其中12n b b b β?? ? ?= ? ???);④、1122n n a x a x a x β+++=(线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数) 4、向量组的线性相关性1. m 个n 维列向量所组成的向量组A :12,,,m ααα构成n m ?矩阵12(,,,)m A =ααα;m 个n 维行向量所组成的向量组B :12,,,T TTm βββ构成m n ?矩阵12T T T m B βββ??= ? ? ???;含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ?=有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ?=是否有解;(线性方程组)③、向量组的相互线性表示 AX B ?=是否有解;(矩阵方程)3. 矩阵m n A ?与l n B ?行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14)4. ()()T r A A r A =;(101P 例15)5. n 维向量线性相关的几何意义:①、α线性相关?0α=;②、,αβ线性相关,αβ坐标成比例或共线(平行);③、,,αβγ线性相关?,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s ααα线性相关,则121,,,,s s αααα+必线性相关;若12,,,s ααα线性无关,则121,,,s ααα-必线性无关;(向量的个数加加减减,二者为对偶)若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减)简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤(二版74P 定理7);向量组A 能由向量组B 线性表示,则()()r A r B ≤;(86P 定理3)向量组A 能由向量组B 线性表示AX B ?=有解;()(,)r A r A B ?=(85P 定理2)向量组A 能由向量组B 等价()()(,)r A r B r A B ? ==(85P 定理2推论)8. 方阵A 可逆?存在有限个初等矩阵12,,,l P P P ,使12l A P P P =;①、矩阵行等价:~rA B PA B ?=(左乘,P 可逆)0Ax ?=与0Bx =同解②、矩阵列等价:~cA B AQ B ?=(右乘,Q 可逆);③、矩阵等价:~A B PAQ B ?=(P 、Q 可逆); 9. 对于矩阵m n A ?与l n B ?:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性;③、矩阵的初等变换不改变矩阵的秩;④、矩阵A 的行秩等于列秩; 10. 若m s s n m n A B C =,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵;②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)11. 齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,而无需证明;①、0ABx = 只有零解0Bx ? =只有零解;②、0Bx = 有非零解0ABx ? =一定存在非零解;12. 设向量组12:,,,n r r B b b b ?可由向量组12:,,,n s s A a a a ?线性表示为:(110P 题19结论)1212(,,,)(,,,)r s b b b a a a K =(B AK =)其中K 为s r ?,且A 线性无关,则B 组线性无关()r K r ?=;(B 与K 的列向量组具有相同线性相关性)(必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=;充分性:反证法)注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m n A ?,存在n m Q ?,m AQ E = ()r A m ?=、Q 的列向量线性无关;(87P )②、对矩阵m n A ?,存在n m P ?,n PA E = ()r A n ?=、P 的行向量线性无关;14. 12,,,s ααα线性相关存在一组不全为0的数12,,,s k k k ,使得11220s s k k k ααα+++=成立;(定义)1212(,,,)0s s x xx ααα?? ? ?= ? ???