单色仪的定标和光谱测量
单色仪的定标实验报告

单色仪的定标实验报告单色仪的定标实验报告引言:单色仪是一种常用的光学仪器,用于分离出光束中的不同波长的光线。
在实际应用中,单色仪的准确性和精度对于研究光学现象和进行光谱分析非常重要。
本实验旨在通过定标实验,确定单色仪的波长刻度,从而提高其测量的精度和可靠性。
实验装置和原理:本次实验使用的单色仪是基于光栅原理的,其主要组成部分包括光源、光栅、光电二极管和波长选择装置。
光源发出的光经过光栅的衍射作用,被分离成不同波长的光线,然后通过波长选择装置选择特定波长的光线,最后被光电二极管接收并转化为电信号。
实验步骤:1. 准备工作:将单色仪放置在稳定的平台上,确保其与其他光学仪器保持一定的距离,以避免干扰。
打开电源,对单色仪进行预热。
2. 调整光源:根据实验要求选择合适的光源,如汞灯或氢氖激光器。
调整光源的位置和亮度,使其发出稳定的光束。
3. 调整光栅:将光栅安装在单色仪上,并调整其倾斜角度,使得光束通过光栅时能够发生衍射。
同时,调整光栅的位置,使得衍射的光线能够尽可能平行地通过波长选择装置。
4. 定标实验:选择一个已知波长的光源,如氢氖激光器,将其光线通过单色仪,并调整波长选择装置,使得光电二极管接收到该波长的光线。
记录下此时波长选择装置的位置,并标记为该波长的波长刻度。
5. 重复步骤4,使用不同波长的光源进行实验,记录下不同波长对应的波长刻度。
6. 分析数据:根据实验结果,绘制出波长与波长刻度的关系曲线。
可以使用线性回归等方法,拟合出波长刻度的数学表达式。
实验结果与讨论:根据实验数据,我们得到了波长与波长刻度的关系曲线。
通过拟合曲线,我们可以得到单色仪的波长刻度的数学表达式。
在实际应用中,我们可以根据该表达式,通过读取波长刻度,确定光线的波长,从而进行精确的光谱分析。
然而,需要注意的是,单色仪在实际使用中可能存在一定的误差。
这些误差可能来自于光源的不稳定性、光栅的制造误差、波长选择装置的精度等因素。
因此,在进行实际测量时,我们需要对单色仪进行定期的校准和维护,以确保其测量结果的准确性和可靠性。
单色仪的定标和光谱测量

方案 高速,USB2.0接口,即插即用接口,无需PCI卡,16-bit动态
域,2MHz读出速度,无需PCI卡 单层光输入窗口玻璃,最小的光损耗 特制CCD芯片及UV镀膜,具有高灵敏度及分辨率 双放大器结构和独立的增益设定。无可比拟的多功能性 触发及快门控制,先进(xiānjìn)的操作尽在您的掌握
m=1, N=64mm1200/mm=76800
精品资料
闪耀(shǎnyào)光栅的原理
n为刻槽面法线方向
为光线的入射角
N为光栅面法线方向
为光线的衍射角
N
b 光栅的闪耀角
n -b
角度的符号规定(顺 时针为正)
-
b
精品资料
入射角与闪耀波长(bōcháng)的关
系
n ,m , .
光强曲线(qūxiàn)
精品资料
单色仪狭缝(xiá fénɡ)宽度的讨论
1、设照明狭缝的光是完全非相干的(即每一点为独立的点光源)。 2、设狭缝为无限细,由衍射(yǎnshè)理论可知谱线的半宽度为: 3、当狭缝a逐渐变宽时的变化如下图所示:
f = 500 mm
w0
w
.
