平面向量复习基本知识点及经典结论总结

合集下载

平面向量复习基本知识点及结论总结

平面向量复习基本知识点及结论总结

平面向量复习基本知识点及结论总结平面向量是指在平面上具有大小和方向的量,用箭头表示。

平面向量有两个重要的基本运算:向量的加法和数乘。

1.平面向量的加法:-向量的加法满足交换律:A+B=B+A-向量的加法满足结合律:(A+B)+C=A+(B+C)-零向量的性质:对于任意向量A,有A+0=0+A=A-负向量的性质:对于任意向量A,有A+(-A)=02.平面向量的数乘:-数乘的分配律:k(A+B)=kA+kB-数乘的结合律:(k+m)A=kA+mA- 数乘的分配律:k(lmA)= (klm)A-零向量的数乘:0A=03.平面向量的基本性质和结论:-平行向量:若存在非零实数k,使得A=kB,称向量A与向量B平行。

-相等向量:若AB,CD是向量,则A=C,B=D,则称向量AB和CD相等。

-相反向量:若AB是向量,则存在一个向量BA,满足AB+BA=0,称向量BA是向量AB的相反向量。

-向量共线:若有两个不共线的向量AB和CD,如果存在非零实数k,使得CD=kAB,则称向量CD与向量AB共线。

-平移:若向量u等于向量a加上向量b,即u=a+b,则向量u和向量a平行。

4.向量的模:-向量的模表示向量的长度,通常用,A,表示,它的计算公式为,A,=√(x²+y²),其中(x,y)是向量A的坐标。

5.向量的共线与垂直:-向量共线:若向量A与向量B不为零向量且存在非零实数k,使得A=kB,则称向量A与向量B共线。

-向量垂直:若点A的坐标(x₁,y₁)和点B的坐标(x₂,y₂)满足x₁x₂+y₁y₂=0,则称向量AB垂直。

6.单位向量与方向角:-单位向量:向量长度为1的向量称为单位向量。

-方向角:向量与x轴的夹角称为它的方向角,用θ表示。

以上是平面向量的基本知识点和结论的总结,掌握这些知识可以帮助我们进行平面向量的运算、证明和推断。

为了更好地理解和应用平面向量,需要进行大量的练习和实践。

(完整版)平面向量知识点及方法总结总结

(完整版)平面向量知识点及方法总结总结

平面向量知识点小结及常用解题方法一、平面向量两个定理1。

平面向量的基本定理 2.共线向量定理.二、平面向量的数量积1.向量b 在向量a 上的投影:||cos b θ,它是一个实数,但不一定大于0.2。

a b ⋅的几何意义:数量积a b ⋅等于a 的模||a 与b 在a 上的投影的积。

三坐标运算:设11(,)a x y =,22(,)b x y =,则(1)向量的加减法运算:1212(,)a b x x y y +=++,1212(,)a b x x y y -=--。

(2)实数与向量的积:1111(,)(,)a x y x y λλλλ==。

(3)若11(,)A x y ,22(,)B x y ,则2121(,)AB x x y y =--,即一个向量的坐标等于表示这个向量的有向线段的终点坐标减去起点坐标。

(4)平面向量数量积:1212a b x x y y ⋅=+.(5)向量的模:222222||||a a x y a x y ==+⇔=+。

四、向量平行(共线)的充要条件221212//(0)()(||||)0a b a b b a b a b x y y x λ⇔=≠⇔⋅=⇔-=.五、向量垂直的充要条件12120||||0a b a b a b a b x x y y ⊥⇔⋅=⇔+=-⇔+=。

六.121211222221(,),(,)cos ,.x x y y a x y b x y a b x y x +===+七、向量中一些常用的结论1.三角形重心公式在ABC △中,若11(,)A x y ,22(,)B x y ,33(,)C x y ,则重心坐标为123123(,)33x x x y y y G ++++。

2.三角形“三心"的向量表示(1)0GA GB GC G ++=⇔为△ABC 的重心。

(2)PA PB PB PC PC PA P ⋅=⋅=⋅⇔为△ABC 的垂心.(3)||||||0AB PC BC PA CA PB P ++=⇔为△ABC 的内心;3. 向量,,PA PB PC 中三终点,,A B C 共线⇔存在实数,αβ,使得PA PB PC αβ=+且1αβ+=.4. 在ABC △中若D 为BC 边中点则1()2AD AB AC =+5.与AB 共线的单位向量是||AB AB ±七.向量问题中常用的方法(一)基本结论的应用1。

