(数)3正比例教学设计
正比例-人教版六年级数学下册教案

正比例-人教版六年级数学下册教案教学目标1.了解正比例的定义和性质;2.掌握正比例的解题方法;3.练习应用正比例进行实际问题的解答。
教学重难点1.正比例的概念和性质;2.正比例的解题方法;3.如何应用正比例解决实际问题。
教学内容与过程一、概念和性质1.通过图例和具体数值引出正比例的概念。
2.从比例中引出正比例的定义。
3.引出正比例的性质,包括比例系数相等、比例的两个量成正比例时,它们之间的比例关系不受规定单位的影响等。
二、正比例的解题方法1.教师通过举例子,讲解正比例的解题方法。
2.要求学生独立进行练习。
3.课堂上讲解部分习题,引导学生理解解题方法。
三、应用正比例解题1.给出实际问题,让学生独立应用正比例解答问题。
2.导入教师辅助学生解答一些复杂的问题。
3.课堂分享解题方法,共同讨论解答方法和过程。
学法指导1.学生需要先理解正比例的概念和性质,再通过举例子掌握正比例的解题方法。
2.学生需要多做题练习,并结合实际问题进行应用练习。
3.学生需要在积极参与课堂活动中,探索并积累解答问题的方法和技巧。
课堂互动1.教师通过提问引导学生引出正比例的定义和性质。
2.学生通过解题、分享、讨论能够掌握正比例的解题方法。
3.学生可以分组进行竞赛,巩固知识点和解题技巧。
课堂作业1.完成课堂上的练习题。
2.自选一道与本课相关的题目进行独立解答,并写下解答过程。
反思总结1.教师需要及时收集学生的反馈和评价,了解学生的掌握情况。
2.教师需要反思自己的教学方法,不断更新教学内容和节奏,提高教学质量和效果。
3.学生需要通过反思总结,提高对正比例概念和解题方法的理解和应用。
六年级数学下册《正比例》的教学设计(通用5篇)

六年级数学下册《正比例》的教学设计六年级数学下册《正比例》的教学设计(通用5篇)作为一名专为他人授业解惑的人民教师,通常需要用到教学设计来辅助教学,借助教学设计可以让教学工作更加有效地进行。
教学设计应该怎么写呢?下面是小编精心整理的六年级数学下册《正比例》的教学设计(通用5篇),希望能够帮助到大家。
六年级数学下册《正比例》的教学设计1教学内容:九年义务教育六年制小学数学第十二册P62——63教学目标:1、使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。
2、使学生在认识成正比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。
3、使学生进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。
教学重点:认识正比例的意义教学难点:掌握成正比例量的变化规律及其特征设计理念:课堂教学中从学生的已有的生活经验出发,引导学生观察、分析,从而发现成正比例量的规律,概括成正比例量的特征。
课堂教学中给学生提供探究的平台,凡是能让学生自己发现的,就让学生亲自去探究。
通过数学活动,让学生把所学的数学知识应用到解决实际问题中去,进一步培养学生的观察能力和发现规律的能力。
一、复习铺垫激情促思1、说出下列每组数量之间的关系。
(1)速度时间路程(2)单价数量总价(3)工作效率工作时间工作总量2、师:这些是我们已经学过的一些常见数量关系,每组数量之间是有联系的,存在着相依关系。
当其中一种量变化时,另一种量也随着变化,而且这种变化是有一定的规律的,你想知道其中的奥秘吗?今天,我们就来研究和认识这种变化规律。
学生口答,相互补充二、初步感知探究规律1、出示例1的表格(略)说说表中列出了哪两种量。
(1)引导学生观察表中的数据,说一说这两种量的数值分别是怎样变化的。
《正比例》教学设计(15篇)

《正比例》教学设计(15篇)《正比例》教学设计1教学要求:使学生进一步理解和掌握正、反比例中每个概念的含义;更熟练地判断两种相关联的量是不是成比例的量。
如果成比例,成什么比例。
进一步提高解决简单实际问题的能力。
教学过程:提出本课复习题基本概念的复习什么叫两种相关联的量?下面两种相关联的量哪些量成比例?成比例的是成正比例还需成反比例?什么样的两种量成正比例关系?什么样的两种量成反比例关系?成正比例关系的量与成反比例关系的量有什么异同点?应用练习完成教材97页的“做一做”。