f
D
f
an D
a/an
精品资料
(jǔxíng)
单色仪的分光(fēn ɡuānɡ)系统—光 栅
矩 形
光 栅
凹 面 平 场 光 栅
精品资料
入射光垂直(chuízhí)矩形光栅时衍射光强的分布公式:
II0(si n)2(sN in siN n)2
单缝衍射因子(yīnzǐ) 干涉 因子(yīnzǐ)
单色仪的定标实验中汞光谱两条谱线的补充标定

单色仪的定标实验中汞光谱两条谱线的补充标定翟林华 征 洋 姚关心 金 伟 张洪涛 方 涛(安徽师范大学物理与信息工程学院安徽芜湖241000) 摘 要:讨论了普通物理光学实验有关教材中单色仪定标实验中定标所依据的汞光谱谱线标定问题,通过实验确定了实验可以明显观察到而未能标定的谱线,对原有教材有关内容给出了必要的补充.关键词:单色仪定标;汞光谱;谱线标定Two spectral lines supplemented to the Hg spectrum inthe monochromator scaling experimentZHAI Lin-hua ZHENG Yang YAO Guan-x in JIN WeiZHANG Hong-tao FANG T ao(Department of Physics and Info rmation,Anhui Normal University,Wuhu,Anhui,241000) Abstract:It is sug gested that tw o easily observable spectr al lines should be supplem ented to the Hg spectrum attached to the monochr omator scaling exper im ent in the lecture book,and their w avelengths have been sug gested based on the measurement and co nsulting the comprehensive Hg spectrumKey words:mo no chromator scaling;H g spectr um;spectral line scaling1 引 言光学实验中的单色仪定标实验是通过学生观察单色仪所给出的能够清晰观察到的汞光谱可见光的若干条较强的标定谱线对单色仪定标的.教材〔1〕列表给出了相关的汞光谱标定谱线以提供实验依据.这些谱线涵盖了汞光谱从紫光到红光的可见光部分,如表1所示.实际上通过单色仪除了可以观察到上述谱线以外,还可以明显观察到其它若干条谱线,除了其中强度较弱的以外,尚有与上述谱线强度相当的,处于重要光谱位置的其它谱线.具体说来,在教材标定的蓝绿色和绿色之间可以观察到波长约在500nm的两条谱线,谱线强度和已标定谱线的强度标准相比,强度应为弱谱线,但强于标定谱线中最弱的谱线,通过单色仪仍然可以明显观察到.由于这两条未标定谱线的存在,而且处于光谱显著的位置上,因而较为准确地标定这两条谱线对于这一实验是十分必要的.2 谱线的测定为了测定汞光谱中上述谱线的波长位置,实验中采用单色仪定标,实验所使用的高压汞灯为待定光源,以铁的发射光谱为标准,采用W-P1型1m光栅摄谱仪和1200痕/mm的透射光栅对中心位置在510nm的铁和汞一级光谱用全色胶片摄谱.摄谱采用的狭缝宽度铁光谱为10 m,汞光谱为20 m.仪器的光谱分辨率为0.8nm/mm.经过调整曝光条件,摄得蓝表1 汞灯主要光谱线波长表颜色波长/nm强度紫色404.66407.78410.81433.92434.75435.84强中弱弱中强蓝绿色491.60496.03(502.65)(504.58)强中弱弱绿色535.41536.51546.07567.59弱弱强弱黄色576.96579.07585.92589.02强强弱弱橙色607.26612.33弱弱红色623.44中深红色671.62690.72708.19中中弱绿光部分谱线如图1所示.