高中数学平面向量知识点归纳总结

高中数学平面向量知识点归纳总结

高中数学平面向量知识点归纳总结
1. 平面向量的定义
平面向量是具有大小和方向的有序数对,可以用箭头表示。


用字母表示向量,如a、b等。

向量的大小可以用模表示,记作|a|。

2. 平面向量的运算
2.1 向量的加法
向量的加法是指将两个向量按照相同的方向连接起来,得到一
个新的向量。

加法满足交换律和结合律。

2.2 向量的减法
向量的减法是指将两个向量相加的相反向量相加,得到一个新
的向量。

2.3 向量的数量积
向量的数量积(点积)是指两个向量相乘后的数量,用点表示,记作a · b。

数量积满足交换律和分配律。

2.4 向量的向量积
向量的向量积(叉积)是指两个向量相乘后的向量,用叉表示,记作a × b。

3. 平面向量的性质
3.1 平行向量
如果两个向量的方向相同或相反,则它们是平行向量。

平行向
量的数量积等于两个向量的模的乘积。

3.2 垂直向量
如果两个向量的数量积为0,则它们是垂直向量。

垂直向量的
点积为0。

3.3 向量的模
向量的模表示向量的大小,可以使用勾股定理求解。

4. 平面向量的应用
平面向量在几何中有广泛的应用,可以用来表示平移、旋转和
线段的位置关系等。

在物理学中,平面向量可以用来表示力的大小
和方向。

以上是关于高中数学平面向量的基本知识点归纳总结。

希望能够对你的学习和理解有所帮助!。

平面向量复习基本知识点及经典结论总结

平面向量复习基本知识点及经典结论总结

平面向量复习基本知识点及经典结论总结平面向量是数学中常见的概念,它是一种具有大小和方向的量。

本文将对平面向量的基本知识点及经典结论进行总结,以帮助读者复习和理解。

一、基本知识点1.定义:平面向量是具有大小和方向的量,可用有向线段来表示。

通常用字母a、b、c等表示向量,用小写字母表示有向线段的长度,用大写字母表示向量的大小。

2.向量的表示方法:在平面直角坐标系中,可以用坐标表示一个向量。

设平面向量a的起点为原点O(0,0),终点为点A(x,y),则向量a的表示为a=(x,y)。

3.向量的加法:设有两个向量a=(x1,y1)和b=(x2,y2),则向量a+b可以表示为(a,b)=(x1+x2,y1+y2)。

4.向量的数量积:设有两个向量a=(x1,y1)和b=(x2,y2),则向量a和b的数量积为a·b=x1×x2+y1×y25.向量的模长:向量a的模长表示为,a,可通过勾股定理求得,即,a,=√(x^2+y^2)。

二、经典结论1.平面向量共线:如果有两个向量a和b,且b与a同方向或反方向,那么向量a和b共线;如果b与a不同方向,那么向量a和b不共线。

2. 平面向量定比分点:如果有两个向量a = (x1,y1)和b = (x2,y2),且存在一个实数k,使得x2 = kx1,y2 = ky1,则向量a和b的终点共线,并且b在a的延长线上(如k>1)或b在a的连线上(如0<k<1)。

3.向量共线定理:如果有三个向量a,b,c,且c=λa+μb,则向量c与向量a和b共线。

4.平面向量的线性运算:设有三个向量a,b,c,和两个实数λ、μ,那么有以下性质成立:(1)a+b=b+a(交换律)(2)(a+b)+c=a+(b+c)(结合律)(3)λ(μa)=(λμ)a=μ(λa)=λ(μa)(乘法结合律)(4)λ(a+b)=λa+λb(分配律)(5)(λ+μ)a=λa+μa(分配律)5.向量共线的判定方法:(1)数量积:如果两个向量a和b的数量积a·b=0,则向量a和b垂直;如果a·b>0,则向量a和b夹角小于90°;如果a·b<0,则向量a和b夹角大于90°。

