知识图谱与知识工程

合集下载

第10章知识图谱

第10章知识图谱
专家系统最重要的两部分是:知 识库与推理机。它根据一个或者 多个专家提供的知识和经验,通 过模拟专家的思维过程,进行主 动推理和判断,解决问题。
5
2 语义网络
优点
①结构性:以节点和弧形式把事物属性 以及事物间的语义联想显式地表示出来。 ②联想性:作为人类联想记忆模型提出。 ③自然性:直观地把事物的属性及其语 义联系表示出来,便于理解,自然语言 与语义网络的转换比较容易实现。
84 语义Web源自奠基人Tim Berners-Lee 2016年图灵奖得 主万维网、语义网 之父,提出语义 Web
Web1.0
Web1.0,是以编辑为 特征,网站提供给用 户的内容是网站编辑 进行编辑处理后提供 的,用户阅读网站提 供的内容。这个过程 是网站到用户的单向 行 为 , web1.0 时 代 的 代表站点为新浪,搜 狐,网易三大门户, 强调的是文档互连。
作用
为真实世界的各个场 景直观地建模,运用 “图”这种基础性、通用 性的“语言”,“高保真” 地表达这个多姿多彩 世界的各种关系,并 且非常直观、自然、 直接和高效,不需要 中间过程的转换和处 理。
术语
①实体: 具有可区别 性且独立存在的某种 事物。 ②类别:主要指集合、 类别、对象类型、事 物的种类。 ③属性、属性值:实 体具有的性质及其取 值。 ④关系:不同实体之 间的某种联系,
11
10.2 知识图谱基本原理
10.2.1 10.2.2 10.2.3 10.2.4 10.2.5
认知智能是人工智能的高级目标 知识图谱概念 知识图谱模型 知识图谱特点 知识图谱分类
1 认知智能是人工智能的高级目标
13
2 知识图谱概念
定义
知识图谱用节点和关系 所组成的图谱。

知识图谱构建平台

知识图谱构建平台

KGCloud知识图谱构建平台总体方案目录KGCloud知识图谱构建平台总体方案 (1)北京清图科技有限公司........................................................................................ 错误!未定义书签。

KGCloud知识图谱构建平台总体方案 (3)一、项目背景 (3)二、KGCloud知识图谱构建平台总体介绍 (4)三、KGCloud知识图谱构建平台主要特色 (5)KGCloud知识图谱构建平台主要功能与模块 (6)一、知识图谱构建 (6)二、知识图谱可视化 (9)三、知识谱图应用平台接口功能 (11)四、知识表示 (11)KGCloud知识图谱构建平台技术方案以及详细架构 (12)一、KGCloud知识图谱构建平台程序架构 (12)二、KGCloud知识图谱构建平台知识图谱架构 (12)KGCloud知识图谱构建平台总体方案一、项目背景知识图谱属于人工智能的重要分支——知识工程的研究范畴,是利用知识工程理论建立大规模知识库。

知识图谱给互联网语义搜索带来新的活力,已经成为知识驱动的智能应用的基础。

知识图谱与大数据、深度学习一起,已经成为推动互联网和人工智能发展的核心驱动力。

知识图谱从语义角度出发,通过描述客观世界中概念、实体及其关系,从而让计算机具备更好地组织、管理和理解互联网上海量信息的能力。

更具体的说,在人类与互联网世界交互的过程中,产生了繁杂庞大的信息,这些信息一般被图片、声音、文字、视频等数据载体保存。

我们希望计算机可以分析、阅读、理解这些数据,精准挖掘到数据背后隐藏的有价值的知识,在用户需要的时候提供知识服务。

知识图谱作为一种语义网络拥有极强的表达能力和建模灵活性:首先,知识图谱是一种语义表示,可以对现实世界中的实体、概念、属性以及它们之间的关系进行建模;其次,知识图谱是其衍生技术的数据交换标准,其本身是一种数据建模的“协议”,相关技术涵盖知识抽取、知识集成、知识管理和知识应用等各个环节。