图1 汞灯蓝绿光部分谱线照片上方为铁光谱,下方为汞光谱.通过和铁光谱的对比,可以看出,汞光谱较强的一对谱线中的左方第一条谱线波长为491.60nm,第二条波长为496.03nm ,均为表1中已标定谱线.它们左边较弱的两条谱线应为需要补充录入表1的有待确定波长的谱线.事实上这一点可以通过对比照片上的谱线间距和表1看出.待定谱线的波长可以通过对比标准铁光谱的已知谱线波长,采用内插法〔2〕较为准确的确定.图1照片上汞光谱左起第二条谱线在铁光谱波长为5027.3nm 和5022.3nm 的两条谱线之间;左起第一条谱线在波长为5049.9nm 和5041.8nm 的两条谱线之间.通过在阿贝比长仪上分别测定各谱线的相对位置,采用内插法,计算求得两条谱线波长值分别为502.62nm 和504.70nm,考虑到仪器精度和测量中谱线可能的定位误差,通过对比,发现从“光谱线波长表”〔3〕中查得标定的汞光谱谱线波长和教材〔1〕表1中数据基本一致(例外的是“光谱线波长表”〔3〕中没有标出496.03nm 的谱线),因而采用表〔3〕中谱线分别为502.65nm 和504.58nm 的相应波长数据作为参考数值可能更为合理(见表1中括号内数值).3 结 论普通物理单色仪定标实验教材所列出的作为定标依据的汞光谱表中,未能完全列出可以参照对单色仪定标的强度较大的谱线.建议在谱线波长表中补充列入波长分别为502.65nm 和504.58nm 的位于蓝绿色区域的两条谱线,以使教材更加完善.4 参考文献1 杨述武主编.普通物理实验(光学部分).北京:高等教育出版社,1993.98~1042 吴讠永华等.近代物理实验.合肥:安徽教育出版社,1987.73 冶金工业部科技情报产品标准研究所编译.光谱线波长表.北京:中国工业出版社,1971.679(2001-05-30收稿)。
(普通物理实验)单色仪的定标

2 什么叫三棱镜色散的最小偏向角?单色光实现最小偏向角 的条件是什么?
答:如图,一束平行单色光经棱镜折射,入射光和出射光之 间的夹角称为偏向角,当入射角等于出射角时(条件),偏 向角有最小值,称为最小偏向角。
2.渥氏棱镜色散系统。由玻璃棱镜P和平 面镜M联合组装成一整体,安装在同一转台 上,可以绕通过O点垂直于图面的轴线转动 。该系统的特点是平行光束通过后,以最 小偏向角出射的单色光仍平行于原入射光 .
3.出射聚光系统。由凹面镜M2和出射缝S2 组成,它将色散后沿不同方向传播的单色 平行光经M2反射后,会聚在M 2的焦面,即 出射缝S2的平面上,因S2缝宽较小,从S2输 出的是波段很窄的光,通常称为单色光.
找到谱线后缓慢地转动鼓轮从数字小往大转直到各谱线中心依次对准显微镜的叉丝时分别记下鼓轮读数l与其所对应的波图1 S1:入射缝 S2:出射狭缝 M1:准直凹面反射镜 M:平面反射镜 M2:聚焦凹面反射镜
1.入射准直系统。由入射缝S1和凹面镜Ml 组成,因S1固定在M1的焦面上,它使S1发出 的入射光束成为平行光束.
L
0
λ
➢注意:转动鼓轮时必须向同一个方向转。
思考题
1 三棱镜的分光原理是什么?单色仪为什么要用平行光通过 三棱镜?它是如何实现分光的?
答:三棱镜的分光原理不同波长的光的折射角不同,使不同 波长的光出射方向不同。
因平行光入射三棱镜时,各点光的入射角相同,使同一波长 的出射角就相同。
利用三棱镜的色散,使不同波长的光线从不同方向射出成为 单色光。
数据测量及定标曲线绘制---