有非零解,即0Ax =有非零解;12(,,,)s r s ααα<,系数矩阵的秩小于未知数的个数;15. 设m n ?的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-;16. 若*η为Ax b =的一个解,12,,,n r ξξξ-为0Ax =的一个基础解系,则*12,,,,n r ηξξξ-线性无关;(111P 题33结论) 5、相似矩阵和二次型1. 正交矩阵T A A E ?=或1T A A -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0T i j i ja a i j n i j=?==?≠?;②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±;③、若A 、B 正交阵,则AB 也是正交阵;注意:求解正交阵,千万不要忘记施密特正交化和单位化;2. 施密特正交化:12(,,,)r a a a11b a =;1222111[,][,]b a b a b b b =-121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=----;3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交;4. ①、A 与B 等价 ?A 经过初等变换得到B ;=PAQ B ,P 、Q 可逆; ()()?=r A r B ,A 、B 同型;②、A 与B 合同 ?=T C AC B ,其中可逆;T x Ax 与T x Bx 有相同的正、负惯性指数;③、A 与B 相似1-?=P AP B ; 5. 相似一定合同、合同未必相似;若C 为正交矩阵,则T C AC B =?A B ,(合同、相似的约束条件不同,相似的更严格);6. A 为对称阵,则A 为二次型矩阵;7. n 元二次型T x Ax 为正定:A ?的正惯性指数为n ;A ?与E 合同,即存在可逆矩阵C ,使TC AC E =; A ?的所有特征值均为正数; A ?的各阶顺序主子式均大于0;0,0ii a A ?>>;(必要条件)。
宋浩线性代数笔记

•⚗线性代数•.⚗ P1 二阶三阶行列式..⚗ 02:48 二阶行列式划线计算.⚗ 15:00 三阶行列式划线计算.⚗ 22:29 N阶行列式预备知识.⚗ 24:21 名场面:宋浩点名田莎莎等.⚗ P2 n阶行列式..⚗ 00:55 N阶行列式计算.⚗ 20:50 下三角行列式.⚗ 23:14 上三角行列式.⚗ 24:40 对角线行列式.⚗ 25:30 副对角线行列式.⚗ 31:00 三角行列式总结.⚗ 31:09 行列式三种定义.⚗ P3 行列式的性质..⚗ 00:25 性质一转置.⚗ 11:48 性质二两行互换.⚗ 20:38 性质三两行相同.⚗ 23:10 性质四行公因子k.⚗ 28:05 性质五两行成比例.⚗ 34:20 性质六和分解.⚗ 43:36 性质七行叠加.⚗ 51:12 行列式值计算通用法.⚗ P4 行列式按行展开..⚗ 04:36 余子式.⚗ 07:42 代数余子式.⚗ 09:38 降阶:行列式按某一行/列展开.⚗ 16:50 异乘变零定理.⚗ 27:17 拉普拉斯定理.⚗ 30:17 拉普拉斯展开定理.⚗ 38:30 同阶行列式相乘.⚗ P5 行列式的计算(一)..⚗ 14:33 纯数字行列式计算.⚗ 21:50 已知行列式求余子式之和.⚗ 30:06 对角线为x,其余为a的行列式计算技巧.⚗ P6 行列式的计算(二)..⚗ 00:00 行列式计算基础思路.⚗ 01:05 三叉形行列式.⚗ 17:42 范德蒙德行列式.⚗ 40:42 反对称行列式.⚗ 43:12 对称行列式.⚗ P7 克莱姆法则..⚗ 00:05 解方程组.⚗ 09:11 解齐次线性方程组.⚗ P8 矩阵概念..⚗ 22:20 矩阵和行列式比较.⚗ P9 矩阵运算(一)..⚗ 00:00 名场面:宋浩免费赠送自制知识卡片.⚗ 02:50 矩阵加减法.⚗ 07:53 矩阵数乘运算.⚗ 13:58 矩阵乘法.⚗ P10 矩阵运算(二)..⚗ 00:00 矩阵幂运算.⚗ 23:49 矩阵转置.⚗ P11 特殊矩阵.⚗ P12 逆矩阵(一)..⚗ 03:04 方阵的行列式.⚗ 12:54 方阵的行列式的性质.⚗ 24:28 伴随矩阵.⚗ P13 逆矩阵(二)..⚗ 10:58 方阵可逆条件.⚗ 21:16 求逆矩阵方法.⚗ 47:33 解矩阵方程常见错误总结.⚗ 54:42 逆矩阵性质.⚗ 66:58 伴随矩阵`A^*`小专题.⚗ P14 分块矩阵..⚗ 00:00 分块要求.⚗ 04:34 标准形.⚗ 09:34 分块矩阵加法.⚗ 10:39 分块矩阵数乘.⚗ 11:12 分块矩阵乘法.