第3题在完成时可先把题中的等式变一变形,像y=8x变成y/x=8;把y=8/y 变成xy=8,这样判断起来就方便了。
巩固练习完成教材99页第6~7题。
全课总结(略)教学目标:使学生进上步理解和掌握比和比例的意义与性质。
区别有关易混概念,进上步提高运用所学知识能力,为今后的学习打下良好的基础。
教学过程:讲述本课复习课题并板书基本概念的复习比和比例的意义与性质。
什么叫比?什么叫比例?(就学生所举的例子再让学生说说比和比例中各部分的名称),比的后项为什么不能是0?比和分数、除法有什么联系?说说比的基本性质的比例的基本性质?比的基本性质与比例的基本性质各有什么用处?看教材95页的归纳整理,并把基本性质栏中的空填上,说说根据什么填写的?完成教材95的“做一做”。
结合第3题让学生说说什么叫做解比例?根据是什么?示比值和化简比。
独立完成教材96页上的题目。
说说求比值与化简比的区别?(求比值是根据比的意义。
用前项除以后项,得到结果是一个数;化简比是根据比的基本性质,把比的前项和后项,同时乘以(或除以)相同的数(0除外),得到的结果是一个最简整数比)。
看书中的表,总结方法。
完成教材96页的“做一做”比例尺问题:1)什么叫做比例尺?说说“图距”、“实距”、“比例尺”三者之间的关系。
2)一幢教学大楼平面图的比例尺是1/100,这比例尺表示的是什么意思?比例尺除写成数字化形式处,还可怎样表示?完成教材97页上的“做一做”。
《正比例》教学设计教案

《正比例》教学设计教案一、教学目标:知识与技能:1. 让学生理解正比例的概念,能够识别正比例关系。
2. 学会用数学符号表示正比例关系。
3. 能够解决一些与正比例有关的实际问题。
过程与方法:1. 通过观察、分析、归纳等方法,让学生发现并理解正比例的性质。
2. 培养学生运用正比例知识解决实际问题的能力。
情感态度与价值观:1. 激发学生对数学的兴趣,培养学生的探究精神。
2. 培养学生运用数学知识解决实际问题的意识。
二、教学重点与难点:重点:1. 正比例的概念及识别正比例关系。
2. 用数学符号表示正比例关系。
难点:1. 理解正比例的性质,能够灵活运用解决实际问题。
三、教学准备:教师:正比例关系的相关教学材料、PPT等。
学生:笔记本、文具。
四、教学过程:1. 导入:教师通过一个生活中的实例,如购物时商品的价格与数量的关系,引导学生思考正比例的概念。
2. 探究与交流:教师组织学生进行小组讨论,让学生观察、分析实例中的正比例关系,并引导学生用数学符号表示。
3. 知识讲解:教师讲解正比例的定义、性质及表示方法,并通过PPT展示相关知识点。
4. 练习与反馈:教师提供一些练习题,让学生巩固所学知识,并针对学生的回答进行反馈。
5. 拓展与应用:教师引导学生运用正比例知识解决一些实际问题,如速度、路程、时间的关系等。
五、教学反思:1. 学生是否掌握了正比例的概念和表示方法?2. 学生能否运用正比例知识解决实际问题?3. 教学过程中是否存在不足,如何改进?4. 学生对正比例的兴趣和探究精神是否得到培养?六、教学评价:教师应通过课堂表现、练习题和课后作业等多种方式对学生进行评价。
重点关注学生对正比例概念的理解、正比例关系的识别以及运用正比例知识解决实际问题的能力。
注意评价学生的合作交流能力和创新思维能力。
七、教学拓展:教师可以引导学生进一步探究正比例的性质,例如正比例函数的图像特点、正比例关系在不同领域的应用等。
教师还可以为学生提供一些有趣的数学问题或数学故事,激发学生对数学的兴趣和热情。
八年级数学上册《正比例函数》教案、教学设计

3.设计具有梯度的问题,引导学生逐步深入理解正比例函数。从简单的判断题、选择题到综合应用题,让学生在解决问题的过程中,掌握正比例函数的知识。
4.创设小组合作交流的机会,让学生在讨论中互相启发,共同进步。教师适时给予指导,帮助学生突破难点。
-目的:培养学生团队协作、共同解决问题的能力,提高学生的沟通表达能力。
5.课后反思:要求学生撰写ቤተ መጻሕፍቲ ባይዱ后反思,总结自己在学习正比例函数过程中的收获和不足。
-反思内容:可以包括对本节课知识点的理解、解题方法的掌握、学习过程中的困惑等。
6.家长参与:鼓励家长参与学生的作业过程,了解学生的学习情况,为学生提供必要的帮助和支持。
-提问:“那么,我们如何用数学公式来表示这种关系呢?”
