立体几何复习课

合集下载

2020秋新人教版高中数学必修二第八章立体几何初步复习课题型课知识框架思维导图

2020秋新人教版高中数学必修二第八章立体几何初步复习课题型课知识框架思维导图

第八章立体几何初步复习课要点训练一空间几何体的结构特征1.紧扣结构特征是判断的关键,熟悉空间几何体的结构特征,依据条件构建几何模型,在条件不变的情况下,变换模型中的线面关系或增加线、面等基本元素,然后再依据题意判定.2.通过举反例对结构特征进行辨析,即要说明一个命题是错误的,只要举出一个反例即可.1.设有四个命题:①底面是矩形的平行六面体是长方体;②棱长都相等的直四棱柱是正方体;③侧棱垂直于底面两条边的平行六面体是直平行六面体;④对角线相等的平行六面体是直平行六面体.其中真命题的个数是()A.1B.2C.3D.4解析:底面是矩形的直平行六面体是长方体,①错误;棱长都相等的直四棱柱是正方体,②正确;侧棱垂直于底面两条相邻边的平行六面体是直平行六面体,③错误;任意侧面上两条对角线相等的平行六面体是直平行六面体,④错误.故命题正确的个数是1.答案:A2.在四棱锥的四个侧面中,直角三角形最多可有()A.1个B.2个C.3个D.4个解析:如图所示,在长方体ABCD-A1B1C1D1中,取四棱锥A1-ABCD,则此四棱锥的四个侧面都是直角三角形.答案:D要点训练二空间几何体的表面积与体积1.空间几何体表面积的求法(1)以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量.(2)多面体的表面积是各个面的面积之和;组合体的表面积问题注意衔接部分的处理.(3)旋转体的表面积问题,应注意其侧面展开图的应用.2.空间几何体体积问题的常见类型及解题策略(1)若所给定的几何体问题是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解.(2)若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等进行求解.(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,再根据条件求解.1.已知一个六棱锥的体积为2√3 ,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为12.解析:由题意可知,该六棱锥是正六棱锥.设该六棱锥的高为h ,则13×6×√34×22×h =2√3,解得h =1.由题意,得底面正六边形的中心到其边的距离为√3,所以侧面等腰三角形底边上的高为√(√3)2+1=2,所以该六棱锥的侧面积为6×12×2×2=12. 2.如图所示,三棱锥O -ABC 为长方体的一角,其中OA ,OB ,OC 两两垂直,三个侧面OAB ,OAC ,OBC 的面积分别为1.5 cm 2,1 cm 2,3 cm 2,求三棱锥O -ABC 的体积.解:设OA ,OB ,OC 的长依次为x cm,y cm,z cm,由已知可得12xy =1.5,12xz =1,12yz =3,解得x =1,y =3,z =2. 将三棱锥O -ABC 看成以C 为顶点,以OAB 为底面,易知OC 为三棱锥C -OAB 的高.故V 三棱锥O -ABC =V C -OAB =13S △OAB ·OC =13×1.5×2=1(cm 3). 3.如图所示,已知三棱柱ABC -A'B'C',侧面B'BCC'的面积是S ,点A'到侧面B'BCC'的距离是a ,求三棱柱ABC -A'B'C'的体积.解:连接A'B ,A'C ,如图所示,这样就把三棱柱ABC -A'B'C'分割成了两个棱锥,即三棱锥A'-ABC 和四棱锥A'-BCC'B'.设所求体积为V ,显然三棱锥A'-ABC 的体积是13V. 而四棱锥A'-BCC'B'的体积为13Sa , 故有13V +13Sa =V ,所以V =12Sa. 要点训练三 与球有关的切、接问题与球相关问题的解题策略(1)作适当的截面(如轴截面等)时,对于球内接长方体、正方体,则截面一要过球心, 二要过长方体或正方体的两条体对角线,才有利于解题.(2)对于“内切”和“外接”等问题,首先要弄清几何体之间的相互关系,主要是指特殊的点、线、面之间的关系,然后把相关的元素放到这些关系中来解决.1.正四棱锥的顶点都在同一球面上,若该棱锥的高为6,底面边长为4,则该球的表面积为( )A.443πB.4849πC.814πD.16π 解析:如图所示,设PE 为正四棱锥P -ABCD 的高,则正四棱锥P -ABCD 的外接球的球心O 必在其高PE 所在的直线上,延长PE 交球面于一点F ,连接AE ,AF.由球的性质可知△PAF 为直角三角形,且AE ⊥PF.因为该棱锥的高为6,底面边长为4,所以AE =2√2,PE =6,所以侧棱长PA =√PE 2+AE 2=√62+(2√2)2=√44=2√. 设球的半径为R ,则PF =2R. 