高中数学平面向量知识点总结

高中数学平面向量知识点总结

高中数学平面向量知识点总结一、平面向量的基本概念1. 定义:平面向量是有大小和方向的量,可以用有序实数对表示。

2. 表示法:通常用小写字母加箭头表示,如 $\vec{a}$。

3. 相等:两个向量大小相等且方向相同时,这两个向量相等。

4. 零向量:大小为零的向量,没有特定方向。

二、平面向量的运算1. 加法:- 规则:平行四边形法则或三角形法则。

- 交换律:$\vec{a} + \vec{b} = \vec{b} + \vec{a}$。

- 结合律:$(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$。

2. 减法:- 规则:与加法类似,但方向相反。

- 逆向量:$\vec{a} - \vec{a} = \vec{0}$。

3. 数乘:- 定义:向量与实数相乘。

- 规则:$k\vec{a} = \vec{a}$ 的长度变为 $|k|$ 倍,方向与$k$ 的符号一致。

- 分配律:$(k + l)\vec{a} = k\vec{a} + l\vec{a}$。

- 结合律:$k(\vec{a} + \vec{b}) = k\vec{a} + k\vec{b}$。

三、平面向量的坐标表示1. 坐标表示:$\vec{a} = (x, y)$,其中 $x$ 和 $y$ 是向量在坐标轴上的分量。

2. 几何意义:$x$ 分量表示向量在 $x$ 轴上的长度,$y$ 分量表示向量在 $y$ 轴上的长度。

3. 坐标运算:- 加法:$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$。

- 减法:$(x_1, y_1) - (x_2, y_2) = (x_1 - x_2, y_1 - y_2)$。

- 数乘:$k(x, y) = (kx, ky)$。

四、平面向量的模与单位向量1. 模(长度):- 定义:向量从原点到其终点的距离。

平面向量考试常用结论

平面向量考试常用结论

平面向量考试常用结论
平面向量是高中数学中比较重要的一章,也是考试中常出现的题型。

在考试中,我们不仅要熟练掌握平面向量的概念和基本运算,还需要掌握一些常用的结论,以应对各种题型的考查。

下面是一些平面向量考试常用结论,供大家参考。

1. 平面向量共线的充要条件:两个非零向量共线的充要条件是它们之间存在一个实数 k,使得一个向量等于另一个向量的 k 倍。

2. 平面向量垂直的判定方法:如果两个非零向量的点积为零,那么它们垂直。

3. 平面向量投影的公式:设向量 a 和 b 不共线,向量 a 在向量 b 上的投影为:
proj_b a = (a · b) / |b|^2 * b
其中,proj_b a 表示向量 a 在向量 b 上的投影,|b| 表示向量 b 的长度。

4. 平面向量模长的乘法公式:|a · b| = |a| * |b| * sinθ,其中θ表示向量 a 和向量 b 之间的夹角。

5. 平面向量三角形面积的公式:设三角形 ABC 的两个边向量分别为 a 和 b,那么三角形 ABC 的面积为:
S = 1/2 * |a × b|
其中,×表示向量的叉积。

6. 平面向量几何平均值的公式:设向量 a 和向量 b 不共线,那么它们的几何平均值为:
|a × b| = |a| * |b| * sinθ
7. 平面向量共面的判定方法:如果三个非零向量共面,那么它们的混合积为零。

