数值分析第三次作业解答
北航数值分析大作业3

数值分析第三次作业1.设计方案对Fredholm积分方程,用迭代法进行求解:()'(())u x A u x=,其中11(())()(,)()A u x g x K x y u y dy-=-⋅⎰对于公式中的积分部分用数值积分方法。
复化梯形积分法,取2601个节点,取迭代次数上限为50次。
实际计算迭代次数为18次,最后算得误差为r= 0.97E-10。
复化Simpson积分法,取迭代次数上限为50次,取2*41+1,即83个节点时能满足精度要求。
实际计算迭代次数为17次,最后的误差为r= 0.97E-10。
Guass积分法选择的Gauss—Legendre法,取迭代次数上限为50次,直接选择8个节点,满足精度要求。
实际计算迭代次数为24次,最后算得误差为r= 0.87E-10。
2.全部源程序module integralimplicit nonecontains!//////////复化梯形subroutine trapezoid(m)implicit noneinteger :: i,j,k,mreal*8 :: x(m+1),u(m+1)real*8 :: sum,sum1,g,r,hreal*8 :: e=1.0e-10h=2./mdo i=1,m+1x(i)=-1.+(i-1)*hend dou=0.02do k=1,50do i=1,m+1sum1=0.g=dexp(x(i)*4.)+(dexp(x(i)+4.)-dexp(-4.-x(i)))/(x(i)+4.)do j=2,msum1=sum1+dexp(x(i)*x(j))*u(j)end dosum=h/2.*(dexp(x(i)*-1.)*u(1)+dexp(x(i)*1.)*u(m+1)+2*sum1)u(i)=g-sumend dor=h/2.*((dexp(x(1)*4)-u(1))**2+(dexp(x(m+1)*4)-u(m+1))**2) do i=2,mr=r+h*(dexp(x(i)*4)-u(i))**2end doif(dabs(r)<=e) exitend dowrite(*,*) kopen(1,file="trapezoid.txt")do i=1,m+1write(1,'(3(f18.12))') x(i),u(i),dexp(x(i)*4.)end dowrite(1,'(4x,a2,e9.2)') "r=",rclose(1)returnend subroutine trapezoid!///////////复化simpsonsubroutine simpson(m)implicit noneinteger :: i,j,k,mreal*8 :: x(2*m+1),u(2*m+1)real*8 :: sum,sum1,sum2,g,r,hreal*8 :: e=1.0e-10h=2./(2.*m)do i=1,2*m+1x(i)=-1.+(i-1)*hend dou=0.02do k=1,50do i=1,2*m+1sum1=0.sum2=0.g=dexp(x(i)*4.)+(dexp(x(i)+4.)-dexp(-4.-x(i)))/(x(i)+4.)do j=1,msum1=sum1+dexp(x(i)*x(2*j))*u(2*j)end dodo j=1,m-1sum2=sum2+dexp(x(i)*x(2*j+1))*u(2*j+1)sum=h/3.*(dexp(x(i)*-1.)*u(1)+dexp(x(i)*1.)*u(2*m+1)+4*sum1+2*sum2) u(i)=g-sumend dor=h/3.*((dexp(x(1)*4)-u(1))**2+(dexp(x(2*m+1)*4)-u(2*m+1))**2)do i=1,mr=r+4.*h/3.*(dexp(x(2*i)*4)-u(2*i))**2end dodo i=1,m-1r=r+2.*h/3.*(dexp(x(2*i+1)*4)-u(2*i+1))**2end doif(dabs(r)<=e) exitend dowrite(*,*) kopen(2,file="simpson.txt")do i=1,2*m+1write(2,'(3(f18.12))') x(i),u(i),dexp(x(i)*4.)end dowrite(2,'(4x,a2,e9.2)') "r=",rclose(2)returnend subroutine simpson!///////////Gauss_Legendre法subroutine Gaussimplicit noneinteger,parameter :: m=8integer :: i,j,kreal*8 :: x(m),u(m),a(m)real*8 :: sum,g,rreal*8 :: e=1.0e-10data x /-0.9602898565,-0.7966664774,-0.5255324099,-0.1834346425,&0.1834346425,0.5255324099,0.7966664774,0.9602898565/data a /0.1012285363,0.2223810345,0.3137066459,0.3626837834,&0.3626837834,0.3137066459,0.2223810345,0.1012285363/u=0.02do k=1,50do i=1,mg=dexp(x(i)*4.)+(dexp(x(i)+4.)-dexp(-4.-x(i)))/(x(i)+4.)do j=1,msum=sum+dexp(x(i)*x(j))*u(j)*a(j)end dou(i)=g-sumend dor=0.do i=1,mr=r+a(i)*(dexp(x(i)*4)-u(i))**2end doif(dabs(r)<=e) exitend dowrite(*,*) kopen(3,file="Gauss.txt")do i=1,mwrite(3,'(3(f18.12))') x(i),u(i),dexp(x(i)*4.)end dowrite(3,'(4x,a2,e9.2)') "r=",rclose(3)returnend subroutine Gaussend module!//////////主程序program mainuse integralimplicit noneinteger :: code1=2600integer :: code2=41call trapezoid(code1)call simpson(code2)call Gaussend program3.各种积分方法的节点和数值解(由于数据太多,在打印时用了较计算时少的有效数字)复化Simpson法4.各方法所得曲线(由于所取节点太多,且精度高,所以图中很难看出各曲线的区别。
(完整版)数值分析答案第三章习题

解:(1)建立假设 H0 : 0.973
n=100, x 2.62 ,s=0.06
(2)在 H0 成立的前提下,构造统计量
u x 0 ~ N (0,1)
s/ n
(3)给定 0.05 ,查得 u 1.96 ,使
2
p u u
2
(4)由样本计算,
x 62.24,s*2 404.77,问这天保险丝融化时间
分散度与通常有无明显差异( 1%)?假定融
化时间是正态母体。
解:(1)建立假设H0: 2 02 400
(2)在H
成立前提下,构造统计量
0
2
(n
1)s*2
02
~
2 (n 1)
(3)给定显著水平 0.01,查得
20.00(5 24) 45.559, 20.99(5 24) 9.886,使
:
2
2 0
1.62
s* 2.296
(2)在 H0 成立的前提下,构造统计量
2 (n 1)s* ~ 2 (n 1) 0
(3)给定 0.05 ,查得
2 (5) 14.49
2
1 2 (5) 1.237 2
(4)由样本计算,
2
6 2.296 2 1.62
12.355
2 (6) 14.49
确,收集到一组使用新安眠药的睡眠时间为
26.7,22.0,24.1,21.0,27.2,25.0,
23.4
试问:从这组数据能否说明新安眠药的睡眠时
间已达到新的疗效(假定睡眠时间服从正态分
布,取 0.05 )?