知识图谱的概念

知识图谱的概念

知识图谱的概念
知识图谱(KnowledgeGraph)是人工智能(AI)技术领域中最受关注的领域之一,它是一种任何支持从数据到结构化信息,再到人类可以理解的概念的智能技术,帮助人们更加快速地掌握知识。

它的基本概念是,通过将大量的信息结构化,可以更加容易地了解它们之间的关系,从而推出更多有用的结论。

知识图谱已经取得了很大成功,可以帮助人们更加高效地管理大量信息,从而了解更多概念之间的相关性。

随着技术的发展,知识图谱将会取代传统的关系数据库和知识管理系统,成为未来信息处理的标准。

在具体实现方面,知识图谱通常由一组节点和边缘组成,用于表示信息的实体和关系。

节点是信息的基础单元,边缘则表示实体之间的关系。

有了知识图谱,就可以将大量的信息连接起来,方便用户更加容易地理解知识之间的联系。

知识图谱的应用十分广泛,可以使用它来实现自然语言处理,机器翻译,搜索引擎优化,智能推荐系统,基于知识的问答系统等等。

特别是随着深度学习技术的发展,知识图谱已经成为语义理解领域非常流行的技术,从语言理解、机器翻译到自动问答等多个研究领域的最新进展都有着重要的应用。

另外,知识图谱技术在企业信息管理领域也有着广泛的应用,它可以帮助企业将公司内部的知识体系网络化、可视化,从而更加容易管理、共享数据。

总而言之,知识图谱是一个多功能的技术,可以用来解决自然语言处理、知识管理、机器学习等多种研究领域的问题,可以说是一个全新的智能技术,有望将来改变我们生活、工作的方方面面。

- 1 -。

人工智能之知识图谱

人工智能之知识图谱

人工智能之知识图谱Research Report of Knowledge Graph目录图表目录 (4)摘要 (6)1.概念篇 (7)1.1.知识图谱概念和分类 (7)1.1.1.知识图谱的概念 (7)1.1.2.知识图谱的分类 (3)1.2.知识工程发展历程 (3)1.3.知识图谱的知识图谱 (6)2.技术人才篇 (10)2.1.知识表示与建模 (11)2.1.1.知识表示模型 (11)2.1.2.知识表示学习 (12)2.1.3.知识表示与建模人才介绍 (12)2.2.知识获取 (19)2.2.1.实体识别与链接 (19)2.2.2.实体关系学习 (20)2.2.3.事件知识学习 (21)2.2.4.知识获取人才介绍 (22)2.3.知识融合 (29)2.3.1.本体匹配 (30)2.3.2.实例匹配 (30)2.3.3.知识融合人才介绍 (30)2.4.知识图谱查询和推理计算 (36)2.4.1.知识推理 (36)2.4.2.知识存储和查询 (37)2.4.3.知识查询与推理人才介绍 (38)2.5.知识应用 (44)2.5.1.典型应用 (44)2.5.2.通用和领域知识图谱 (45)2.5.3.知识应用人才介绍 (46)2.6.高引学者及论文介绍 (51)2.6.1.高引学者介绍 (51)2.6.2.高引论文介绍 (56)2.7.会议奖项介绍 (57)3.应用篇 (67)3.1.通用知识图谱应用 (67)3.2.3.企业商业 (70)3.2.4.创业投资 (71)3.2.5.生物医疗 (72)4.趋势篇 (73)参考文献 (76)附录 (78)图表目录图 1 知识工程发展历程 (3)图 2 Knowledge Graph 知识图谱 (9)图 3 知识图谱细分领域学者选取流程图 (10)图 4 基于离散符号的知识表示与基于连续向量的知识表示 (11)图 5 知识表示与建模领域全球知名学者分布图 (13)图 6 知识表示与建模领域全球知名学者国家分布统计 (13)图7 知识表示与建模领域中国知名学者分布图 (14)图8 知识表示与建模领域各国知名学者迁徙图 (14)图9 知识表示与建模领域全球知名学者h-index 分布图 (15)图10 知识获取领域全球知名学者分布图 (23)图11 知识获取领域全球知名学者分布统计 (23)图12 知识获取领域中国知名学者分布图 (23)图13 知识获取领域各国知名学者迁徙图 (24)图14 知识获取领域全球知名学者h-index 分布图 (24)图15 语义集成的常见流程 (29)图16 知识融合领域全球知名学者分布图 (31)图17 知识融合领域全球知名学者分布统计 (31)图18 知识融合领域中国知名学者分布图 (31)图19 知识融合领域各国知名学者迁徙图 (32)图20 知识融合领域全球知名学者h-index 分布图 (32)图21 知识查询与推理领域全球知名学者分布图 (39)图22 知识查询与推理领域全球知名学者分布统计 (39)图23 知识查询与推理领域中国知名学者分布图 (39)图24 知识表示与推理领域各国知名学者迁徙图 (40)图25 知识查询与推理领域全球知名学者h-index 分布图 (40)图26 知识应用领域全球知名学者分布图 (46)图27 知识应用领域全球知名学者分布统计 (46)图28 知识应用领域中国知名学者分布图 (47)图29 知识应用领域各国知名学者迁徙图 (47)图30 知识应用领域全球知名学者h-index 分布图 (48)图31 行业知识图谱应用 (68)图32 电商图谱Schema (69)图33 大英博物院语义搜索 (70)图34 异常关联挖掘 (70)图35 最终控制人分析 (71)图36 企业社交图谱 (71)图37 智能问答 (72)图38 生物医疗 (72)图39 知识图谱领域近期热度 (75)图40 知识图谱领域全局热度 (75)表1 知识图谱领域顶级学术会议列表 (10)表2 知识图谱引用量前十论文 (56)表3 常识知识库型指示图 (67)摘要知识图谱(Knowledge Graph)是人工智能重要分支知识工程在大数据环境中的成功应用,知识图谱与大数据和深度学习一起,成为推动互联网和人工智能发展的核心驱动力之一。