1. 调节透镜,光源的高低及水平位置,使光线垂直照射到狭缝上, 并使入射光尽量的强。 2。初步设置入射狭缝的宽度。(不能闭合,也不能过宽) 3。将出射狭缝放宽,旋转鼓轮,先用眼睛直接寻找出射光, 4。看到出射光后再用显微镜观察,注意显微镜聚焦。根据双黄线调 节入射狭缝的宽度,使双黄线能清晰的分开。 5。以双黄线和绿线为基准,向两测寻找并辩别谱线(根据谱线的颜 色、波长差及强度)。 6.找到谱线后,缓慢地转动鼓轮(从数字小往大转),直到各谱线 中心依次对准显微镜的叉丝时,分别记下鼓轮读数(L)与其所对应的 波长(λ),测量几次(转动方向相同),取其平均值。 7.以光谱线波长(λ)为横坐标,以鼓轮读数(L)为纵坐标画曲线即 得单色仪的定标曲线. 8。根据定标线测未知谱线波长。
单色仪的定标

单色仪定标曲线的标定是借助于已知线光谱源进行,为了获得较多的点,必须要有一组光源,通常采用汞灯、氢灯、钠灯、氖灯以及用铜、铁、锌做电极的弧光光源等。
3.将低倍显微镜置于出射狭缝处,对出射狭缝 的刀口调焦,使显微镜视场中观察到的谱线最清晰。为使谱线尽量细锐并有足够的亮度,应使入射缝 尽可能小,出射缝 可适当大些,根据可见光区汞灯主要谱线波长、颜色、相对强度和谱线间距辨认谱线。
4.使显微镜的十字叉丝先对准出射狭缝的中心位置,缓慢地转动鼓轮,直到谱线中心依次对准叉丝时,分别记录鼓轮读数( )和与其对应的谱线波长( ),重复测量三次,取其平均值。
弱
612.33
弱
红色
623.44
中
深红色
671.62
中
690.72
中
实验注意事项
狭缝是单色仪的精密元件,要特别小心使用,旋转测微螺旋调整缝宽时,动作要慢,切勿使狭缝的二刀口相碰,即不允许使测微螺旋读数为小于零。
思考题
1.如果发现单色仪定标曲线上相对于已知波长 的鼓轮读数 偏离了 ,能否将原定标曲线平移 后继续使用,为什么?
色散棱镜 与平面反射镜 的组合,称为瓦兹渥斯色散系统(Wadsworth)。如图5.7-2所示,棱镜 和平面反射镜 安装在同一转台上一齐转动,转动的轴就是棱镜顶角等分面与底边的交线(通过 ,垂直于图面)。一般地, 上的入射光和经棱镜折射后的单色平行光之ቤተ መጻሕፍቲ ባይዱ的夹角 为定值,且有关系式
在瓦兹渥斯色散装置中,由于 的反射面与棱镜顶角等分线相垂直,即 ,所以 ,因此满足最小偏向角的光线通过这种色散装置之后仍平行于原来的入射线,相互之间仅发生一定的平移。这样转动转台,当 角增大时波长短的单色光可以射出;当 角减小时波长长的单色光可以射出。棱镜转动的位置有鼓轮刻度标志,因每一鼓轮刻度都和一定的单色光的波长相对应,因而只要有了单色仪的定标曲线——鼓轮刻度与光谱波长之间的对应曲线(又称色散曲线)就可以从鼓轮读数确定出射光的波长。
单色仪测波长中的不确定度分析

田
看 到在作 图横 坐标 的不 确定 度 大 于 0 0 相对 应 的波 长 .5,
的波长。图3 a 已知波长 A A () 和它们的位置读数 , R 及 待 测 波 长 的 位 置 R , 可用 外 插 人 法 求 波 长 A , 则 如
( ) 。 图 3 b 已知 波 长 h A 1式 () 和它们 位 置 R a 及待测 波 长 的位置 尺 可用 内插人 法求 波长 A 如 ( ) 。 2式 R
一
不确定度就会超过 5 0埃 , 纵坐标上超过 1 0埃。因此总 的不 确定 度会 大 于 5 0埃 。其 次从 测 量 结 果 看 待 测 谱 线 与 已知谱 线相邻 越 近测 量越 接近 真值 。
表 1为高压 汞灯各 个波 长通 过单 色仪 后 波长 和鼓 轮 位置 的关 系 。从表 中位置读 数 可知 由于 单色 仪鼓 轮存 在 螺距 差 , 复 测 量 同一 波 长 测 量 的 位 置 读 数 并 不 相 同。 重
同一波长的测量位置读数的螺距差大于 0 0 m .1 m。