解:
x1 ~ (20.8,1.62 ) x2 ~ (, 22 )
数值分析第三次作业

26.解:(1).J 法:J ∴法收敛.GS 法:()11102210221101110122100210G B D L U ----⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=-=-=--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦022023002-⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦()()()212322det 0232020,2,21G G I B B λλλλλλλλλρ--=-=--∴===∴=GS ∴法不收敛.()2.J 法:()()131231*********()12202101121101212012125det 412125550,,,1222J J J B D L U I B i i B λλλλλλλλλρ---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=+=--=--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦--==+--∴===-∴=J ∴法不收敛.GS 法:()()()1312310220221101101122022022det 11002201J J J B D L U I B B λλλλλλλλρ---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=+=--=--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦--===⇒===∴=()1120111200011220212120021120014120G B D L U ----⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=-=-=--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦⎣⎦01212012120012-⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦()()()21231212det 01212120120,12,121G G I B B λλλλλλλλλρ--=+=+=+∴===-=GS ∴法收敛27.解:()1010911102,702106A b -⎛⎫⎛⎫ ⎪ ⎪=--= ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭A 为严格对角占优阵,J ∴法和GS 法均收敛.J 法的分量形式为:()()()11111,1,2,,i nk k k ii ij j ij j j j i ii x b a x a x i n a -+==+⎛⎫=--= ⎪⎝⎭∑∑J ∴法的迭代格式为:(1)()12(1)()()213(1)()321(9)101(72)101(62)10k k k k k k k x x x x x x x +++⎧=+⎪⎪⎪=++⎨⎪⎪=+⎪⎩取初值(0)0x =,J 法的数值结果是:迭代次数k()1k x ()2k x ()3kx 1 0.900000 0.700000 0.600000 2 0.970000 0.910000 0.740000 3 0.991000 0.945000 0.782000 4 0.994000 0.955500 0.789000 50.9955500.9572500.791100GS 法的分量形式为:()()()111111,1,2,,i nk k k ii ij j ij j j j i ii x b a x a x i n a -++==+⎛⎫=--= ⎪⎝⎭∑∑GS ∴法的迭代格式为:(1)()12(1)(1)()213(1)(1)321(9)101(72)101(62)10k k k k k k k x x x x x x x +++++⎧=+⎪⎪⎪=++⎨⎪⎪=+⎪⎩取初值(0)0x =,GS 法的数值结果是: 迭代次数k ()1k x()2k x()3kx10.900000 0.790000 0.758000 2 0.979000 0.949500 0.789900 3 0.994950 0.957475 0.791495 4 0.9957475 0.9578738 0.7915748 50.9957874 0.95789370.7915787()123210,99,950A∆=∆=∆=∴对称正定,()1110000101001011100102010105020110000105J B D L U -⎛⎫⎛⎫ ⎪ ⎪⎛⎫ ⎪⎪ ⎪⎪ ⎪=+=-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭212,310101111det()()00,10520201051()20J J I B B λλλλλλλλρ-∴-=--=-=⇒==±-∴=∴SOR 法的最优松弛因子为:[]2221.01282111/2011()opt J B ωρ==≈+-+-()10.01282opt opt L ρωω=-=对应的渐近收敛率为:R=-ln ()() 4.35654opt opt R L L ωρω=SOR 法的分量形式为:()()()()()111111,1,2,,i nk k k k iii ij j ijjj j i ii x x b a x a xi n a ωω-++==+⎛⎫=-+--= ⎪⎝⎭∑∑∴SOR 法(ω取最佳松弛因子)的迭代格式为:(1)()()112(1)()(1)()2213(1)()(1)3321.012820.01282(9)101.012820.01282(72)101.012820.01282(62)10k k k k k k k k k k x x x x x x x x x x +++++⎧=-++⎪⎪⎪=-+++⎨⎪⎪=-++⎪⎩取初值(0)0x =,SOR 法的数值结果是: 迭代次数k ()1k x()2k x()3kx10.911538 0.801296 0.770006 2 0.981009 0.954035 0.791074 3 0.995588 0.957822 0.791571 4 0.995785 0.957894 0.791579 50.9957890.9578950.79157928.