哈工大知识图谱(KnowledgeGraph)课程概述

哈工大知识图谱(KnowledgeGraph)课程概述
三 .知识图谱中的知识表示方法
1.知 识 图 谱 中 的 概 念
实体 (entity):现实世界中可区分、可识别的事物或概念。 ➢ 客观对象:人物、地点、机构 ➢ 抽象事件:电影、奖项、赛事 关系 (relation):实体和实体之间的语义关联。 事实 (fact):陈述两个实体之间关系的断言,通常表示为 (head entity, relation, tail entity) 三元组形式。
四 .实体识别
1.信 息 抽 取
概念:从自然语言文本中抽取指定类型的实体、关系、事件等事实信息, 并形成结构化数据输出的文本处理技术
主要任务:实体识别与抽取,关系抽取,时间抽取,实体消歧
2.命 名 实 体 识 别 ( Named Entity Recognition, 简 称 NER)
定义:狭义地讲,命名实体指现实世界中具体或抽象的实体 , 如人(张三)、机构(哈尔滨工业大学)、地点等,通常用唯一的标志符(专 有名称)表示。
Ontology(本体):通过对概念的严格定义和概念与概念之间的关系来确定概念的精确含义,表示共同认可的、可共享的知识,对于 ontology来说,author,creator和writer是同一个 概念,而doctor在大学和医院分别表示的是两个概念。因 此在语义网中,ontology具有非常 重要的地位,是解决语义层次上Web信息共享和交换的基础。简单理解就是某个领域关于自身和相关关系的描述
2.知 识 图 谱 的 特 性
知识图谱不太专注于对知识框架的定义,而专注于如何以工程的方式,从文本中自动抽取或依靠众包的方式获取并 组建广泛的、具有平铺结 构的知识实例,最后再要求使用 它的方式具有容错、模糊匹配等机制。 知识图谱的真正魅力在于其图结构,可以在知识图谱上运行搜索、 随机游走、网络流等大规模图算法,使知识图谱与图论、概率图等碰撞出火花。