表 l 高 压 汞 灯 个 波 长 和相 应 的位 置 读 数
位 置在 三棱 镜 的底边 的中点上 , 转动 过程 中 , 面镜 与 在 平 三棱镜 的相对 位置保 持 不 变 , 它们 一 起 绕轴 O转 动 。这 种设计 可 以保 证在 转 动色 散 系 统 时 , 有 以最 小 偏 向 角 只
图 2 单 色仪 色散 曲线 ( 标 曲线 ) 定
通过 棱镜 的那 种 波 长 的 光 才 能从 夹 缝 标 S 出 。标 定 射
法 求 出待 测 谱线 的波 长 。那么 用这两 种方 法来 测谱线 的 波 长 , 自有哪些 测 量特 点和不 确定 因 素呢? 各
大学物理实验---单色仪的定标和光谱测量

G
M2 M1
S2 PMT
S1:入射狭缝 G:闪耀光栅 S2:出射狭缝 M2:反光镜 M1:离轴抛物镜 PMT:光电倍增管
如下图所视,当入射光与光栅面的法线N 的方向的夹角为φ(见图) 时,光栅的闪耀角为θ 。 取一级衍射项时,对于入射角为φ,而衍射角 为θ时,光栅方程式为: d(sinφ+sinθ)= λ
������2 =
|497.812−497.78| 497.78 498.2
2、498.250 =0.006% =0.01%
|498.250−498.2|
2、
低压汞灯光谱测量
页 5
BY 王有识
实 验 报 告
Figure 5 低压汞灯 黄光 强
峰值数据:1、576.925 与标准值之间误差:������1 =
λf
D;
= a= W0 0.86 a = n
Hale Waihona Puke λfD 时最佳 (D 为光栅的宽度, f 为等效会聚透
镜的焦距) 3、
单色仪的理论分辨本领如何计算?实际分辨本领如何测量和 计算?
答:理论分辨本领 R 的 R = λ = mN 计算: dλ m=1, 为光栅的总线条数。 N
m 为干涉级次,
实际分辨本领的测量和计算,原理和操作如下:
页 11
BY 王有识
实 验 报 告
LED 灯能让很小的通过电流几乎全部转化成可见光。 LED 灯具有以下优点: 一、高光效 LED 光效达 50~200 流明/瓦,光谱窄,单色性好,
几乎所有发出的光都可利用,且无需过滤直接发出色光。 二、高节能 具有电压低、电流小、亮度高的特性。一个 10~
12 瓦的 LED 光源发出的光能与一个 35~150 瓦的白炽灯发出的光能 相当。同样照明效果 LED 比传统光源节能 80%~90%。 三、 光色多 可以选择白色或彩色光, 红色、 黄色、 蓝色、 绿色、
单色仪的定标和光谱测量

距 f=500 mm.光栅条数:1200 L/mm。狭缝宽度在 0-2 mm 连续可调, 示值精度 0.01 mm。光电倍增管的测量范围:200-800 nm;CCD 的测 量范围:300-900 nm。
四、实验内容
(1):光栅单色仪的定标 单色仪的定标指的是借助于波长已知的线光谱光源来对单色仪测量的波长 进行标定, 校正在使用过程中产生的波长位置误差,来保证测量的波长位置的准 确性。 定标用光源:氦氖激光器(632.8 nm) 低压钠灯(589.0 nm 和 589.6 nm) 要求设计和调整光路把光导入入射狭缝,测量时须找出合适的负高压值, 并利用采集程序设定合理的测量范围获取双光谱线(钠灯)完全分离开的光谱 曲线。并记录负高压值和保存光谱曲线。测量低压钠灯的光谱,钠原子光谱一般 可观察到四个线系:主线系、第一辅线系(又称漫线系) 、第二辅线系(又称锐 线系)和柏格曼线系(又称基线系) 。由同一谱线的波数差即可得到钠的里德伯 常数。( 该单色仪可测得谱线的精细结构,对精细结构处理后即可得到谱线波 数)。 在仪器调整较好的情况下我们可测得主线系的 589.0 nm 和 589.6 nm,