一定收敛.证明:对于11122122a a A a a ⎛⎫=⎪⎝⎭,A 对称正定,()212211122122111221201,2,,det()0,iia i a a A a a a a a a a ∴===-对于J 法:121111121121222221000()01000J a aa a B D L U a a a a -⎛⎫⎛⎫-⎪ ⎪-⎛⎫⎪ ⎪=+== ⎪ ⎪ ⎪-⎝⎭- ⎪ ⎪⎝⎭⎝⎭122211212121,2121122112222det()0J a a a a I B a a a a a a λλλλλ-==-=⇒=22121122121122()1J a a a a B a a ρ∴=∴J 法收敛. GS 法:12221112121221122112212112222121122121122det()00,0()1G G a a a a I B a a a a a a a a a a a B a a λλλλλλλρ⎛⎫-==-=⇒==⎪⎝⎭-∴=∴GS 法收敛.∴对于系数矩阵对称正定的2阶线性方程组,J 法和GS 法一定收敛. 30.证明:由线性代数知识知:∃可逆矩阵使121s J J p B P J J -⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦其中,i in n iJ R ⨯∈对应于特征值()121,2,,i s i s n n n nλ=++=()0B ρ=∴B 的所有特征值为0,120101,1,2,,10i i r r i s J R i s r r r n⨯⎛⎫⎪⎪⎪∴=∈=++= ⎪ ⎪ ⎪⎝⎭1i r =时,11i J R ⨯∈1i r 时, 0,i i r r i i J J R ⨯=∈12kkkk s J J J J ⎡⎤⎢⎥⎢⎥∴=⎢⎥⎢⎥⎢⎥⎣⎦最多迭代到第n 次,即k=n 时,10,0k k k J B PJ P -=== 设x *是Ax b =的精确解,误差向量()()k k e x x *=-()()()()()()110k k k k ke x x B x x B e B e--**=-=-===所以最多迭代到第n 次时,()()()00,k k k e B e x x *===所以结论成立31.解:(1)根据迭代公式(1)()()()k k k x x Ax b α+=--,有: (1)()()k k xI A x b αα+=-+ ∴迭代矩阵13212B I A ααααα--⎛⎫=-= ⎪--⎝⎭ 12132det()(1)(14)0121,14I B λααλλαλααλαλαλα-+∴-==-+-+=-+∴=-=-当{}()max 1,141B ραα=--时,迭代收敛111110121411141ααααα⎧---⎧⎪⇒⇒⎨⎨---⎪⎩⎩012α∴时,此迭代方法收敛{}()()m a x 1,141,00.441,0.40.5B B ρααααραα=---⎧∴=⎨-≤⎩ 0.4α∴=时,()Bρ最小,迭代收敛最快()12,n λλ为A 的特征值,11,1n αλαλ∴--为I A α-的特征值{}1()m a x 1,1n I A ρααλαλ∴-=--必要性:迭代收敛()1I A ρα⇒-111110211nαλαλαλ-⎧-⎪∴⇒⎨-⎪⎩所以必要性成立 充分性:()1111102022,1,2,11,1,2,()max 11i i ini i i ni nI A αλαλλλαλρααλ--=∴≤=∴-=∴-=-所以此迭代法收敛,充分性成立 (3) 1102αλ-时,111121,0()21,2n n in I A αλαλλρααλαλλλ-⎧-≤⎪+⎪-=⎨⎪-⎪+⎩根据图像,12nαλλ=+时,()I A ρα-最小33.解:()()()()()()()()()()()()()()()1()1121()111211111(1)()11111,k k k k k k x D L Ux D L b x L D U x L b x D U L D L Ux D U L D L b D U bC D U L D L U g D U L D L b D U b+--++-------+-----⎧=-+-⎪⎨⎪=--⎩⇒=--+--+-∴=--=--+-分析收敛性:()()()()()1111L D L D L DD LI D D L----=--+-=-+-⎡⎤⎣⎦()()()1111D D L I D L D D D L LD ----⎡⎤=---=-⎣⎦()()111C D U D D L LD U---∴=--()()()()()11112D L D D U L D U D L I DL D U L D U D L U-------=----=--=()()111I C I D L D D U LD U ---⎡⎤∴-=---⎣⎦()()()()111I D L D D U D L D D U A ---⎡⎤⎡⎤=------⎣⎦⎣⎦()()()()1111I I D L D D U A D L D D U A ----⎡⎤⎡⎤=-+--=--⎣⎦⎣⎦ 令()()1M D L D DU -⎡⎤=--⎣⎦1C I M A -∴=-因为A 对称正定,所以D 也正定 令 1111222,()D D D W D D U ----==-TM W W ∴=()()11111112222TWCW D D L LD D D L LD -----⎡⎤⎡⎤=--⎢⎥⎢⎥⎣⎦⎣⎦ 令()11122P DD L LD--=-1T W C W P P -∴=所以C 与T PP 相似,其特征值均为非负实数1111()T I WCW W I C W WM AW W AW -------=-==所以 1I WCW --为对称正定矩阵,其特征值()110WCW λ--C ⇒的特征值()C λ满足()01C λ≤,故该迭代法收敛35.