以上是平面向量考试常用结论的一些例子,希望对大家应对平面向量考试有所帮助。

当然,掌握这些结论只是基础,还需要多做练习,才能在考试中灵活运用。

平面向量知识点归纳总结

平面向量知识点归纳总结

平面向量知识点归纳总结平面向量是数学中的一个重要概念,它在几何、物理、工程等领域中具有广泛的应用。

本文将对平面向量的定义、运算、性质和常见应用进行归纳总结。

一、平面向量的定义平面向量是具有大小和方向的量,用箭头表示。

一个平面向量由起点和终点确定,可以用有序对表示。

例如,向量AB表示从点A指向点B的有向线段,记作AB。

二、向量的表示方法1. 坐标表示:平面向量可以用坐标表示,一个平面上的向量可以表示为(a, b),其中a和b分别表示向量在x轴和y轴上的分量。

2. 线段表示:向量的起点和终点可以表示为两个点的坐标,向量本身可以表示为连接这两个点的线段。

三、向量的运算1. 加法运算:向量的加法运算满足平行四边形法则。

设有向量A和B,它们的和记作A + B,可以通过将A的终点与B的起点相连,得到一条新的有向线段,该线段的起点为A的起点,终点为B的终点。

新的线段即为向量A + B。

2. 数乘运算:向量的数乘运算满足分配律和结合律。

设有向量A和实数k,它们的数乘记作kA,向量kA的长度是向量A长度的k倍,方向与A相同(当k>0时)或相反(当k<0时)。

3. 减法运算:向量的减法可以通过将减数取负后与被减数进行加法运算得到。

即A - B = A + (-B)。

4. 零向量:零向量是长度为0的向量,记作0。

任何向量与零向量相加等于该向量本身。

四、向量的性质1. 平移不变性:向量在平面上进行平移操作时,大小和方向保持不变。

2. 相等性:两个向量相等,当且仅当它们的起点和终点重合。

3. 平行性:两个向量平行,当且仅当它们的方向相同或相反。

4. 共线性:三个或三个以上的向量共线,当且仅当它们在同一条直线上或平行于同一条直线。

5. 长度:向量的长度可以利用勾股定理计算得到,即向量AB的长度为√(x2 - x1)² + (y2 - y1)²。

6. 单位向量:长度为1的向量称为单位向量。

五、向量的应用1. 向量的分解:一个向量可以被分解成x轴和y轴上的两个分量。

平面向量知识点梳理

平面向量知识点梳理

平面向量知识点梳理第一篇:一、平面向量的基本概念及表示方法1. 平面向量的定义:平面向量是具有大小和方向的量,用箭头表示。

2. 平面向量的表示方法:平面向量通常用有向线段来表示,线段的长度表示向量的大小,箭头的方向表示向量的方向。

二、平面向量的运算法则1. 向量的加法:将两个向量的起点放在一起,然后将两个箭头相连,连接结果的箭头即为两个向量相加的结果。

2. 向量的减法:将两个向量的起点放在一起,然后将第二个向量取反,再按向量加法的法则进行运算。

3. 向量的数乘:将向量的长度与一个数相乘,结果的方向保持不变,只改变了大小。

三、平面向量的性质1. 平面向量的相等:两个向量的大小和方向完全相同,则它们是相等的。

2. 平面向量的负向量:具有相同大小但方向相反的向量称为原向量的负向量。

3. 平面向量的数量积:两个向量的数量积等于两个向量的模长的乘积与它们夹角的余弦值的乘积。

4. 平面向量的夹角:两个向量的夹角是一个锐角,它与它们的余弦值有关。

5. 平面向量的线性相关与线性无关:若存在不全为零的实数使得向量的线性组合等于零向量,则称这些向量线性相关;否则称这些向量线性无关。

四、平面向量的坐标表示1. 平面向量的坐标表示方法:平面向量可以用有序数对或者列向量来表示。

2. 平面向量的坐标运算:平面向量的加法、减法和数乘运算可以通过对应元素之间的运算来进行。

五、平面向量的标准表示1. 平面向量的标准表示方法:平面向量可以表示为单位向量与它的长度的乘积。

2. 平面向量的标准化:将向量除以它的模长,使其成为单位向量。

六、平面向量的数量积1. 平面向量的数量积的计算:将两个向量的对应坐标相乘,再将相乘结果相加。

2. 平面向量的数量积与夹角:两个向量的数量积等于它们的模长的乘积与它们的夹角的余弦值的乘积。

以上是平面向量的一些基本概念、运算法则、性质和表示方法的梳理。

通过学习平面向量,我们可以更好地理解和应用向量的概念,并在几何问题中进行计算和推导。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面向量复习基本知识点及经典结论总结1、向量有关概念:(1)向量的概念:既有大小又有方向的量,注意向量和数量的区别。

向量常用有向线段来表示,注意不能说向量就是有向线段,为什么?(向量可以平移)。

如已知A (1,2),B (4,2),则把向量AB按向量a =(-1,3)平移后得到的向量是_____(答:(3,0))(2)零向量:长度为0的向量叫零向量,记作:,注意零向量的方向是任意的;(3)单位向量:长度为一个单位长度的向量叫做单位向量(与AB共线的单位向量是||AB AB ± );(4)相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;(5)平行向量(也叫共线向量):方向相同或相反的非零向量、叫做平行向量,记作:∥,规定零向量和任何向量平行。

提醒:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有0 );④三点A B C 、、共线⇔ AB AC 、共线;(6)相反向量:长度相等方向相反的向量叫做相反向量。