知识图谱在金融行业中的应用

知识图谱在金融行业中的应用
知识图谱在金融 行业中的应用
课程主标题
课程概要
1 知识图谱概述 2 知识图谱在金融领域的应用 3 知识图谱的构建流程 4 案例分享
课程主标题
01 知识图谱概述
什么是知识图谱
知识图谱(Knowledge Graph),在图书 情报界称为知识域可视化或知识领域映 射地图,是显示知识发展进程与结构关 系的一系列各种不同的图形,用可视化 技术描述知识资源及其载体,挖掘、分 析、构建、绘制和显示知识及它们之间 的相互联系。
a)“ 姚明出生于上海” b )“ 姚明是篮球运动员” c)“ 姚明是现任中国篮协主席”
知识图谱的表示形式
在知识图谱中,我们用RDF形式化地表示这种三元关系。RDF(Resource Description Framework), 即资源描述框架,是W3C制定的,用于描述实体/资源的标准数据模型。RDF图中一共有三种类 型,International Resource Identifiers(IRIs),blank nodes 和 literals。下面是SPO每个部分的类型约 束: 1.Subject可以是IRI或blank node。 2.Predicate是IRI。 3.Object三种类型都可以。
课程主标题
02 知识图谱在金融领域的应用
知识图谱的典型应用领域
金融风控类应用
1、反欺诈应用: 最近几年,金融欺诈的形式多种多 样,提供虚假资料,团伙欺诈,内外 勾结等手法越来越“高明”。 在这种情况下,原来通过单点突破进 行反欺诈的方法已经远远不够,需要 我们建立起一个积极有效的知识图 谱。
内审内控应用
深挖客户潜在需求
除了挖掘潜在客户外,我们也需要挖 掘现有客户的需求,针对他们的特点 推送相关产品。

浅谈知识图谱

浅谈知识图谱

浅谈知识图谱摘要:随着人工智能技术的发展,知识图谱作为大数据时代的知识工程的产物,是实现人工智能的基础。

它具有强大的语义表达能力、存储能力以及推理能力,其关键技术得到国内外研究学者的广泛关注。

本文从知识图谱的概念出发,分析其理论架构,以及对其关键技术进行相关概述。

引言随着人工智能的发展和应用,知识图谱逐渐成为关键技术之一。

知识图谱以其强大的语义处理能力和开放组织能力,为人工智能的智能化奠定了基础,广泛应用于智能搜索、智能问答、个性化推荐、推理等领域。

1知识图谱的概念知识图谱的提出是为了提高搜索引擎的效率。

是实体之间关系的语义网络,可以将实体对象和他们之间的关系进行图形化的表达,知识图谱的表示形式是三元组,描述的是现实实体之间的关系。

知识图谱旨在从多种类型的复杂数据出发,抽取其中的概念、实体和关系,是事物关系的可计算模型。

知识图谱按照知识的覆盖范围和不同的领域,整体可以划分为通用性知识图谱和领域性知识图谱[1]。

随着科技的不断发展,知识图谱在自然语言处理领域应用广泛,如语义搜索、智能问答、辅助决策等领域,知识图谱已经成为了人工智能发展的重要动力和核心领域。

知识图谱是一种基于图的数据结构,由节点和边组成,每个节点表示一个“实体”,每条边为实体与实体之间的“关系”,知识图谱本质上是语义网络。

实体指的可以是现实世界中的事物,比如人、地名、公司、电话、动物等;关系则用来表达不同实体之间的某种联系。

知识图谱就是把所有不同种类的信息连接在一起而得到的一个关系网络,因此知识图谱提供了从“关系”的角度去分析问题的能力。

2知识图谱的理论架构知识图谱的理论架构分为三个部分,第一部分是源数据的获取。

第二部分是知识融合,用来关联多数据源知识,扩大知识的范围。

第三部分是知识的计算与应用,知识计算是知识图谱能力输出主要方式,而知识应用是知识图谱与特定领域或者业务相结合,提高业务效率[2]。

大规模知识库的构建与应用需要多种智能信息处理技术的支持。

知识图谱的构建

知识图谱的构建

知识图谱的构建知识图谱(Knowledgegraph)是以图谱模型为基础构建的知识体系,它将各种实体(entity)映射到图中的节点上,以及将实体之间的关系(relationship)映射到图中的边上,以此描述一个拥有强大表示能力的知识体系。