解:1112112111122212Ax Bx b x A Bx A b Bx Ax b x A Bx A b ----⎧+==-+⎧⎪⇒⎨⎨+==-+⎪⎩⎩∴J 法的迭代公式为:(1)()111111(1)()1222110000k k k k J x x A b A B A Bx x A b A B C A B +---+---⎛⎫⎛⎫⎛⎫⎛⎫-∴=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫-∴= ⎪-⎝⎭若λ为矩阵1A B --的特征值,对应的特征向量为11111,0n x R x A Bx x λ-∈≠∴-= 11111111111111111111J J x x x A B x C x x x A B x x x x A B x C x x x A B x λλλλλλ----⎡⎤-⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦-⎡⎤⎡⎤⎡⎤⎡⎤===-⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦⎣⎦∴若n 阶矩阵1A B --有特征值12,,,n λλλ,则2n 阶矩阵J C 有特征值12,,,nλλλ±±±38.(1)解:因为系数矩阵A 对称正定,所以可以运用共轭梯度法(CG )解此方程组 取()()00,0Tx =,()()()()000r p b Ax 0,1T∴==-=-,()()()()()()00r ,r 12p ,Ap α==()()()0,-T10001x xp2α⎛⎫∴=+= ⎪⎝⎭,()()(),0T10003r rAp2α⎛⎫=-=- ⎪⎝⎭,()()()()()(),11r ,r 94r r β==()()(),-T110039p r p 24β⎛⎫=+= ⎪⎝⎭()()()()()()11111r ,r 12p ,Ap α==,()()()()1,-2T2111x x p α=+=()2x 即为所求方程的精确解。
数值分析实验题答案

数值分析实验报告姓名:院系:能源学院热能工程学号:2014年4月习题一实验3.2编制正交化多项式最小二乘拟合程序,并用于求解3次多项式最小二乘拟合为基的多项式最小问题,作拟合曲线的图形,计算平方误差,并与以函数{}0n k kx=二乘拟合的结果作比较表1x-1.0-0.50.00.5 1.0 1.5 2.0iy-4.447-0.4520.5510.0480.4470.549 4.552 i首先使用以函数{}0n k k为基的多项式最小二乘拟合,代码如下:x=然后使用正交化多项式方法作最小二乘拟合并画图,代码如下:拟合得到的图形如下(图1):从图形来看,二者与数据点都很吻合。
计算结果为:delta1=2.1762e-05delta2=4.4701e-04为基的多项式拟合精度更高。
可以看出对于3次多项式以{}0n k kx=图1习题二 实验4.2分别用复化Simpson 公式与变步长Simpson 公式计算,要求绝对误差限为71=102ε-⨯,输出每种方法所需的节点数和积分近似值并分析比较结果。
(1)6220()10x x x dx -+⎰ (2)10⎰ (3)6220()10x x x dx -+⎰对于复化Simpson 公式,使用事前误差估计法得到所需计算节点数,有以下误差估计公式:4(4)()()()(),(,)1802n b a h R f f a b ηη-=-∈对(1)式有:(4)22max ()36144x f x x ===0.0266h ≤75.2b aN h -≥=取76N =,计算节点数为21153N N =+= 对(2)(3)式由于其4阶导数值分布极不均匀,用最大值来估计所需计算节点数造成很大浪费,尝试多次后分别取153N =和1091N =代码如下:计算结果如下:(1)计算结果用复化Simpson公式计算:节点数:153近似值:1.161904777用变步长Simpson公式计算:节点数:77近似值:1.161904766标准值:1.161904762(2)计算结果用复化Simpson公式计算:节点数:153近似值:0.400000049用变步长Simpson公式计算:节点数:33近似值:0.400000069标准值:0.400000000(3)计算结果用复化Simpson公式计算:节点数:1091近似值:23.812135331用变步长Simpson公式计算:节点数:145近似值:23.812135297标准值:23.812135292从以上计算结果可以看出,变步长simpson公式所需节点数明显减少,因为3个函数的4阶导数在积分区间内分布都部均匀,(2)(3)式更为严重,在先范围区间内导数值远大于其他区间,只需要在这些区间增加节点数就可以达到指定精度,而Simpson公式需要在全体积分限内采用较小间距才满足条件。
数值分析第三次作业解答

数值分析第三次作业解答思考题:1:(a )对给定的连续函数,构造等距节点上的Lagrange 插值多项式,节点数目越多,得到的插值多项式越接近被逼近的函数。
×;(b) 对给定的连续函数,构造其三次样条函数插值,则节点数目越多,得到的样条函数越接近被逼近的函数。
√(c) 高次的Lagrange 插值多项式很常用。
×(d) 样条函数插值具有比较好的数值稳定性。
√3. 以0.1,0.15,0.2为插值节点,计算()f x = Lagrange 插值多项式 2()P x , 比较2(0)P 和(0)f ,问定理4.1的结果是否适用本问题? 解: 构造插值多项式:0122022(0.15)(0.2)()0.050.1(0.1)(0.2)()0.050.05(0.1)(0.15)()0.10.05()()()()(0)0;(0)0.1403x x l x x x l x x x l x P x x x x f P --=⨯--=⨯--=⨯=++==在(0,2)区间,5''''''23()(0.2)118.585458f x x f -=≤=从而,对任意的 '''3()(0,0.2),(0)0.05933!f ξξω∈≤ 不存在'''32()(0,0.2),(0)(0)(0)0.14033!f f P ξξω∈=-=。
演示程序:x=0:0.01:0.2; y=x.^(1/2);plot(x,y,'r')pause,hold onx0=[0.1,0.15 ,0.2]; y0=x0.^(1/2); x=0:0.01:0.2; y1=lagrangen(x0,y0,x); plot(x,y1,'b')5:(a )求()f x x =在节点123452,0.5,0, 1.5,2x x x x x =-=-=== 的三次样条插值(150M M ==)。
数值分析第三版课本习题及答案