由△PAE ∽△PFA ,得PA 2=PF ·PE ,即44=2R ×6,解得R =113,所以S =4πR 2=4π×(113)2=484π9.答案:B2.一个球与一个正三棱柱的三个侧面和两个底面都相切,如果这个球的体积是323π,那么这个正三棱柱的体积是( ) A.96√3 B.16√3 C.24√3 D.48√3解析:由球的体积公式可求得球的半径R =2. 设球的外切正三棱柱的底面边长为a ,高即侧棱长,为h ,则h =2R =4. 在底面正三角形中,由正三棱柱的内切球特征,得a 2×√33=R =2,解得a =4√3. 故这个正三棱柱的体积V =12×√32×(4√3)2×4=48√3.答案:D要点训练四 空间中的平行关系1.平行问题的转化关系2.直线与平面平行的主要判定方法(1)定义法;(2)判定定理;(3)面与面平行的性质.3.平面与平面平行的主要判定方法(1)定义法;(2)判定定理;(3)推论;(4)a ⊥α,a ⊥β⇒α∥β.1.如图所示,三棱柱ABC -A'B'C'中,M ,N 分别为BB',A'C'的中点.求证:MN ∥平面ABC'.证明:取B'C'的中点P ,连接MP ,NP (图略),则MP ∥BC',NP ∥A'B'. 因为A'B'∥AB ,所以NP ∥AB.因为AB ⊂平面ABC',NP ⊄平面ABC',所以NP ∥平面ABC'.同理MP∥平面ABC'.因为NP∩MP=P,所以平面MNP∥平面ABC'.因为MN⊂平面MNP,所以MN∥平面ABC'.2.两个全等的正方形ABCD和ABEF所在平面相交于AB, M∈AC,N∈FB,且AM=FN,过点M作MH⊥AB于点H.求证:平面MNH∥平面BCE.证明:因为正方形ABCD中,MH⊥AB,BC⊥AB,所以MH∥BC.因为BF=AC,AM=FN,所以FNBF =AM AC.因为MH∥BC,所以AMAC =AH AB,所以FNBF =AH AB,所以NH∥AF∥BE.因为MH⊂平面MNH,NH⊂平面MNH,MH∩NH=H, BC⊂平面BCE,BE⊂平面BCE,BC∩BE=B,所以平面MNH∥平面BCE.要点训练五空间中的垂直关系1.空间中垂直关系的相互转化2.判定线线垂直的方法(1)平面几何中证明线线垂直的方法.(2)线面垂直的性质:a⊥α,b⊂α⇒a⊥b;a⊥α,b∥α⇒a⊥b.3.判定线面垂直的常用方法(1)利用线面垂直的判定定理.(2)利用“两平行线中的一条与平面垂直,则另一条也与这个平面垂直”.(3)利用“一条直线垂直于两平行平面中的一个,则与另一个平面也垂直”.(4)利用面面垂直的性质.4.判定面面垂直的方法(1)利用定义:两个垂直平面相交,所成的二面角是直二面角.(2)判定定理:a⊂α,a⊥β⇒α⊥β.1.如图所示,Rt△AOC可以通过Rt△AOB以直角边AO所在直线为轴旋转得到,且二面角B-AO-C是直二面角,D是AB上任意一点.求证:平面COD⊥平面AOB.证明:由题意,得CO⊥AO,BO⊥AO,所以∠BOC是二面角B-AO-C 的平面角.因为二面角B-AO-C是直二面角,所以∠BOC=90°,所以CO⊥BO.因为AO∩BO=O,所以CO⊥平面AOB.因为CO⊂平面COD,所以平面COD⊥平面AOB.2.如图所示,在四棱锥P-ABCD中,PA⊥平面ABCD,AB=BC=2, AD=CD=√7,PA=√3,∠ABC=120°,G为线段PC上的点,O为AC,BD交点.(1)证明:BD⊥平面APC;(2)若G满足PC⊥平面BGD,求PG的值.GC(1)证明:由AB=BC,AD=CD,得BD垂直平分线段AC.所以O为AC的中点,BD⊥AC.因为PA⊥平面ABCD,BD⊂平面ABCD,所以PA⊥BD.因为AC∩PA=A,AC⊂平面APC,PA⊂平面APC,所以BD⊥平面APC.(2)解:连接OG,如图所示.因为PC⊥平面BGD,OG⊂平面BGD,所以PC⊥OG.在△ABC中,由余弦定理,得AC=√22+22-2×2×2×cos120°=2√3.在Rt△PAC中,得PC=√AC2+PA2=√12+3=√所以由△GOC∽△APC可得GC=AC·OCPC =2√155.从而PG=3√155,所以PGGC=32.要点训练六空间角的求解方法1.找异面直线所成角的三种方法(1)利用图中已有的平行线平移.(2)利用特殊点(线段的端点或中点)作平行线平移.(3)补形平移.2.线面角求斜线与平面所成的角关键是找到斜线在平面内的射影,即确定过斜线上一点向平面所作垂线的垂足.通常是解由斜线段、垂线段、斜线在平面内的射影所组成的直角三角形.3.求二面角的两种常用方法(1)定义法:在二面角的棱上找一个特殊点,在两个半平面内分别过该点作垂直于棱的射线.(2)垂面法:过棱上一点作棱的垂直平面,该平面与二面角的两个半平面产生交线,这两条交线所成的角,即为二面角的平面角.1.如图所示,在三棱锥P-ABC中,PA⊥平面ABC,∠BAC=90°, AB≠AC,D,E分别是BC,AB的中点,AC>AD,设PC与DE所成的角为α,PD与平面ABC所成的角为β,二面角P-BC-A的平面角为γ,则α,β,γ的大小关系是α<β<γ.