的相反向量是-。

如下列命题:(1)若a b = ,则a b = 。

(2)两个向量相等的充要条件是它们的起点相同,终点相同。

(3)若AB DC =,则ABCD 是平行四边形。

(4)若ABCD 是平行四边形,则AB DC = 。

(5)若,a b b c == ,则a c =。

(6)若//,//a b b c ,则//a c。

其中正确的是_______(答:(4)(5))2、向量的表示方法:(1)几何表示法:用带箭头的有向线段表示,如AB ,注意起点在前,终点在后;(2)符号表示法:用一个小写的英文字母来表示,如,,等;(3)坐标表示法:在平面内建立直角坐标系,以与x 轴、y轴方向相同的两个单位向量i ,j 为基底,则平面内的任一向量a 可表示为(),a xi y j x y =+=,称(),x y 为向量a 的坐标,a =(),x y 叫做向量a 的坐标表示。

如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同。

3.平面向量的基本定理:如果e 1和e 2是同一平面内的两个不共线向量,那么对该平面内的任一向量a ,有且只有一对实数1λ、2λ,使a =1λe 1+2λe 2。

如(1)若(1,1),a b ==(1,1),(1,2)c -=- ,则c = ______(答:1322a b - );(2)下列向量组中,能作为平面内所有向量基底的是 A. 12(0,0),(1,2)e e ==- B. 12(1,2),(5,7)e e =-= C. 12(3,5),(6,10)e e == D. 1213(2,3),(,)24e e =-=- (答:B );(3)已知,AD BE 分别是ABC ∆的边,BC AC 上的中线,且,AD a BE b == ,则BC 可用向量,a b 表示为_____(答:2433a b +);(4)已知ABC ∆中,点D 在BC 边上,且−→−−→−=DB CD 2,−→−−→−−→−+=AC s AB r CD ,则s r +的值是___(答:0)4、实数与向量的积:实数λ与向量a 的积是一个向量,记作λa ,它的长度和方向规定如下:()()1,2a a λλ=当λ>0时,λa 的方向与a 的方向相同,当λ<0时,λa 的方向与a 的方向相反,当λ=0时,0a λ=,注意:λa≠0。

5、平面向量的数量积:(1)两个向量的夹角:对于非零向量,,作,OA a OB b ==,AOB θ∠=()0θπ≤≤称为向量,的夹角,当θ=0时,,同向,当θ=π时,,反向,当θ=2π时,,垂直。

(2)平面向量的数量积:如果两个非零向量a ,b ,它们的夹角为θ,我们把数量||||cos a b θ叫做a 与b 的数量积(或内积或点积),记作:∙,即∙=cos a b θ。

规定:零向量与任一向量的数量积是0,注意数量积是一个实数,不再是一个向量。

如(1)△ABC 中,3||=−→−AB ,4||=−→−AC ,5||=−→−BC ,则=⋅BC AB _________(答:-9);(2)已知11(1,),(0,),,22a b c a kb d a b ==-=+=- ,c 与d 的夹角为4π,则k 等于____(答:1);(3)已知2,5,3a b a b ===- ,则a b +等于____;(4)已知,a b 是两个非零向量,且a b a b ==- ,则与a a b+的夹角为____(答:30 )(3)b 在a 上的投影为||cos b θ,它是一个实数,但不一定大于0。

如已知3||=→a ,5||=→b ,且12=⋅→→b a ,则向量→a 在向量→b 上的投影为______(答:512)(4)∙的几何意义:数量积∙等于的模||a与在上的投影的积。

(5)向量数量积的性质:设两个非零向量,,其夹角为θ,则:①0a b a b ⊥⇔∙=;②当,同向时,∙=a b ,特别地,22,a a a a a =∙== ;当与反向时,∙=-a b ;当θ为锐角时,∙>0,且 a b 、不同向,0a b ⋅> 是θ为锐角的必要非充分条件;当θ为钝角时,∙<0,且 a b、不反向,0a b ⋅<是θ为钝角的必要非充分条件;③非零向量,夹角θ的计算公式:cos a ba bθ∙=;④||||||a b a b ∙≤ 。