二、 实验原理(见预习报告) 三、实验仪器
光栅光谱仪(单色仪)是一个光谱分析研究的通用设备,其元件主要包括:光 栅及反射镜,准光镜和物镜,入射出射狭缝旋钮,信号接收设备( 光电倍增管 /CCD), 计算机及软件系统, 图 7 给出了典型光栅单色仪的结构图。 光栅光谱仪(单 色仪)可以研究诸如氢氘光谱,钠光谱等元素光谱(使用元素灯作为光源) ,也可 以作为更为复杂的光谱仪器的后端分析设备,比如激光喇曼/荧光光谱仪。光栅 由计算机软件控制步进电机驱动,可以获得较高的精度。
2
3
p
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光栅单色仪的定标和光谱测量一、实验目的(1):了解光栅单色仪的结构以及工作原理并熟练掌握其使用方法;(2):掌握调节光路准直的基本方法和技巧,利用钠灯等标准光源对单色仪进行定标;(3):测量红宝石、稀土化合物的吸收和发射光谱,加深对物质发光光谱特性的了解。
(4):测量滤波片和溶液的吸收曲线,掌握测量其吸收曲线或透射曲线的原理和方法。
二、实验原理(见预习报告)三、实验仪器光栅光谱仪(单色仪)是一个光谱分析研究的通用设备,其元件主要包括:光栅及反射镜,准光镜和物镜,入射出射狭缝旋钮,信号接收设备(光电倍增管/CCD),计算机及软件系统,图7给出了典型光栅单色仪的结构图。
光栅光谱仪(单色仪)可以研究诸如氢氘光谱,钠光谱等元素光谱(使用元素灯作为光源),也可以作为更为复杂的光谱仪器的后端分析设备,比如激光喇曼/荧光光谱仪。
光栅由计算机软件控制步进电机驱动,可以获得较高的精度。
从图7可知,光源或照明系统发出的光束均匀地照亮在入射狭缝S1上,S1位于离轴抛物镜的焦平面上,光通过M1变成平行光照射到光栅上,再经过光栅衍射返回到M1,经过M2会聚到出射狭缝S2,由于光栅的分光作用,从S2出射的光为单色光。
当光栅转动时,从S2出射的光由短波到长波依次出现。
如果S2出射狭缝位置连接信号接收设备(光电倍增管/CCD ,),则可对出射光谱进行数据采集分析(部分内容请参考《大学物理实验》第二册中的“单色仪的使用和调整” )。
本实验使用的仪器:WDS-8型组合式多功能光栅光谱仪,焦距f=500 mm.光栅条数:1200 L/mm 。
狭缝宽度在0-2 mm 连续可调,示值精度0.01 mm 。
光电倍增管的测量范围:200-800 nm ;CCD 的测量范围:300-900 nm 。
图7 光栅单色仪的结构和原理四、实验内容(1):光栅单色仪的定标单色仪的定标指的是借助于波长已知的线光谱光源来对单色仪测量的波长进行标定,校正在使用过程中产生的波长位置误差,来保证测量的波长位置的准确性。
定标用光源:氦氖激光器(632.8 nm)低压钠灯(589.0 nm和589.6 nm)要求设计和调整光路把光导入入射狭缝,测量时须找出合适的负高压值,并利用采集程序设定合理的测量范围获取双光谱线(钠灯)完全分离开的光谱曲线。
并记录负高压值和保存光谱曲线。
测量低压钠灯的光谱,钠原子光谱一般可观察到四个线系:主线系、第一辅线系(又称漫线系)、第二辅线系(又称锐线系)和柏格曼线系(又称基线系)。
由同一谱线的波数差即可得到钠的里德伯常数。
(该单色仪可测得谱线的精细结构,对精细结构处理后即可得到谱线波数)。
在仪器调整较好的情况下我们可测得主线系的589.0 nm和589.6 nm,锐线系的616.0 nm和615.4 nm以及漫线系的两对谱线568.3 nm和568.86 nm,497.78 nm和498.2 nm。
在实验报告处理时可由原子物理的知识可以计算求出钠的里德伯常数R。