⚗ 20:25 分块矩阵转置.⚗ 23:23 拉普拉斯展开定理在分块矩阵中的应用例题.⚗ 39:08 分块矩阵的逆.⚗ P15 初等变换(一)..⚗ 00:00 三种初等变换.⚗ 11:18 初等变换和行列式变换的对比.⚗ 24:50 矩阵化标准型.⚗ 29:45 矩阵等价.⚗ P16 初等变换(二)..⚗ 00:00 初等方阵.⚗ 09:15 初等方阵的行列式和逆矩阵.⚗ 14:56 初等方阵与矩阵做乘法.⚗ 44:13 初等方阵用处.⚗ P17 初等变换(三)..⚗ 00:00 初等变换法求逆矩阵.⚗ 13:51 解题过程总结.⚗ P18 矩阵的秩(一)..⚗ 00:00 k阶子式.⚗ 02:10 矩阵的秩.⚗ P19 矩阵的秩(二)..⚗ 00:00 矩阵的秩.⚗ 07:35 求矩阵的秩.⚗ 14:23 阶梯形矩阵.⚗ 32:09 行简化阶梯形矩阵.⚗ 41:15 求秩方法.⚗ 53:11 秩的性质.⚗ 58:49 广告:宋浩打油诗.⚗ P20 向量的定义..⚗ 10:11 向量定义.⚗ P21 向量间的线性关系(一)..⚗ 00:00 线性关系.⚗ 19:41 向量组的等价.⚗ P22 向量间的线性关系(二)..⚗ 00:00 线性相关与无关.⚗ 16:37 扩大后向量组与原向量组.⚗ 25:40 接长后向量组与原向量组.⚗ 37:20 行列式判断相关.⚗ P23 线性相关线性无关..⚗ 00:00 定理一.⚗ 04:32 定理二.⚗ 13:57 定理三:替换.⚗ 13:57 定理四.⚗ 21:22 推论.⚗ P24 向量组的秩(一)..⚗ 00:00 极大线性无关组.⚗ 08:04 极大线性无关组性质.⚗ 12:45 向量组的秩.⚗ P25 向量组的秩(二)..⚗ 00:00 行秩与列秩.⚗ 07:06 定理.⚗ 11:12 极大线性无关组的求法.⚗ P26 线性方程组..⚗ 00:00 二元一次方程与初等变换.⚗ P27 线性方程组有解判定..⚗ 00:00 有解判定.⚗ P28 齐次方程组的解..⚗ 00:00 齐次方程组.⚗ P29 方程组解的结构(一)..⚗ 00:00 齐次方程组解的结构.⚗ 06:54 基础解系.⚗ 08:56 齐次方程基础解系求法.⚗ 45:26 定理.⚗ P30 方程组解的结构(二)..⚗ 00:00 导出组.⚗ 04:27 非齐次方程组解的结构.⚗ P32 矩阵的特征值与特征向量(一)..⚗ 00:00 矩阵的特征值与特征向量.⚗ 08:35 求特征值.⚗ P33 矩阵的特征值与特征向量(二)..⚗ 00:00 求特征值(计算含参行列式)思路.⚗ 19:40 完整例题求特征值和特征向量.⚗ 43:12 N阶三角形矩阵的特征值.⚗ P34 特征值与特征向量的性质..⚗ 00:00 基本性质.⚗ 47:49 其他性质.⚗ P35 相似矩阵和矩阵可对角化的条件..⚗ 00:00 相似矩阵.⚗ 07:58 相似矩阵的性质.⚗ 22:06 与对角形矩阵相似(对角化)的条件.⚗ 61:47 利用相似矩阵简单求矩阵的高次幂.⚗ P36 实对称矩阵的对角化(一)..⚗ 00:00 实对称矩阵的对角化.⚗ 02:00 内积.⚗ 21:09 向量的长度/范数/模.⚗ P37 实对称矩阵的对角化(二)..⚗ 00:00 模的性质.⚗ 04:16 柯西-施瓦茨不等式.⚗ 08:13 三角不等式.⚗ 09:55 正交/垂直.⚗ 25:10 施密特正交化.⚗ P38 实对称矩阵的对角化(三)..⚗ 00:00 正交矩阵.⚗ 21:38 实对称矩阵的对角化.⚗ 28:48 正交相似.⚗ 31:24 定理.⚗ 32:34 汇总.⚗ P39 二次型定义..⚗ 00:00 判断二次型.⚗ 03:08 n元二次型.⚗ 04:09 二次型的矩阵表达.⚗ 21:30 标准型.⚗ 24:40 线性替换.⚗ 35:38 合同.⚗ 49:00 矩阵间关系总结.⚗ P40 二次型化标准型(配方法)..⚗ 00:00 二次型化标准型的三种方法.⚗ 02:33 配方法.⚗ P41 二次型化标准型(初等变换法和正交替换法)..⚗ 00:00 初等变换法.⚗ 22:00 规范形.⚗ 31:06 正交替换.⚗ End 感谢宋老师~.⚗ Appendix 浩浩卡片☄P1 二阶三阶行列式⌚02:48 二阶行列式划线计算•行列式一定是方的⌚15:00 三阶行列式划线计算•主对角线:╲•副对角线:╲⌚22:29 N阶行列式预备知识•排列:1,2,……,n组成的一个有序数组叫n级排列,中间不能缺数•如3级排列:123,132,213,231,312,321•逆序:大数排在小数前面•逆序数:逆序的总数•奇/偶排列:逆序数为奇/偶•标准排列:123……N•对换:交换排列中的两个数•做一次对换,排列奇偶性改变⌚24:21 名场面:宋浩点名田莎莎等☄P2 n阶行列式⌚00:55 N阶行列式计算•按行展开:•行标取标准排列•列标取排列的所有可能,从不同行不同列取出n个元素相乘•共有N!