解析:因为D,E分别是BC,AB的中点,所以DE∥AC,所以PC与DE所成的角为∠PCA,即α.因为PA⊥平面ABC,所以PD与平面ABC所成的角为∠PDA,即β.如图所示,过点A作AH⊥BC,垂足为H,连接PH,易证BC⊥平面PAH,所以∠PHA是二面角P-BC-A的平面角,即γ.因为AB≠AC,所以AD>AH.因为AC >AD,所以AC >AD >AH,所以PAAC <PAAD<PAAH,所以tan α<tan β<tan γ,所以α<β<γ.2.如图所示,AB是☉O的一条直径,PA垂直于☉O所在的平面,C 是圆周上不同于A, B的一动点.(1)证明:△P BC是直角三角形;(2)若PA=AB=2,且当直线PC与平面ABC所成角的正切值为√2时,求直线AB与平面PBC所成角的正弦值.(1)证明:因为AB是☉O的一条直径, C是圆周上不同于A,B的一动点,所以BC⊥AC.因为PA⊥平面ABC,所以BC⊥PA.因为PA∩AC=A,PA⊂平面PAC,AC⊂平面PAC,所以BC⊥平面PAC,所以BC⊥PC,所以△BPC是直角三角形.(2)解:如图所示,过点A作AH⊥PC于点H,连接BH.因为BC⊥平面PAC,所以BC⊥AH.因为PC∩BC=C,PC⊂平面PBC,BC⊂平面PBC,所以AH⊥平面PBC,所以∠ABH是直线AB与平面PBC所成的角.因为PA⊥平面ABC,所以∠PCA即是PC与平面ABC所成的角.因为tan∠PCA=PAAC=√2,PA=2, 所以AC=√2.在Rt△PAC中,AH=√PA2+AC2=23√3,在Rt△ABH中,sin∠ABH=23√32=√33,即AB与平面PBC所成角的正弦值为√33.要点训练七转化思想转化思想是指在解决数学问题时,一个数学对象在一定条件下转化为另一种数学对象的思想.它包括从未知到已知的转化,从一般到特殊的转化等,折叠问题中体现了转化思想.解决折叠问题的关键在于认真分析折叠前后元素的位置变化情况,看看哪些元素的位置变了,哪些元素的位置没有变,基本思路是利用“不变求变”,一般步骤如下:(1)平面→空间:根据平面图形折出满足条件的空间图形,想象出空间图形,完成平面图形与空间图形在认识上的转化.(2)空间→平面:为解决空间图形问题,要回到平面上来,重点分析元素的变与不变.1.如图所示,四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°.若将△ADB沿BD折起,使平面ABD⊥平面BCD,构成三棱锥A-BCD,则在三棱锥A-BCD中,下列结论正确的是()A.平面ABD⊥平面ABCB.平面ADC⊥平面BDCC.平面ABC⊥平面BDCD.平面ADC⊥平面ABC解析:因为在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°, ∠BAD=90°,所以BD⊥CD.因为平面ABD⊥平面BCD,且平面ABD∩平面BCD=BD,所以CD⊥平面ABD,所以CD⊥AB.因为AD⊥AB,AD∩CD=D,AD⊂平面ADC,CD⊂平面ADC,故AB⊥平面ADC.因为AB⊂平面ABC,所以平面ABC⊥平面ADC.答案:D2.如图所示,在矩形ABCD中,AB=2,BC=1,E为DC的中点,F为线段EC(端点除外)上一动点.现将△AFD沿AF折起,使平面ABD⊥平面ABC.在平面ABD内过点D作DK⊥AB,垂足为K.设AK=t,则t的取值范围是(1,1).2→解析:如图所示,过点K作KM⊥AF于M点,连接DM,易得DM⊥AF,与折前的图形对比,可知在折前的图形中D,M,K三点共线,且DK⊥AF, 于是△DAK∽△FDA,所以AKAD =ADDF.所以t1=1DF.所以t=1DF.因为DF∈(1,2),所以t∈( 12,1).3.如图①所示,在等腰梯形CDEF中,DE=CD=√2,EF=2+√2,将它沿着两条高AD,CB折叠成四棱锥E-ABCD(E,F两点重合),如图②所示.①②(1)求证:BE⊥DE;(2)设M为线段AB的中点,试在线段CE上确定一点N,使得MN∥平面DAE.(1)证明:因为AD⊥EF,所以AD⊥AE,AD⊥AB.因为AB∩AE=A,AB⊂平面ABE,AE⊂平面ABE,所以AD⊥平面ABE,所以AD⊥BE.由题图①和题中所给条件知,AE=BE=1,AB=CD=√2,所以AE2+BE2=AB2,即AE⊥BE.因为AE∩AD=A,AE⊂平面ADE,AD⊂平面ADE,所以BE⊥平面ADE,所以BE⊥DE.(2)解:如图所示,取EC的中点G,BE的中点P,连接PM,PG,MG, 则MP∥AE,GP∥CB∥DA,所以MP∥平面DAE,GP∥平面DAE.因为MP∩GP=P,所以平面MPG∥平面DAE.因为MG⊂平面MPG,所以MG∥平面DAE,即存在点N与G重合满足条件,使得MN∥平面DAE.。