(二)讲授新知
1.正比例函数的定义:教师给出正比例函数的定义,并解释相关概念。
-解释:“正比例函数是指一个函数,当自变量x的值增大或减小时,其对应的函数值y也按照相同的比例增大或减小。”
2.正比例函数的表达式:引导学生根据定义推导正比例函数的表达式y=kx(k≠0)。
-提示:在解决提高题时,鼓励学生运用图像分析、逻辑推理等方法,提高问题解决能力。
3.创新实践:设计具有挑战性的创新题目,要求学生结合生活实际,运用正比例函数模型解决实际问题。
-要求:学生需将问题解决过程和结果以书面形式呈现,注重解题思路和方法的创新。
4.小组合作:布置小组合作作业,让学生在组内共同探讨、解决一个综合性的正比例函数问题。
-提问:“根据正比例函数的定义,我们可以得出什么样的数学表达式?”
2024年人教版数学六年级下册正比例教案精选3篇

人教版数学六年级下册正比例教案精选3篇〖人教版数学六年级下册正比例教案第【1】篇〗教学目标:1.知识目标:了解储蓄的意义,理解本金、利率、利息的含义。
2.能力目标:注重学生观察、对比、总结能力的培养,并让学生感受数学在生活中的作用,提高应用意识和实践的能力。
3.情感目标:懂得存款利国利民,并从教育储蓄中感悟国家对少年儿童的殷切希望,树立努力学习的志向。
重点难点:理解本金、利率、利息的含义,会正确计算利息。
理解税后利息的含义,会根据实际情况使用公式。
教学流程:一、知识扩充(师出示中国五大银行行标。
生根据生活经验,理解银行的业务范围及银行的分类。
)师:(出示一组信息) 20xx年12月,中国银行给工业发放贷款18 636亿元,给商业发放贷款8 563亿元,给建筑业发放贷款 2 099亿元,给农业发放贷款5 711亿元。
(让生思考,从信息中想到了什么?)设计意图:让学生了解储蓄的意义,感受存款不但利国而且利民。
效果预测:学生可以从信息中感悟到国家用集资上来的存款繁荣经济、建设国家、援助农业,加强储蓄的意识。
二、创设情境师:老师积攒了1000元钱,把它放在什么地方最安全合理呢?生:放在银行里,不但安全还可以使自己的用钱更有计划。
师:听从大家的意见,现在老师就想去银行存款,谁想和我一起去?(生走入老师创设的情境,感受存款的乐趣。
)师:当我们来到银行的时候,不但会受到存款员的热情接待,而且会拿到一张存款单。
存款单蕴含着怎样的奥秘呢?我们在填写的过程中一起总结好吗?(生独立完成填存单的任务,遇到问题随时提出,师生共同解决。
)设计意图:给予学生一个想像的空间,让学生身临其境地感悟生活中的数学,把知识、能力、人格有机地融合,让学生的各种因素碰撞后的灵感在实践中得以体现。
效果预测:经过师生互动、生生互补,学生可以掌握存款单的填写方法,并在老师的点拨中,掌握存款的种类、本金等数学概念。
三、合作学习师:(出示信息)小丽学会存款后,把100元存入银行,整存整取1年,年利率2.25%,到期时可取出人民币102.5元。
《正比例》教学设计

《正比例》教学设计《正比例》教学设计(精选5篇)《正比例》教学设计1导学目标1、使学生理解正比例的意义,能根据正比例的意义判断是不是成正比例。
2、培养学生概括能力和分析判断能力。
3、培养学生用发展变化的观点来分析问题的能力。
导学重点:成正比例的量的特征及其判断方法。
导学难点:理解两个变量之间的比例关系,发现思考两种相关联的量的变化规律。
预习学案填空1、如果路程时间=()(一定),那么()和()成正比例。
2、如果油的重量花生仁重量=()(一定),那么()和()成正比例。
3、如果yx=k(一定),那么()和()成正比例。
导学案学习例1在相同的杯子里装上水,下表显示了水的高度和体积,把表填写完整。
高度24681012体积50100150200250300底面积体积和高度有什么变化?观察他们的比值,你发现了什么?因为杯子的底面积一定,所以水的体积随着高度的变化而变化。
水的高度增加,体积也相应增加,水的高度降低,体积也相应减少,而且水的体积和高度的比值一定。
像这样,两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