项•每一项的符号由列标排列的奇偶性决定,偶正奇负⌚20:50 下三角行列式•右上方三角形区域元素全部为0•下三角行列式= 主对角线元素相乘⌚23:14 上三角行列式•左下方三角形区域元素全部为0•上三角行列式= 主对角线元素相乘⌚24:40 对角线行列式•只有主对角线上有数⌚25:30 副对角线行列式•副对角线行列式=(-1)^(n(n-1)/2) * 副对角线元素相乘⌚31:00 三角行列式总结⌚31:09 行列式三种定义• 1.按行展开,符号由列标排列决定• 2.按列展开,符号由行标排列决定• 3.胡乱展开,符号由行标排列逆序数和列标排列逆序数之和决定(-1)^(N(i1,i2,……,iN)+N(j1,j2,……,jN)), i:行标,j:列标☄P3 行列式的性质•行列式对行成立的性质对列也成立⌚00:25 性质一转置•转置:把行按列写•行列式转置后值不变•行列式转置的转置等于本身•行列式两行互换,值变号⌚20:38 性质三两行相同•行列式两行相同,等于0⌚23:10 性质四行公因子k•行列式某行都乘以k,等于用k乘以这个行列式。
《线性代数》学习笔记一

主 题: 《线性代数》学习笔记 内 容:《线性代数》学习笔记一——行列式的定义和性质1、二、三阶行列式的定义解二元线性方程组 a 11x 1+a 12x 2=b 1a 21x 1=a 22x 2=b 2用消元法去x 2得 (a 11a 22-a 12a 21)x 1=b 1a 22-b 2a 12, 消去x 1得 (a 11a 22-a 12a 21)x 2=a 11b 2-a 21b 1, 当a 11a 22-a 12a 21≠0时,得出211222*********a a a a a b a b x --=, 211222111212112a a a a b a b a x --=分子与分母都是由4个数构成的两对乘积之差,例如分母是由方程的4个系数确定的,若将4个系数按出现在方程中的相对位置排成二行(横为行)二列(纵为列)的数表a 11 a 12 a 21 a 22a 11a 22-a 12a 21就是二对角线上两个数乘积之差定义1 a 11a 22-a 12a 12称为由数表 a 11 a 12 a 21 a 22确定的二阶行列式,记作:11122122,,a a a a 改为 11122122a a a a 即1112112212212122a a a a a a a a数a ij (i,j=1,2)称为行列式的元素,a ij 的第一个下标i 称为行标,第二个下标j称为列标,a ij 表示该元素在第i 行,第j 列。
由以上定义知: 222121122221,,a b a b a b a b =- ,221111121211b a b a b a b a =- 把行列式中元素间的逗号去掉,两个元素间应该有空格。
于是以上所得的方程组的解完全可以用行列式表示。
仿照以上解二元联立方程组,用消元法解三元联立方程组⎪⎩⎪⎨⎧=++=++=++333323213123232221211313212111bx a x a x a b x a x a x a b x a x a x a 可以引出三阶行列式的概念。
线性代数手绘笔记

1 -1 1
X 4 y 有三个现行无关的向量
-3-3 5
Q=2 是二重特征值
n-r(2E-A)=3->r(2E-A)=1
实对称矩阵
1 必须可以相似对角化
2 可以用正交矩阵相似对角化
3 不同特征值的特征向量相互正交注:正交内积为0
4 特征值一定为实数
2思路定义或者行列式
Q=0or1
正交矩阵对角化
不垂直要sc 正交化
不垂直用schm正交化
红括号为内积得到的向量俩俩垂直
单位化系数平方和做算术跟
2套路定义和行列式基础解析
正交矩阵
特征值不同肯定垂直
拼起来就是正交矩阵
二次型及其矩阵表示
二次型和特征值的内在联系每一次都是二次的
没有的就是0
标准型只有平方项
正惯性指数负惯性指数
二次型的秩
坐标变换
定理。
《线性代数》学习笔记十二