第一章 绪 论1. 设x >0,x 的相对误差为δ,求ln x 的误差.2. 设x 的相对误差为2%,求nx 的相对误差.3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字:*****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====⨯4. 利用公式(3.3)求下列各近似值的误差限:********12412324(),(),()/,i x x x ii x x x iii x x ++其中****1234,,,x x x x 均为第3题所给的数.5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少?6. 设028,Y =按递推公式11783100n n Y Y -=-( n=1,2,…)计算到100Y .若取783≈27.982(五位有效数字),试问计算100Y 将有多大误差?7. 求方程25610x x -+=的两个根,使它至少具有四位有效数字(783≈27.982).8. 当N 充分大时,怎样求211Ndx x +∞+⎰?9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2?10. 设212S gt =假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对误差增加,而相对误差却减小. 11. 序列{}n y 满足递推关系1101n n y y -=-(n=1,2,…),若02 1.41y =≈(三位有效数字),计算到10y 时误差有多大?这个计算过程稳定吗?12. 计算6(21)f =-,取2 1.4≈,利用下列等式计算,哪一个得到的结果最好?36311,(322),,9970 2.(21)(322)--++13. 2()ln(1)f x x x =--,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式22ln(1)ln(1)x x x x --=-++计算,求对数时误差有多大?14. 试用消元法解方程组{101012121010;2.x x x x +=+=假定只用三位数计算,问结果是否可靠?15. 已知三角形面积1sin ,2s ab c =其中c 为弧度,02c π<<,且测量a ,b ,c 的误差分别为,,.a b c ∆∆∆证明面积的误差s ∆满足.s a b cs a b c ∆∆∆∆≤++第二章 插值法1. 根据(2.2)定义的范德蒙行列式,令200011211121()(,,,,)11n n n n n n n n n x x x V x V x x x x x x x xx x ----==证明()n V x 是n 次多项式,它的根是01,,n x x - ,且101101()(,,,)()()n n n n V x V x x x x x x x ---=-- .2. 当x = 1 , -1 , 2 时, f (x)= 0 , -3 , 4 ,求f (x )的二次插值多项式.3. 给出f (x )=ln x 的数值表用线性插值及二次插值计算ln 0.54 的近似值.x 0.4 0.5 0.6 0.7 0.8 ln x -0.916291-0.693147-0.510826-0.357765-0.2231444. 给出cos x ,0°≤x ≤90°的函数表,步长h =1′=(1/60)°,若函数表具有5位有效数字,研究用线性插值求cos x 近似值时的总误差界.5. 设0k x x kh =+,k =0,1,2,3,求032max ()x x x l x ≤≤.6. 设jx 为互异节点(j =0,1,…,n ),求证:i) 0()(0,1,,);nk kj j j x l x x k n =≡=∑ii)()()1,2,,).nk jj j xx l x k n =-≡0(=∑7. 设[]2(),f x C a b ∈且()()0f a f b ==,求证21()()().8max max a x ba xb f x b a f x ≤≤≤≤≤-"8. 在44x -≤≤上给出()xf x e =的等距节点函数表,若用二次插值求xe 的近似值,要使截断误差不超过610-,问使用函数表的步长h 应取多少?9. 若2n n y =,求4n y ∆及4n y δ.10. 如果()f x 是m 次多项式,记()()()f x f x h f x ∆=+-,证明()f x 的k 阶差分()(0)kf x k m ∆≤≤是m k -次多项式,并且()0(m lf x l +∆=为正整数).11. 证明1()k k k k k k f g f g g f +∆=∆+∆.12. 证明110010.n n kkn n k k k k f gf g f g g f --+==∆=--∆∑∑13. 证明1200.n j n j y y y -=∆=∆-∆∑14. 若1011()n nn n f x a a x a x a x --=++++ 有n 个不同实根12,,,n x x x ,证明{10,02;, 1.1()n k njk n a k n j jx f x -≤≤-=-=='∑15. 证明n 阶均差有下列性质: i)若()()F x cf x =,则[][]0101,,,,,,n n F x x x cf x x x = ;ii) 若()()()F x f x g x =+,则[][][]010101,,,,,,,,,n n n F x x x f x x x g x x x =+ .16. 74()31f x x x x =+++,求0172,2,,2f ⎡⎤⎣⎦ 及0182,2,,2f ⎡⎤⎣⎦ . 17. 证明两点三次埃尔米特插值余项是(4)22311()()()()/4!,(,)k k k k R x f x x x x x x ++=ξ--ξ∈并由此求出分段三次埃尔米特插值的误差限.18. 求一个次数不高于4次的多项式()P x ,使它满足(0)(1)P P k =-+并由此求出分段三次埃尔米特插值的误差限.19. 试求出一个最高次数不高于4次的函数多项式()P x ,以便使它能够满足以下边界条件(0)(0)0P P ='=,(1)(1)1P P ='=,(2)1P =.20. 设[](),f x C a b ∈,把[],a b 分为n 等分,试构造一个台阶形的零次分段插值函数()n x ϕ并证明当n →∞时,()n x ϕ在[],a b 上一致收敛到()f x .21. 设2()1/(1)f x x =+,在55x -≤≤上取10n =,按等距节点求分段线性插值函数()h I x ,计算各节点间中点处的()h I x 与()f x 的值,并估计误差.22. 求2()f x x =在[],a b 上的分段线性插值函数()h I x ,并估计误差.23. 