高考立体几何专题复习公开课获奖课件

高考立体几何专题复习公开课获奖课件
(7)假如一种平面与另一种平面垂线平行, 则这两个平面互相垂直
第20页
面面垂直鉴定
假如一种平面通过另一种平面一条 垂线,则这两个平面互相垂直
推论:假如一种平面与另一种平面垂线 平行,则这两个平面互相垂直
第21页
面面垂直性质
假如两个平面垂直,则在一种平面内垂直 于它们交线直线垂直于另一种平面
推论:假如两个相交平面都与另一种平面 垂直,则这两个平面交线 l 垂直于另一种 平面
(3)推论:
假如一种平面内两条相交直线与另一种平面两条 相交直线分别平行,那么这两个平面平行。
第10页
(4)运用线面垂直:
假如两个平面分别垂直于同一条直线,那么这两 个平面平行。
(5)运用面面平行:
假如两个平面都平行于第三个平面,那么这两个 平面平行。
(6)运用距离:
假如一种平面上所有点到另一种平面距离相等, 那么这两个平面平行。
α
a
直线与平 面所成角
βA Pm
αB
二面角
00<θ≤900
00≤ θ≤900
00≤θ ≤1800
空间角计算环节:一作、二证、三算
第34页
空间中角解法小结
1、异面直线所成角措施 (1)平移法(2)补形法
2、直线与平面所成角措施
关键:抓垂足、斜足,找斜线在平面内射影。
3、二面角
找二面角棱,进而找棱两条垂线
第6页
(4)运用垂直
假如一条直线和一种平面分别与另一种平面垂 直,且直线不在这个平面内,则这条直线和这 个平面平行。
(5)运用平行 假如一条直线与两个平行平面中一种平 行且不在另一种平面内,则这条直线与 另一种平面平行。
(6)运用距离