(2):高压汞灯光谱测量光源:高压汞灯要求设计和调整光路采用透镜聚焦法把光导入入射狭缝,测量时须找出合适的负高压值,并利用采集程序设定合理的测量范围获取高压汞灯的各个分立峰的的光谱曲线。
并记录负高压值和保存光谱曲线。
(3):红宝石晶体的发射和吸收光谱的测量光源:氦氖激光器(632.8 nm),半导体激光器(650 nm),高压汞灯,溴钨灯(360-2500 nm),532 nm激光器红宝石是掺有少量Cr的Al203单晶,Cr的外层电子组态为3d54S1,掺入Al203晶格后,失去外层三个电子,变成三价的C r3+离子,红宝石晶体的光谱就是C r3+离子在3d壳上三个电子发生能级跃迁的反映,人们根据红宝石晶体的吸收光谱和晶体场理论推知C r3+离子参与激光作用的能级结构图如图2-1所示,图中4A2是基态,2E能级(14400 cm-1)是亚稳态,寿命比较长,约为3ms,4F1(25000 cm-1)和4F2(17000 cm-1)是两个吸收带,红宝石晶体的激光作用在2E和4A2能级之间产生,输出的波长是694.3nm,由于2E能级的电场分裂,在2E和4A2能级之间跃迁对应两条强荧光线R1和R2,R1线的波长是694.3 nm,R2线的波长是692.8 nm,由于高能级粒子数少于低能级,所以激光输出总是R1线。
红宝石晶体对不同波长的入射光吸收不同,吸收系数随入射光波长而变化的关系就是吸收光谱特性。
Cr3+所吸收中心波长为410.0 nm的兰紫光而跃迁到强吸收带4F1态,也能吸收波长为550.0 nm的黄绿光而跃迁到另一强吸收带4F2态,这两个吸收带的带宽都在100.0 nm左右,与氙灯或汞弧灯的光谱匹配较好。
要求自己设计和调整光路,并选取合理的负高压值,测量出红宝石的发射光谱和吸收光谱。
实验报告中要求分析红宝石晶体的发光原理以及应用。
(4):滤光片的吸收曲线测量光源:溴钨灯(360-2500 nm)要求设计和调整光路,并在光路中插入滤光片,选取合适的负高压值,测量其吸收曲线。
实验报告中要求分析滤光片的性能和吸光特性。
(5):罗丹明6G溶液的发射和吸收光谱测量光源:溴钨灯(360-2500 nm)532 nm激光器实验使用的激光染料晶体罗丹明6G的水溶液和乙醇溶液(5x10-3M),采用比色皿作为样品池。
要求设计和调整光路,并在光路中插入样品池,选取合适的负高压值,测量其吸收曲线。
实验报告中要求分析滤光片的性能和吸光特性。
(6):LED灯的光谱测量光源:LED灯要求设计和调整光路,采用透镜聚焦方法,选取合适的负高压值,测量其光谱曲线。
实验报告中要求分析LED灯的发光的工作原理和应用。
五、实验数据1)光栅单色仪的定标及里德伯常数的计算实验测得Na有三个谱线系,其波长、半峰宽度和分辨本领分别为● 主线系589.000 nm/589.612 nm ,半峰宽度分别为:0.233nm ,0.225nm 分辨本领λλ∆为2528,2620 ● 锐线系616.138 nm/615.475 nm ,半峰宽度分别为:0.246nm ,0.246nm 分辨本领λλ∆为 2505,2502 ● 漫线系568.287 nm/568.838 nm 半峰宽度分别为:0.258nm ,0.233nm 分辨本领λλ∆为2203,2441 498.000 nm/498.425 nm 半峰宽度分别为:0.288nm ,0.255nm 分辨本领λλ∆为1729,1955 根据对应公式计算里德伯常数(波长取平均值): ● 主线系()()22133s p R R λ=--∆-∆()()-17122111 1.141033s p R m λ-⎛⎫ ⎪=⋅-=⨯ ⎪-∆-∆⎝⎭ ● 锐线系()()22153s p RR λ=--∆-∆()()-17122111 1.131053s p R m λ-⎛⎫ ⎪=⋅-=⨯ ⎪-∆-∆⎝⎭ ● 漫线系()()2213d p RR n λ=--∆-∆,n=4,5()()-171122111 1.131043d p R m λ-⎛⎫ ⎪=⋅-=⨯ ⎪-∆-∆⎝⎭ ()()71222111 1.131053d p R m λ-⎛⎫ ⎪=⋅-=⨯ ⎪-∆-∆⎝⎭其中 1.35s ∆=,0.86p ∆=,0.01d ∆=理论值十分稳定,但与实际的711.096775810R m -=⨯仍有一定差距,故推理应该是公式的误差造成的。