求4()f x x =在[],a b 上的分段埃尔米特插值,并估计误差. 24. 给定数据表如下:j x 0.25 0.30 0.39 0.45 0.53 j y0.50000.54770.62450.67080.7280试求三次样条插值()S x 并满足条件i) (0.25) 1.0000,(0.53)0.6868;S S '='= ii)(0.25)(0.53)0.S S "="=25. 若[]2(),f x C a b ∈,()S x 是三次样条函数,证明 i)[][][][]222()()()()2()()()bbbbaaaaf x dx S x dx f x S x dx S x f x S x dx"-"="-"+""-"⎰⎰⎰⎰;ii) 若()()(0,1,,)i i f x S x i n == ,式中i x 为插值节点,且01n a x x x b =<<<= ,则[][][]()()()()()()()()()baS x f x S x dx S b f b S b S a f a S a ""-"="'-'-"'-'⎰.26. 编出计算三次样条函数()S x 系数及其在插值节点中点的值的程序框图(()S x 可用(8.7)式的表达式).第三章 函数逼近与计算1. (a)利用区间变换推出区间为[],a b 的伯恩斯坦多项式.(b)对()sin f x x =在[]0,/2π上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误差做比较. 2. 求证:(a)当()m f x M ≤≤时,(,)n m B f x M ≤≤. (b)当()f x x =时,(,)n B f x x =.3. 在次数不超过6的多项式中,求()sin 4f x x =在[]0,2π的最佳一致逼近多项式.4. 假设()f x 在[],a b 上连续,求()f x 的零次最佳一致逼近多项式.5. 选取常数a ,使301max x x ax≤≤-达到极小,又问这个解是否唯一?6. 求()sin f x x =在[]0,/2π上的最佳一次逼近多项式,并估计误差.7. 求()xf x e =在[]0,1上的最佳一次逼近多项式.8. 如何选取r ,使2()p x x r =+在[]1,1-上与零偏差最小?r 是否唯一? 9. 设43()31f x x x =+-,在[]0,1上求三次最佳逼近多项式.10. 令[]()(21),0,1n n T x T x x =-∈,求***0123(),(),(),()T x T x T x T x .11. 试证{}*()nTx 是在[]0,1上带权21x x ρ=-的正交多项式.12. 在[]1,1-上利用插值极小化求11()f x tg x -=的三次近似最佳逼近多项式.13. 设()x f x e =在[]1,1-上的插值极小化近似最佳逼近多项式为()n L x ,若nf L ∞-有界,证明对任何1n ≥,存在常数n α、n β,使11()()()()(11).n n n n n T x f x L x T x x ++α≤-≤β-≤≤14. 设在[]1,1-上234511315165()128243843840x x x x x x ϕ=-----,试将()x ϕ降低到3次多项式并估计误差. 15. 在[]1,1-上利用幂级数项数求()sin f x x =的3次逼近多项式,使误差不超过0.005.16. ()f x 是[],a a -上的连续奇(偶)函数,证明不管n 是奇数或偶数,()f x 的最佳逼近多项式*()n nF x H ∈也是奇(偶)函数.17. 求a 、b 使[]220sin ax b x dx π+-⎰为最小.并与1题及6题的一次逼近多项式误差作比较.18. ()f x 、[]1(),g x C a b ∈,定义 ()(,)()();()(,)()()()();b baaa f g f x g x dxb f g f x g x dx f a g a =''=''+⎰⎰问它们是否构成内积?19. 用许瓦兹不等式(4.5)估计6101x dx x +⎰的上界,并用积分中值定理估计同一积分的上下界,并比较其结果.20. 选择a ,使下列积分取得最小值:1122211(),x ax dx x ax dx----⎰⎰.21. 设空间{}{}10010121,,,span x span x x 1ϕ=ϕ=,分别在1ϕ、2ϕ上求出一个元素,使得其为[]20,1x C ∈的最佳平方逼近,并比较其结果.22. ()f x x =在[]1,1-上,求在{}2411,,span x x ϕ=上的最佳平方逼近.23.[]2sin (1)arccos ()1n n x u x x +=-是第二类切比雪夫多项式,证明它有递推关系()()()112n n n u x xu x u x +-=-.24. 将1()sin2f x x =在[]1,1-上按勒让德多项式及切比雪夫多项式展开,求三次最佳平方逼近多项式并画出误差图形,再计算均方误差.25. 把()arccos f x x =在[]1,1-上展成切比雪夫级数.26. 用最小二乘法求一个形如2y a bx =+的经验公式,使它与下列数据拟合,并求均方误差.i x 19 25 31 38 44 i y19.032.349.073.397.827. 观测物体的直线运动,得出以下数据:时间t (秒) 0 0.9 1.9 3.0 3.9 5.0 距离s (米) 010305080110求运动方程.28. 在某化学反应里,根据实验所得分解物的浓度与时间关系如下:时间 0 5 10 15 20 25 30 35 40 45 50 55 浓度0 1.272.162.863.443.874.154.374.514.584.624.64用最小二乘拟合求()y f t =.29. 编出用正交多项式做最小二乘拟合的程序框图. 30. 编出改进FFT 算法的程序框图. 31. 现给出一张记录{}{}4,3,2,1,0,1,2,3k x =,试用改进FFT 算法求出序列{}k x 的离散频谱{}k C (0,1,,7).k =第四章 数值积分与数值微分1. 确定下列求积公式中的待定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度: (1)101()()(0)()hh f x dx A f h A f A f h --≈-++⎰; (2)21012()()(0)()hh f x dx A f h A f A f h --≈-++⎰;(3)[]1121()(1)2()3()/3f x dx f f x f x -≈-++⎰;(4)[][]20()(0)()/1(0)()hf x dx h f f h ah f f h ≈++'-'⎰.2. 