人教高中数学必修二A版《基本立体图形》立体几何初步说课教学课件复习(棱柱、棱锥、棱台的结构特征)

人教高中数学必修二A版《基本立体图形》立体几何初步说课教学课件复习(棱柱、棱锥、棱台的结构特征)

BC,EF,A1D1.
必修第二册·人教数学A版
返回导航 上页 下页
1.紧扣棱柱的结构特征进行有关概念辨析 课件
课件
课件
课件
课件
课件
课件
个 人 简 历 : 课件 /jianli/
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
课件
空间几何体
[教材提炼]
预习教材,思考问题
(1)观察纸箱、金字塔、茶叶盒、水晶石等有什么相同的特点?
[提示] 围成它们的每个面都是平面图形,并且都是平面多边形.
(2)观察纸杯、奶粉罐、腰鼓、篮球等几何体有什么相同的特点?
[提示] 围成它们的面不全是平面图形,有些面是曲面.
返回导航
5.侧棱垂直于底面的棱柱叫做直棱柱.
侧棱不垂直于底面的棱柱叫做斜棱柱.
底面是正多边形的直棱柱叫做正棱柱.
课件
课件
课件
课件
课件
课件
课件
个 人 简 历 : 课件 /jianli/
课件
课件
底面是平行四边形的四棱柱叫做平行六面体. 手抄报:课件/shouchaobao/
课件 课件
课件 课件
课件 课件
号).
课件
课件
课件
课件
课件
课件
课件
个 人 简 历 : 课件 /jianli/
课件
课件
手 抄 报 : 课 件/shouchaobao/ 课 件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
解析:结合棱柱、棱锥和棱台的定义可知①③④是棱柱,⑥是棱锥,⑤是棱台. 答案:①③④ ⑥ ⑤

《立体几何中的垂直关系》 复习课的教学设计与反思

《立体几何中的垂直关系》 复习课的教学设计与反思
⇒l⊥α
问题2:线线垂直、线面垂直、面面垂直之间有什么联系?又是通过什么进行联系的?
设计意图:准确地把直线、平面垂直的定义、定理用文字语言、图形语言和符号语言表达出来,通过对它们的分析找到相互之间的联系,构建出垂直关系的知识网络。
师生活动:
1. 让学生把四个定理用文字语言、图形语言、符号语言表示出来,通过学生板书或投影进行批改;
证明:(1)CD⊥AE;(2)PD⊥平面ABE.
证明 (1)在四棱锥P—ABCD中,∵PA⊥底面ABCD,CD⊂平面ABCD,
∴PA⊥CD.∵AC⊥CD,PA∩AC=A,
∴CD⊥平面PAC.而AE⊂平面PAC,∴CD⊥AE.
(2)由PA=AB=BC,∠ABC=60°,可得AC=PA.
∵E是PC的中点,∴AE⊥PC.由(1),知AE⊥CD,且PC∩CD=C,
2、教学手段:利用多媒体和导学案,导学案把大容量的信息提前呈现给学生,让学生提前思考,培养学生自学能力;多媒体演示使空间图形更加直观;利用黑板适当的板书弥补导学案在即时信息,反馈和信息的储存方面的不足。
3、学法指导:根据高三学生已具备了一定分析问题、解决问题的能力和积极参与意识,自主探索意识,由本节课的内容特点及学生已有的知识、能力、情感等因素定为问题探究式学法。
2. 提问:线线垂直、线面垂直、面面垂直之间有什么联系?引导学生分析相互之间的关系,让学生体验构建知识网络的过程。
(二)典例解析
例1.证明线面垂直判定定理即:如果一条直线和一个平面内的
两条相交直线都垂直,那么该直线与此平面垂直.
已知:直线 , ,求证:l⊥ .
证明:设c是平面α内任意一条直线,则只需证l⊥c,
《立体几何中的垂直关系》
复习课的教学设计与反思

2025年高考数学一轮复习课件第七章立体几何-7.5空间向量与立体几何-第1课时空间向量及基本应用

2025年高考数学一轮复习课件第七章立体几何-7.5空间向量与立体几何-第1课时空间向量及基本应用

, = 1 − + 或 = + ,这里 + = 1.对空间四点,,
,,可通过证明下列结论成立来证明四点共面:① = + ;②对空间
任一点, = + + ;③对空间任一点, = + + ,
条件是存在唯一的有序实数对 , ,使 =_________
空间向量基本定理
不共面,
如果三个向量,,__________那么对任意一个空间向量,
, ,
存在唯一的有序实数组________,使得
= + +
返回至目录
2.空间向量及其运算的坐标表示
(1)空间向量运算的坐标表示.
位置关系
向量表示
直线1,2的方向向量分别为
1//2
1//2 ⇒ 1 = 2
1,2
1 ⊥ 2
1 ⊥ 2 ⇔ 1 ⋅ 2 = 0
直线的方向向量为,平面 的
//
⊥ ⇔ ⋅ = 0
法向量为