如(1)已知)2,(λλ=→a ,)2,3(λ=→b ,如果→a 与→b 的夹角为锐角,则λ的取值范围是______(答:43λ<-或0λ>且13λ≠);(2)已知OFQ ∆的面积为S ,且1=⋅−→−−→−FQ OF ,若2321<<S ,则−→−−→−FQ OF ,夹角θ的取值范围是_________(答:(,)43ππ);(3)已知(c o s ,s i n ),(c o s ,s i na x xb y y ==a 与b之间有关系式,0ka b kb k +=-> 其中,①用k 表示a b ⋅ ;②求a b ⋅ 的最小值,并求此时a 与b 的夹角θ的大小(答:①21(0)4k a b k k +⋅=> ;②最小值为12,60θ= ) 6、向量的运算: (1)几何运算:①向量加法:利用“平行四边形法则”进行,但“平行四边形法则”只适用于不共线的向量,如此之外,向量加法还可利用“三角形法则”:设,AB a BC b == ,那么向量AC 叫做a 与b的和,即a b AB BC AC +=+= ;②向量的减法:用“三角形法则”:设,,AB a AC b a b AB AC CA ==-=-=那么,由减向量的终点指向被减向量的终点。

注意:此处减向量与被减向量的起点相同。

如(1)化简:①AB BC CD ++= ___;②AB AD DC --=____;③()()AB CD AC BD ---=_____(答:①AD ;②CB ;③0 );(2)若正方形A B C D 的边长为1,,,AB a BC b AC c === ,则||a b c ++=_____(答:);(3)若O 是ABC 所在平面内一点,且满足2OB OC OB OC OA -=+-,则ABC 的形状为____(答:直角三角形);(4)若D 为ABC ∆的边BC 的中点,ABC ∆所在平面内有一点P ,满足0PA BP CP ++= ,设||||AP PD λ=,则λ的值为___(答:2);(5)若点O 是ABC △的外心,且0OA OB CO ++= ,则ABC △的内角C 为____(答:120);(2)坐标运算:设1122(,),(,)a x y b x y ==,则:①向量的加减法运算:12(a b x x ±=±,12)y y ±。

如(1)已知点(2,3),(5,4)A B ,(7,10)C ,若()AP AB AC R λλ=+∈ ,则当λ=____时,点P 在第一、三象限的角平分线上(答:12);(2)已知1(2,3),(1,4),(sin ,cos )2A B AB x y = 且,,(,)22x y ππ∈-,则x y += (答:6π或2π-);(3)已知作用在点(1,1)A 的三个力123(3,4),(2,5),(3,1)F F F ==-= ,则合力123F F F F =++的终点坐标是 (答:(9,1))②实数与向量的积:()()1111,,a x y x y λλλλ==。

③若1122(,),(,)A x y B x y ,则()2121,AB x x y y =--,即一个向量的坐标等于表示这个向量的有向线段的终点坐标减去起点坐标。

如设(2,3),(1,5)A B -,且13AC AB = ,3AD AB =,则C 、D 的坐标分别是__________(答:11(1,),(7,9)3-); ④平面向量数量积:1212a b x x y y ∙=+。

如已知向量a =(sinx ,cosx ), b =(sinx ,sinx ), c =(-1,0)。

(1)若x =3π,求向量、的夹角;(2)若x ∈]4,83[ππ-,函数x f ⋅=λ)(的最大值为21,求λ的值(答:1(1)150;(2)2或1);⑤向量的模:2222||||a a a x y ===+ 。

如已知,a b 均为单位向量,它们的夹角为60,那么|3|a b + =_____;⑥两点间的距离:若()()1122,,,A x yB x y ,则||AB =如如图,在平面斜坐标系xOy 中,的:若12OP xe ye =+,其60xOy ∠=,平面上任一点P 关于斜坐标系的斜坐标是这样定义中12,e e分别为与x 轴、y 轴同方向的单位向量,则P 点斜坐标为(,)x y 。

(1)若点P 的斜坐标为(2,-2),求P 到O 的距离|PO |;(2)求以O 为圆心,1为半径的圆在斜坐标系xOy 中的方程。

(答:(1)2;(2)2210x y xy ++-=); 7、向量的运算律:(1)交换律:a b b a +=+ ,()()a a λμλμ=,a b b a ∙=∙ ;(2)结合律:()(),a b c a b c a b c a b c ++=++--=-+ ,()()()a b a b a b λλλ∙=∙=∙;(3)分配律:()(),a a a a b a b λμλμλλλ+=++=+ ,()a b c a c b c +∙=∙+∙。

相关文档
最新文档