分别用梯形公式和辛普森公式计算下列积分:(1)120,84xdx n x =+⎰; (2)1210(1),10x e dx n x --=⎰;(3)91,4xdx n =⎰; (4)260sin ,6dx n π-ϕ=⎰.3. 直接验证柯特斯公式(2.4)具有5次代数精度.4. 用辛普森公式求积分1x e dx-⎰并计算误差.5. 推导下列三种矩形求积公式:(1)2()()()()()2ba f f x dxb a f a b a 'η=-+-⎰; (2)2()()()()()2baf f x dx b a f b b a 'η=---⎰;(3)3()()()()()224baa b f f x dx b a f b a +"η=-+-⎰.6. 证明梯形公式(2.9)和辛普森公式(2.11)当n →∞时收敛到积分()baf x dx⎰.7. 用复化梯形公式求积分()baf x dx⎰,问要将积分区间[],a b 分成多少等分,才能保证误差不超过ε(设不计舍入误差)?8. 用龙贝格方法计算积分12x e dxπ-⎰,要求误差不超过510-.9. 卫星轨道是一个椭圆,椭圆周长的计算公式是22201()sin cS a d a π=-θθ⎰,这里a 是椭圆的半长轴,c是地球中心与轨道中心(椭圆中心)的距离,记h 为近地点距离,H 为远地点距离,6371R =公里为地球半径,则(2)/2,()/2a R H h c H h =++=-.我国第一颗人造卫星近地点距离439h =公里,远地点距离2384H =公里,试求卫星轨道的周长.10. 证明等式3524sin3!5!n nn n ππππ=-+-试依据sin(/)(3,6,12)n n n π=的值,用外推算法求π的近似值.11. 用下列方法计算积分31dyy ⎰并比较结果.(1) 龙贝格方法;(2) 三点及五点高斯公式;(3) 将积分区间分为四等分,用复化两点高斯公式.12. 用三点公式和五点公式分别求21()(1)f x x =+在x =1.0,1.1和1.2处的导数值,并估计误差.()f x 的值由下表给出:x1.0 1.1 1.2 1.3 1.4 ()f x0.25000.22680.20660.18900.1736第五章 常微分方程数值解法1. 就初值问题0)0(,=+='y b ax y 分别导出尤拉方法和改进的尤拉方法的近似解的表达式,并与准确解bx ax y +=221相比较。
中科院研究生院信息工程学院课件数值分析数值分析第三次作业及答案

数值分析第三次作业及答案1. (P201(4))用梯形方法解初值问题 '0;(0)1,y y y ⎧+=⎨=⎩ 证明其近似解为2,2nn h y h -⎛⎫= ⎪+⎝⎭并证明当0h →时,它收敛于原初值问题的准确解.xy e -=111112111000 [(,)(,)]2(,)()22222222 1,.2,.lim l n n n n n n n n n n n n n n nn n n h hy y f x y f x y hf x y y y y y y h h h y y y y h h h h y y h h n y nh x y +++++++-→=++=-⇒=+-----⎛⎫⎛⎫⎛⎫⇒==== ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭-⎛⎫=⇒= ⎪+⎝⎭=⇒=证:梯形公式为由因用上述梯形公式以步长经步计算到故有0022im lim 22x nhx h h h h e h h -→→--⎛⎫⎛⎫== ⎪ ⎪++⎝⎭⎝⎭2. (P202(6)) 写出用四阶经典的龙格—库塔方法求解下列初值问题的计算公式:''3,01;,01;(1)1)2)(0)1;(0) 1.y y x y x y x x y y ⎧=<<⎧=+<<⎪+⎨⎨=⎩⎪=⎩ 12113224330.2(,)(,) 1.1()0.1 22221)(,) 1.11()0.112222(,) 1.n n n n n n n n n n n n n n n nn n n n h k f x y x y h h h h k f x y k x y k x y h h h h k f x y k x y k x y k f x h y hk x h y hk ===+=++=+++=++=++=+++=++=++=+++=解:令1123412132431222()0.222(22)0.2214 1.22140.021463/(1)3(0.1)/(10.1)2)3(0.1)/(10.1)3(0.2)/(10.2)0.2(6n n n n n n n n n nn n n n n n x y hy y k k k k x y k y x k y k x k y k x k y k x y y k ++⎧⎪⎪⎪⎨⎪⎪⎪++⎩=++++=++=+⎧⎪=+++⎪⎨=+++⎪⎪=+++⎩=+123422).k k k +++3. (P202(7)) 证明对任意参数t ,下列龙格库塔-公式是二阶的:12312131();2(,);(,);((1),(1)).n n n nn n n n h y y K K K f x y K f x th y thK K f x t h y t hK +⎧=++⎪⎪⎪=⎨⎪=++⎪=+-+-⎪⎩'''2'''31'123'2'()()()()[(,())(,())(,())]23!()[((,)(,)22(,)(,)())((,)(,n n n n x n n y n n n n n n n n n x n n y n n n n n n x n n y h y x y x hy x f x y x f x y x f x y x hh hy y K K y f x y f x y th f x y thf x y O h f x y f x y ζ++=++++=++=++++++证:由一元函数的泰勒展开有又由二元函数的泰勒展开有'22''32''311)(1)(,)(1)(,)())](,)[(,)(,)(,)]()2(),(,())[(,())(,())(,())]()2()y n n n n n n n x n n y n n n n n n n n n n x n n y n n n n n n t h f x y t hf x y O h h y hf x y f x y f x y f x y O h y y x h y y hf x y x f x y x f x y x f x y x O h y x y +++-+-+=++++==++++为考虑局部截断误差,设上式有比较与31111 ()()n n n R y x y O h t +++=-=两式,知其局部误差为故对任意参数,公式是二阶的。