// ⇔ =
//
// ⇔ =
1
4
1
4
1
2
1
4
1
4
1
2
1
+
4
1− 2来自A. + −
B. − −
1
C.−
4
3
D.−
4

1

4
+
1

2
)
解:由已知,得1 = 1 = , = = , = = ,
=
+
1
1
2
+

高中数学总复习考点知识讲解课件13立体几何

高中数学总复习考点知识讲解课件13立体几何

【解析】 (1)证明:过点B1作平面AOB的垂线,垂足为C,如图,则C是OB 的中点,所以BC=1.
π 又∠OBB1= 3 ,所以BB1=2. 连接OB1,因为BB1=OB=2, 所以△OBB1为等边三角形. 因为点M为BB1的中点,所以BB1⊥OM. 因为平面AA1O1O⊥平面BB1O1O,平面AA1O1O∩平面BB1O1O=OO1,且 AO⊥OO1,AO⊂平面AA1O1O,
命题规律: (1)直线和平面平行、垂直的判定与性质. (2)空间角及空间向量的应用. (3)立体几何题通常分两问,第一问,线、面关系的证明,第二问,跟角有 关,考查线面角或二面角.在第二问中,一定要注意是求角的大小,还是求角 的某个三角函数值!
押题一 线面角
(2021·长沙市一中模拟(一))如图,七面体ABCDEF的底 面是凸四边形ABCD,其中AB=AD=2,∠BAD=120°,AC,BD 垂直相交于点O,OC=2OA,棱AE,CF均垂直于底面ABCD.
= 7
7 7.
所以直线GH与平面PBC所成角的正弦值为
7 7.
方法三:(1)同方法二. (2)设CD=2,在BD上取点I,使BI=3ID,连接HI,GI,CE,如图,则 GI∥CD,
根据题意CD⊥BD,CD⊥PD,BD∩PD=D, 所以CD⊥平面PBD,则GI⊥平面PBD,
所以GI⊥HI,
GH= HI2+GI2=
(2)由(1)知BF⊥EF,C1F⊥EF. ∴∠C1FB即为二面角C1-EF-B的平面角.
π ∴∠C1FB= 3 .过点F作平面AEFB的垂线,建立空间直角坐标系
如图所示.
由BF=EF=2AE=4,可得E(4,0,0),C1(0,2,2 B(0,4,0),A(4,2,0).

第8章 立体几何初步(复习课件)高一数学(人教A版2019必修第二册)


81 C. 4 π
D.16π
(1)如图,设 PE 为正四棱锥 P-ABCD 的高,则正四棱锥 P-ABCD 的 外接球的球心 O 必在其高 PE 所在的直线上,延长 PE 交球面于一点 F,连接 AE,AF.
由球的性质可知△PAF为直角三角形且AE⊥PF,
又底面边长为4, 所以AE=2 2 , PE=6, 所以侧棱长PA=
3
在Rt△CDE中,
故二面角B-AP-C的正切值为2.
tanCED CD 2 3 2, DE 3
归纳总结
(1)求异面直线所成的角常用平移转化法(转化为相交直线的 夹角). (2)求直线与平面所成的角常用射影转化法(即作垂线、找射影). (3)二面角的平面角的作法常有三种:①定义法;②三垂线法; ③垂面法.
的表面积为 16π,则 O 到平面 ABC 的距离为
A. 3
3 B.2
√C.1
3 D. 2
解析 如图所示,过球心O作OO1⊥平面ABC, 则O1为等边三角形ABC的外心. 设△ABC的边长为a, 则 43a2=943,解得 a=3, ∴O1A=23× 23×3= 3. 设球O的半径为r,则由4πr2=16π,得r=2,即OA=2. 在 Rt△OO1A 中,OO1= OA2-O1A2=1,
五、直线、平面平行的判定与性质
1.直线与平面平行
(1)判定定理:平面外一条直线与这个平面内的一条直线平行, 则该直线与此平面平行(线线平行⇒线面平行).
(2)性质定理:一条直线与一个平面平行,则过这条直线的任 一平面与此平面的交线与该直线平行(简记为“线面平行⇒线 线平行”).
2.平面与平面平行
则直线 PB 与 AD1 所成的角为( )
A.
2