知识图谱综合了各种信息源(如文本、数据库、网络等),可以抓取、链接、表示和理解复杂的知识,能够深度挖掘人类基础知识并融合重要维度,将有形的知识和无形的概念转化为信息,从而支撑语义理解和机器智能应用。

知识图谱的构建1、数据源构建知识图谱的第一步是确定数据源,数据源可以是多种多样的包括文本、图片、视频、数据库和网络资源等。

文本作为最主要的知识表示方式,包括文字、数据库记录、网页内容、社交媒体等,大多数知识图谱都以文本提取信息作为数据基础。

2、知识抽取知识抽取是指从指定数据源中获取有效信息的技术。

知识抽取包括实体抽取(Entity Extraction)、关系抽取(Relation Extraction)、属性抽取(Attribute Extraction)和事件抽取(Event Extraction)等,这些技术都可以用来抽取文本中包含的实体和关系,以便构建知识图谱。

3、知识表示和验证构建知识图谱需要使用有效的知识表示方式来保存抽取的知识,可以使用OWL(Web Ontology Language)、RDF(Resource Description Framework)或者OWL和RDF的语义网络的混合模型等。

除此之外,还需要在构建知识图谱之前对数据进行归一化,并将认知数据等信息标记出来,以便进一步验证实体和关系的准确性,确保知识图谱的准确性和可靠性。

4、知识图谱建模知识图谱建模是指将知识内容组织成实体和关系网络,将实体和关系映射到图中的节点和边上,从而建立起知识图谱的技术。

知识图谱的建模一般分为实体建模和关系建模两个过程,实体建模是指确定实体类型、属性和标签,而关系建模是指确定实体间关系、关系类型和标签等,从而构建起一个准确的知识图谱网络。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识图谱:“知识图谱本质上是语义网络(Semantic Network)的知识库”,可以 简单地把知识图谱理解成多关系图(Multi-relational Graph)。
以匠心 致创新
2.3.3 知识图谱技术案例
已经构建好的知识图谱就像一个知识库,可以得到广首条记录就是 “曹操”
以匠心 致创新
2.3.3 知识图谱技术案例
➢结构化数据
➢非结构化数据
➢实体命名识别(Name Entity Recognition)
➢关系抽取(Relation Extraction)
时代
广场
➢指代消解(Coreference Resolution)
这家酒店是我在纽 约最喜欢的希尔顿 酒店,它位于时代 广场附近的42街, 靠近所有的地铁、 百老汇演出场所, 毗邻少年奶酪蛋糕, 维吉尔烧烤等美食 餐厅。
难点 1、知识图谱技术案例
以匠心 致创新
2.3.1 知识工程概述
➢知识工程从大数据中挖掘知识, 可以弥合大数据机器学习底层特 征与人类认知的鸿沟。
➢知识图谱将信息表达成更接近 人类认知世界的形式,可以将内 容从符号转化为计算机可理解和 计算的语义信息,可以更好地理 解信息内容。
以匠心 致创新
2.3.2 知识图谱定义
附近
接近
百老汇 演出场事件
餐厅 位于
酒店

希尔顿 酒店
地点
机构
接近
接近
少年奶 酪蛋糕
维吉尔
烧烤 以匠心 致创新
2.3.4 知识图谱的存储
由于知识图谱的图结构特点,使用传统的关系型数据库存储大量的关系表,在做 查询的时候需要大量的表连接导致速度非常慢,所以知识图谱大部分采用的是图 数据库。
《人工智能应用导论》
第二章 人工智能主要研究方向
以匠心致创新
2.1 机器感知与模式识别


2.2 自然语言处理与理解
2.3 知识图谱与知识工程
以匠心致创新
2.3 知识图谱与知识工程
目标
1、掌握什么是知识图谱 2、了解知识图谱技术案例 3、了解知识图谱的存储
重点 1、什么是知识图谱
2、知识图谱技术案例
以匠心 致创新
谢谢大家!
以匠心致创新
相关文档
最新文档