如果用字母x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系可以用下面的式子表示:yx=k(一定)想一想,生活中还有哪些成正比例的量?小组讨论交流。
看书P40例2。
(1)题中有几种量?哪两种量是相关联的量?(2)体积和高度的比的比值是多少?这个比值是什么?是不是一定?(3)它们的数量关系式是什么?(4)从图中你发现了什么?(5)不计算,根据图像判断,如果杯中水的高度是7厘米,那么水的体积是多少?225立方厘米的水有多高?三、课堂小结:什么是成正比例的量?它必须具备什么条件?怎样判断成正比例的量?课堂检测下列各题中的两种相关联的量是否成正比例关系,并说明理由。
1、正方体的棱长和体积2、汽车每千米的耗油量一定,耗油总量和所行千米数。
六年级数学正比例教案

教案主题:正比例(六年级数学)教学目标:1.理解正比例的概念及性质;2.掌握通过图表、公式等方式判断两个量是否成正比;3.能够解决实际问题中的正比例关系;4.培养学生观察能力和综合运算能力。
教学重点:学生能够运用正比例相关的知识解决实际问题。
教学难点:学生能够理解正比例的概念及性质,并能够判断出两个量是否成正比。
教学准备:1.教学课件或教具(如图表、活动卡片等);2.学生练习册或习题集。
教学过程:Step 1:导入新知(10分钟)1.利用例子引导学生认识“正比例”的概念:例如,大韦恺参加长跑比赛,他的速度与时间的关系是怎样的?2.结合示意图,让学生思考两个量之间的关系,引导学生认识正比例关系,并总结出正比例的特点。
Step 2:课堂探究(25分钟)1.利用活动卡片的方式,深入探究正比例关系。
其中卡片上列出了不同的物品、数量和价格,学生需要根据卡片上的信息判断哪些是成正比的关系,并进行说明。
2.教师带领学生一起探索成正比的关系,通过图表、公式等方式来判断两个量是否成正比。
3.提供一些简单的实际问题,指导学生通过画图、列式等方式解决问题,并进行讨论,培养学生观察能力和综合运算能力。
Step 3:小组活动(15分钟)1.将学生分成小组,每个小组选择一个实际问题,并设计解决该问题的步骤。
2.学生在小组中互相讨论及互助,共同解决问题。
3.每个小组选派一名代表进行汇报,展示解决问题的方法和结果。
Step 4:巩固练习(15分钟)1.随堂练习:布置几道选择题和计算题,让学生独立完成。
2.辅导学生解答难题,提供必要的辅助材料,帮助学生解决困惑。
3.检查学生的完成情况,对错误的题目进行重点解析和讲解。
Step 5:课堂总结(5分钟)1.总结本堂课的学习内容,回顾学生对正比例的认识和应用。
2.引导学生发表自己的观点和体会,鼓励学生多积极参与讨论和交流。
教学延伸:1.学生可通过观察、测量和记录实际数据,继续探索正比例关系,以增强学生对正比例的理解和应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
<<正比例>>教学设计
教学内容:人教版第11册第54~56页的例1~例3以及相应的“做一做”。
教学目的:
1.使学生通过具体问题认识成正比例的量,理解正比例的意义,能判断两种量是否成正比例关系,能找出生活中成正比例量的实例,并进行交流。
2.引导学生通过观察、交流、归纳、推断等数学活动,感受数学思维过程的合理性,培养学生的观察能力、推理能力、归纳能力和灵活运用知识的能力。
教学重点:正确理解正比例的意义。
教学难点:能正确判断成正比例的量。
教具、学具准备:
教师准备视频展示台,多媒体课件;学生在布店里自己选择一种布,调查买1米布要多少钱,买2米布要多少钱…,将调查结果记录好。
教学过程:
一.复习准备
1.什么是比例?
2.下面是一列火车行驶的时间和所行的路程,用这个表中的数能写成多少个有意义的比?哪些比能组成比例?把能组成的比例都写出来。
二.导入新课
教师:在上面的表中,有哪两种数量?(时间和路程)我们还要遇到许多数量,如单价等。
三.进行新课
用多媒体课件在刚才准备题的表格中增加列和数据,变成例1。
教师:先独立思考后再讨论、交流、回答以下问题:
(1)表中有哪两种量?
(2)这两种量是怎样变化的?