主 题: 《线性代数》学习笔记 内 容:《线性代数》学习笔记十二 ——二次型1、二次型的矩阵表示 定义1 n 个变量12,,n x x x 的二次齐次多项式212111121211(,,)22n n n f x x x a x a x x a x x =+++2222223232222n n na x a x x a x x ax ++++++称为n 元二次型,简称二次型(quadratic form).当ij a 为复数时,称f 为复二次型;当ij a 为实数时,称f 为实二次型.我们仅讨论实二次型. 取ij ji a a =,于是上式可写为二次型f 的和式表示.212111121211221122222221122(,,)n n n n nn n n n nf x x x a x a x x a x x a x x a x a x x a x x a x x ax =+++++++++++11n nij i ji j a x x ===∑∑二次型f 的矩阵表示1112111222221212(,,,)n n n n n nn n a a a x a a a x f x x x a a a x ⎛⎫⎛⎫ ⎪⎪= ⎪⎪ ⎪⎪⎪⎪⎝⎭⎝⎭A '=x x 这里,显然有A A '=,即A 为实对称矩阵. 例如:二次型用矩阵可表示为()22223120213,,1223012f x y z xy yz x x y z y z =-+-+⎛⎫- ⎪⎛⎫ ⎪ ⎪=-- ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪⎝⎭二次型f 还可表示成向量内积形式()[][]f A A A '==x x x =x,x x,x .二次型与对称矩阵之间存在一一对应关系.由此可见,如果,A B 都是n 阶对称矩阵,且f A B ''=x x =x x ,则A B =.因此,若f A '=x x ,其中A A '=,则称A 为二次型f 的矩阵;称f 为对称矩阵A 的二次型;称()R A 为f 的秩. 例1 写出二次型221231233(,,)(22)f x x x x x x x =++-的矩阵A ,并求f 的秩. 2、二次型的标准形对于二次型11n nij i ji j f a x x ===∑∑,我们讨论的主要问题是:寻找可逆的线性变换C x =y ,使二次型只含平方项,使得2221122n nf y y y λλλ=+++,称为二次型f 的标准形.即2221122112212()(,,).n nn n n f A C AC y y y y y y y y y '''=+++⎛⎫⎛⎫ ⎪⎪'==Λ ⎪⎪ ⎪⎪⎪⎪⎝⎭⎝⎭x x =y y =y y λλλλλλ其中Λ=diag 12(,,,)n λλλ.因此,我们的问题就转化为:对给定对称矩阵A ,求可逆矩阵C ,使得C AC '为对角阵.一般地,有以下定义:定义2 设,A B 为n 阶矩阵,若有可逆矩阵C ,使B C AC '=,则称A 与B 合同. 因为若C 可逆,则C '也可逆,所以,由定义,若A 与B 合同,则A 与B 等价.从而,我们有(1)矩阵的合同关系具有反身性:A E AE '=;对称性:由B C AC '=即得11()A C BC --'=;和传递性:由111A C AC '=和2212A C AC '=即得21212()()A C C A C C '=; (2)若A 与B 合同,则()()R A R B =.(3)若A 是对称矩阵,且若A 与B 合同,则B 也是对称矩阵. 3。
线性代数笔记(自写)

定义 1.1; 形式为
叫做矩阵, 简记为
,被
称为矩阵 的元素, 若记 为 中列向量, (其中 为 transform(转置)首字
母)为 中行向量, 则,
其中
,如果每个元素都为 0,则称 为零矩阵,
简 记 为 0, 如 果
, 那 么 称 为 阶 矩 阵, 此 时 主 对 角 线 元 素 之 和
被称为矩阵 的迹(trace)
补充; 常见的代数结构有群, 环, 域, 模, 矢量空间等 。(有兴趣的童鞋可以去 看《抽象代数》)
要定义矢量空间, 我还必须先给出“矢量”Leabharlann 一般空间的抽象化定义, 如下(无需
理解);
映射 ;
称为点
的一个矢量(vector),若对
有;
(a)(线性性);
(b)(莱布尼兹律)
其中 代表函数在 点的值,
亦可记作 显而易见,这里矢量被定义为一个映射,输入的元素取自 ,为流形(manifold) 上所有的光滑函数, 为实数集合 。 我不打算解释这个定义, 一旦我解释了, 又得去解释许多其它的概念, 所以只会 只谈谈直观上的理解,并阐述矢量与向量的关系(当然有的书是混用两个概念的) 在物理里面,我们经常用矢量去定义物理量,由于牛顿力学建立的数学基础是三 维欧式空间, 所以我们把矢量放在三维欧式空间下, 赋予坐标表示, 就成为具体 的向量, 由此矢量在三维欧式空间里有了几何直观, 我们可以用 表示它 。
(叫加法(addition))及
(叫数乘(scalermultiplication),
满足如下条件;
(a)
(b)
(c) 零元 , 使
(d)
(e)
(f)
(g)
初看这个定义你一定看的觉得很熟悉,又很陌生 。因为你感觉这些性质很是自然 。 感觉熟悉的原因是, 你如果直接把 看成三维欧式空间的向量集合, 在配备普通