(完整word版)数值分析作业-三次样条插值..0001

数值计算方法作业实验4.3三次样条差值函数实验目的:掌握三次样条插值函数的三弯矩方法实验函数:求和的近似值实验内容:(1) 编程实现求三次样条插值函数的算法,分别考虑不同的边界条件;(2) 计算各插值节点的弯矩值;(3) 在同一坐标系中绘制函数f(x),插值多项式,三次样条插值多项式的曲线比较插值结果。
实验4.5三次样条差值函数的收敛性实验目的:多项式插值不一定是收敛的,即插值的节点多,效果不一定好。
对三次样条插值函数如何呢?理论上证明三次样条插值函数的收敛性是比较困难的,通过本实验可以证明这一理论结果。
实验内容:按照一定的规则分别选择等距或非等距的插值节点,并不断增加插值节点的个数。
实验要求:(1)随着节点个数的增加,比较被逼近函数和三样条插值函数的误差变化情况,分析所得结果并与拉格朗日插值多项式比较;(2)三次样条插值函数的思想最早产生于工业部门。
作为工业应用的例子,考虑如下例子:某汽车制造商根据三次样条插值函数设计车门曲线, 其中一 段数据X k 0 1 23 4 5678910y k 0.00.79 1.532.19 2.713.03 3.27 2.89 3.06 3.19 3.29y k0.80.2算法描述:拉格朗日插值:错误!未找到引用源。
n(x _ X ) 其中错误!未找到引用源。
是拉格朗日基函数,其表达式为:h(x)」j=0 (x i- X j )牛顿插值:N n (x) =f (X g ) f[X o ,X i ](X -xO) f[X o ,X i ,X 2〕(X - xO)(x - X i ) •…f[X g ,X i ...X n ] =(f[X i ,X 2,...X n ] - f [ X 。
,为,..人」)/(X . - X g )三样条插值:所谓三次样条插值多项式Sn(x)是一种分段函数,它在节点Xi(a<X0<X1……<Xn<b)分成的每个小区间[x i-i ,x i ]上是三次多项式,其在此区间 上的表达式如下:f[X °,X i ,X 2,...X n ](X -X °)(X -X i )...(X-Xn J )f [X i , X j ]f (X i ) - f (X j ) X i -X jf [X i , X j ,X k]=其中*.f[X j ,X k ] - f[K ,X j ]X k -X iS(x)二 M 3(X i -x) 6h i.Mi (x —Xy )3 . [ y i - y i4 h i (M i - My)6h i h i 6 h ih i M i 4 h i M iy i- 6)( 6*,皿"]因此,只要确定了 Mi 的值,就确定了整个表达式,Mi 的计算方法如下:i 4式中 Mi= S (X i ).则Mi 满足如下n-1个方程:7 M i 」■ 2M i …冷 M i i = di , i =1,2,...n —'1 常用的边界条件有如下几类:(1)给定区间两端点的斜率 m o ,m n ,即s(x 0) = y 0 =m 0,S(x n ) = y n = m n(2) 给定区间两端点的二阶导数 MO ,Mn,即S (XcH y 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数值分析第三次作业解答
思考题: 1:
(a )对给定的连续函数,构造等距节点上的Lagrange 插值多项式,节点数目越多,得到的插值多项式越接近被逼近的函数。
×; (b) 对给定的连续函数,构造其三次样条函数插值,则节点数目越多,得到的样条函数越接近被逼近的函数。
√ (c) 高次的Lagrange 插值多项式很常用。
× (d) 样条函数插值具有比较好的数值稳定性。
√
3. 以0.1,0.15,0.2为插值节点,计算()f x x
=的二次 Lagrange 插值
多项式
2()P x ,
比较2(0)P 和(0)f ,问定理4.1的结果是否适用本问题? 解: 构造插值多项式:
01220122(0.15)(0.2)
()0.050.1(0.1)(0.2)()0.050.05(0.1)(0.15)
()0.10.05()0.1()0.15()0.2()
(0)0;(0)0.1403
x x l x x x l x x x l x P x l x l x l x f P --=⨯--=⨯--=⨯=
+
+
==
在(0,2)区间,
从而,对任意的 '''
3()(0,0.2),(0)0.05933!
f ξξω∈≤
不存在'''
32()(0,0.2),(0)(0)(0)0.14033!
f f P ξξω∈=-=。
演示程序:
x=0:0.01:0.2; y=x.^(1/2); plot(x,y,'r') pause,hold on
x0=[0.1,0.15 ,0.2]; y0=x0.^(1/2); x=0:0.01:0.2; y1=lagrangen(x0,y0,x); plot(x,y1,'b')
5:(a )求()f x x =在节点
123452,0.5,0, 1.5,2x x x x x =-=-=== 的三次样条插值(150M M ==)。
解: x -2 -0.5 0 1.5 2 y 2
0.5
1.5
2
23452341.5,0.5, 1.5,0.5,
2/3
1/12001/122/31/42
1/4
2/30h h h h M M M ====⎡⎤⎡⎤⎡⎤⎢
⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦
得到: 2344/9,32/9,4/3M M M =-==-,M1=M5=0 (b )
x0=[-2 -0.5 0 1.5 2]; y0=abs(x0);
x=-2:0.05:2;
y1=lagrangen(x0,y0,x);
y2=interp1(x0,y0,x,'spline'); x3=-2:0.1:2;y3=abs(x3);
plot(x,y1,'b',x,y2,'r',x0,y0,'o',x3,y3,'r')
用最小二乘法,用形如y=a+bx 的多项式拟合下列数据:。