(3)还可以从表中发现哪些规律?
教师:同学们发现表中有时间和路程这两种量,并且时间在扩大,路程也在扩大,路程总是随着时间的变化而变化,我们就说时间和路程这两种量是相关联的。
板书:相关联。
教师:你们还发现哪些规律呢?
引导学生归纳出:
(1)时间和路程是相关联的两种量,路程随着时间的变化而变化;
(2)时间扩大,路程随着扩大;时间缩小,路程也随着缩小;
(3)路程和时间的比值都是90;时间和路程的比值都是1/90。
路程和时间的比值是什么?(速度)
在这个表里,作为比值的速度即每小时所走的路程都是一个固定的数,我们就说比值一定。
也就是:(板书)路程/时间=速度(一定)
先观察表中有哪两种量?这两种量是怎样变化的?再观察这两种量中相对应的两个数的比值是否一定。
学生分析后引导学生归纳:
(1)表中买布的数量和买布的总价是相关联的两种量,总价随着数量的变化而变化;
(2)数量扩大,总价随着扩大;数量缩小,总价也随着缩小;
(3)总价和数量的比值是一定的,每米布的单价都是8.2元,它们之间的关系可以写成总价/数量=单价(一定)。
教师:引导学生归纳出这两个问题中都有两种相关联的量,一种量变化,另一种量也随着变化,这两种量中相对应的两个数的比值一定。
凡是符合以上规律的两种量,我们就把它叫做正比例的量,它们之间的关系就是正比例关系,如果用字母X和Y表示两种相关联的量,用K表示它们的比值,正比例关系可以用式子表示为X/Y=K(一定)。
教师:请同学们相互说一说生活中还有哪些是成正比例的量?
指导学生完成第56页“做一做”。
四.巩固练习
指导学生完成练习十六第1~3题。
五.课堂小结
教师:这节课你们学到了哪些知识?用了哪些学习方法?还有哪些不懂的问题?学生小结后教师对全课所学的知识进行归纳
教学反思:
学生在上学期已经学过比的意义、比的化简与比的应用。
在上一节课也体会了生活中存在的变量之间的关系,这些都为学生学习正比例奠定了基础。
学生理解正比例的意义时比较困难,为此,我密切联系学生已有的生活经验和学习经验,设计了一系列情境,让学生体会生活中存在大量相关联的量,它们之间的关系有着共同之处,从而引导学生认识成正比例的量以及明确正比例在实际生活中的广泛应用。
课堂上我设计了正方形的周长与边长、面积与边长的变化关系。
通过表格、图像、表达式的比较,使学生体会到虽然正方形的周长和面积都随边长的增加而增加,但正方形的周长与边长、面积与边长的变化规律并不相同。
同时,也让学生初步感知“在变化过程中,正方形的周长与边长的比值一定”,为认识正比例奠定基础。
接着,我给学生提供第二个情境:当速度一定时,汽车行驶的路程与
时间的变化关系。
教学时,我先让学生把汽车行驶的时间和路程表填完整,引导学生观察并思考:当时间发生变化时,路程怎样变化;第三个情境则是,购买同一种苹果(也就是当单价一定时),应付的钱数与购买的苹果质量之间的关系。
通过以上实例,引导学生认识到:当速度一定时,路程随时间的变化而变化,在变化的过程中路程与时间的比值相同;当单价一定时,应付的钱数随购买苹果的质量的变化而变化,在变化过程中应付的钱数与质量的比值相同。
在此基础上,让学生通过比较,概括出以上实例的共同点,引出“正比例”的意义。
最后,通过小结、练习让学生总结出判断两种量是否成正比例的依据:1.两种变量是不是相关联的量;2.在变化的过程中,这两种量比值是否一定。
在巩固练习题中我让学生大量的复习了常见的数量关系。
对于一些学生较容易出现错误的题目进行重点的讲解。
例:圆柱的底面积一定,体积与高成什么比例;圆的周长与半径成正比例;圆的面积与半径是否成比例;人的身高与年龄是否成比例;一瓶矿泉水,喝掉的和瓶里剩下的水是否成比例……等等。
但是在教学中同样也感觉到,由于这个概念比较长,所以对于学生来说这个意义记忆下来是比较困难的,特别是对一些学习困难的学生。
所以我也教给学生一定的方法,抓住句中的重点,通过理解来记忆。
让学生通过相互之间说,前后同桌检查,达到对该概念的熟练叙述。