2) 滤光片的吸收曲线测量上图是钨光灯的光谱图光路中加上蓝色滤光片后的光谱图为:可以看出在约530nm-690nm 之间的吸收率很大,几乎被完全吸收说明蓝色滤光片对不同波长的光的吸收系数是不同的。
其吸收曲线为:波长小于530nm时,光的能量过大,吸收效果几乎没有。
在波长位于530nm到690nm之间时,光的能量正好使滤光片中原子的电子发生跃迁,而且能量都足以激发基态原子,所以吸收系数很大。
到了大于690nm之后,光子能量不大,但是只能被非基态的原子吸收,所以虽有吸收,但吸收系数很小。
3)红宝石晶体的发射和吸收光谱的测量红宝石晶体的光谱就是C r 3+离子在3d 壳上三个电子发生能级跃迁的反映,图中两个波长的产生是由于发生了能级的分裂。
六、思考题1.如何求出入射狭缝的最佳宽度?答:缝宽增大时光的相干性降低,同时光强增大;反之,相干性提高则光强会减弱。
故狭缝则宽度要同时考虑到相干性要好,同时光强要足够大。
2.单色仪的理论分辨本领如何计算?怎样测量单色仪的实际分辨本领? 答:理论分辨本领为N m λλ=⋅∆,实际分辨本领可以通过单色仪对一定波长差的光的分辨进行测量。
将一束具有波长差的光束射入单色仪,并进行光谱扫描,对其图像进行观察。
如果仍然可以分辨出两束具有不同波长的光的波峰波谷,则分辨率将大于此。
不断换上波长差较小的光束,知道从图像中观察不到波峰波谷为止,此时有δλλ=∆,即为最小分辨波长差。
或者通过测量一定固定波长λ的光,测量其半峰宽度λ∆,利用公式λλ∆求得分辨本领3.比较单色仪的理论分辨本领和实际分辨本领,说明两者差别大的原因。
答:实验发现,实际分辨本领远远小于理论分辨本领1,狭缝宽度会影响光的空间相干性(横向),而理论分辨本领只考虑了时间相干性(纵向),所以理论分辨本领将会比实际大一些。
2,由光电倍增管放大的不均匀性,可能会形成误差。
3,光栅的刻度的准确性。
4,我们在计算理论但分辨能力假设的是标准的单色光光源,而这是理想情况,故也有光源本身的单色性问题。
4. 解释光电倍增管的工作原理,为什么随着副高压的绝对值越大,采集的灵敏度会显著提高?答:负高压增大时,对信号的放大也就大,因此采集灵敏度会提高5. 说明溴钨灯、钠灯和汞灯的光谱的区别和道理?答:三种灯的发光机理都大致相同,都是通过原子的激发,但是由于原子的结构不同,其各个能级的能量也就不同,发出的光的波长也就会不同。
七、实验思考与小结1.测量光谱时发现,原本应该是一条谱线的地方都变成了很接近的两条谱线,查阅相关资料发现,由于这些原子的结构已没有氢原子那么简单,会发生能级分裂,即塞曼效应。
原理是原子磁矩和外加磁场作用的结果。
计算中取了两者的平均值;2.实验中测量光谱时,图像经常会发生一些剧烈的抖动,这是干扰的结果,因此实验中需要关灯,并且尽量不去干扰光源发出的光,或是挡住一些外来的光,毕竟任何发射或是折射被接受的光都是干扰;3.实验中的光电倍增管的负高压不可调至过大,否则容易烧坏仪器;4.使用单色仪之前都需要复位与定标;5.对于钠光源和钨光源,需要仔细调整光路是射入狭缝的光强尽可能大,否则Na光的锐线系和漫线系比较难发现和测量;6.同时光源不可距离接收端太近,虽然或许能在一定程度上增大光强,但由于光源表面的形状和发光机制,光源的相干性就会降低。