2023版高考数学一轮总复习第六章立体几何第一讲空间几何体的结构特征和直观图课件


以用“斜”(两坐标轴成45°或135°)和“二测”(平行于y
轴的线段长度减半,平行于 x 轴和 z 轴的线段长度不变)来
掌握.
(2)按照斜二测画法得到的平面图形的直观图,其面积
与原图形的面积的关系:S
= 直观图
2 4S
原图形.
【变式训练】
一个水平放置的图形的斜二测直观图是一个底角为
45°,腰和上底均为 22的等腰梯形,那么原平面图形的面积
由斜二测画法可知,A′B′=AB=a,O′C′=21OC
= 43a,在图 6-1-6 中作 C′D′⊥A′B′于 D′,则 C′D′
= 22O′C′= 86a.所以 S△A′B′C′=21A′B′·C′D′=
12·a·86a= 166a2.
答案:D
【题后反思】
(1)画几何体的直观图一般采用斜二测画法,其规则可
3.(教材改编题)如图 6-1-1,长方体 ABCD-A′B′C′D′
被截去一部分,其中 EH∥A′D′.剩下的几何体是(
)
A.棱台 C.五棱柱 答案:C
图 6-1-1 B.四棱柱 D.六棱柱
题组三 真题展现
4.(2021 年新高考Ⅰ)已知圆锥的底面半径为 2,其侧 面展开图为一个半圆,则该圆锥的母线长为( )
A.2
B.2 2
C.4
D.4 2
答案:B
5.(2020 年全国Ⅰ)如图 6-1-2,在三棱锥 P-ABC 的平面 展开图中,AC=1,AB=AD= 3 ,AB⊥AC,AB⊥AD, ∠CAE=30°,则 cos∠FCB=________.
答案:-14
图 6-1-2
考点一 空间几何体的结构特征
[例 1] (1)给出下列命题:

2025届高考数学一轮复习教案:立体几何-空间点、直线、平面之间的位置关系

第二节空间点、直线、平面之间的位置关系课程标准1.借助长方体,在直观认识空间点、直线、平面的位置关系的基础上,抽象出空间点、直线、平面的位置关系的定义,了解四个基本事实和一个定理.2.能运用基本事实、定理和已获得的结论证明空间基本图形位置关系的简单命题.考情分析考点考法:以空间几何体为载体,考查基本事实及其结论在判断位置关系、交线问题、求角中的应用.求异面直线所成的角是高考的热点,在各个题型中均有所体现.核心素养:直观想象、数学运算、逻辑推理.【必备知识·逐点夯实】【知识梳理·归纳】1.四个基本事实基本事实1:过不在一条直线上的三个点,有且只有一个平面.符号:A,B,C三点不共线⇒存在唯一的α使A,B,C∈α.基本事实2:如果一条直线上的两个点在一个平面内,那么这条直线在这个平面内.符号:A∈l,B∈l,且A∈α,B∈α⇒l⊂α.基本事实3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.符号:P∈α,且P∈β⇒α∩β=l,且P∈l.基本事实4:平行于同一条直线的两条直线平行.符号:a∥b,b∥c⇒a∥c.2.基本事实的三个推论推论1:经过一条直线和这条直线外一点,有且只有一个平面.推论2:经过两条相交直线,有且只有一个平面.推论3:经过两条平行直线,有且只有一个平面.3.空间点、直线、平面之间的位置关系项目直线与直线直线与平面平面与平面平行关系图形语言符号语言a ∥b a ∥αα∥β相交关系图形语言符号语言a ∩b =A a ∩α=A α∩β=l 其他关系图形语言-符号语言a ,b 是异面直线a ⊂α-【微点拨】(1)直线在平面外分直线与平面平行和直线与平面相交两种情况.(2)两条直线没有公共点分直线与直线平行和直线与直线异面两种情况.4.等角定理如果空间中两个角的两条边分别对应平行,那么这两个角相等或互补.5.异面直线所成的角(1)定义:已知两条异面直线a,b,经过空间任意一点O分别作直线a'∥a,b'∥b,把a'与b'所成的角叫做异面直线a与b所成的角(或夹角).(2)范围:,【基础小题·自测】类型辨析改编易错高考题号14231.(多维辨析)(多选题)下列结论错误的是()A.如果两个平面有三个公共点,则这两个平面重合B.经过两条相交直线,有且只有一个平面C.两两相交的三条直线共面D.若a,b是两条直线,α,β是两个平面,且a⊂α,b⊂β,则a,b是异面直线【解析】选ACD.A中的两个平面可能相交;B正确;C中的三条直线相交于一点时可能不共面;D中的两条直线可能是平行直线.2.(易错题)若直线l不平行于平面α,且l⊄α,则()A.α内的所有直线与l异面B.α内不存在与l平行的直线C.α内存在唯一的直线与l平行D.α内的直线与l都相交【解析】选B.由题意知,直线l与平面α相交,则直线l与平面α内的直线只有相交和异面两种位置关系,因而只有选项B是正确的.3.(多选题)(2022·新高考Ⅰ卷)已知正方体ABCD-A1B1C1D1,则()A.直线BC1与DA1所成的角为90°B.直线BC1与CA1所成的角为90°C.直线BC1与平面BB1D1D所成的角为45°D.直线BC1与平面ABCD所成的角为45°【解析】选ABD.如图,连接AD1,在正方形A1ADD1中,AD1⊥DA1,因为AD1∥BC1,所以BC1⊥DA1,所以直线BC1与DA1所成的角为90°,故A正确.在正方体ABCD-A1B1C1D1中,CD⊥平面BCC1B1,又BC1⊂平面BCC1B1,所以CD⊥BC1,连接B1C,则B1C⊥BC1,因为CD∩B1C=C,CD,B1C⊂平面DCB1A1,所以BC1⊥平面DCB1A1,又CA1⊂平面DCB1A1,所以BC1⊥CA1,所以直线BC1与CA1所成的角为90°,故B正确.连接A1C1,交B1D1于点O,则易得OC1⊥平面BB1D1D,连接OB,因为OB⊂平面BB1D1D,所以OC1⊥OB,∠OBC1为直线BC1与平面BB1D1D所成的角.设正方体的棱长为a,则易得BC1=2a,OC1=22,所以在Rt△BOC1中,OC1=12BC1,所以∠OBC1=30°,故C错误.因为C1C⊥平面ABCD,所以∠CBC1为直线BC1与平面ABCD所成的角,易得∠CBC1=45°,故D正确.4.(必修二P134例1变形式)如图,在三棱锥A-BCD中,E,F,G,H分别是棱AB,BC,CD,DA的中点,则(1)当AC,BD满足条件________时,四边形EFGH为菱形;(2)当AC,BD满足条件________时,四边形EFGH为正方形.【解析】(1)因为四边形EFGH为菱形,所以EF=EH,因为EF=12AC,EH=12BD,所以AC=BD.(2)因为四边形EFGH为正方形,所以EF=EH且EF⊥EH.因为EF∥AC,EH∥BD,且EF=12AC,EH=12BD,所以AC=BD且AC⊥BD.答案:(1)AC=BD(2)AC=BD且AC⊥BD【核心考点·分类突破】考点一空间位置关系的判断[例1](1)(多选题)下列选项正确的是()A.两两相交且不过同一点的三条直线必在同一平面内B.过空间中任意三点有且仅有一个平面C.若空间两条直线不相交,则这两条直线平行D.若直线l⊂平面α,直线m⊥平面α,则m⊥l【解析】选AD.对于选项A,可设l1与l2相交,这两条直线确定的平面为α;若l3与l1相交于B,则交点B在平面α内,同理,l3与l2的交点A也在平面α内,所以AB⊂α,即l3⊂α,选项A正确.对于选项B,若三点共线,则过这三个点的平面有无数个,选项B错误.对于选项C,空间中两条直线可能相交、平行或异面,选项C错误.对于选项D,若直线m⊥平面α,则m垂直于平面α内所有直线.因为直线l⊂平面α,所以直线m⊥直线l,选项D正确.(2)如图,G,N,M,H分别是正三棱柱(两底面为正三角形的直棱柱)的顶点或所在棱的中点,则表示直线GH与MN是异面直线的图形有________.(填序号)【解析】题图①中,直线GH∥MN;题图②中,G,H,N三点共面,但M∉平面GHN,因此直线GH与MN异面;题图③中,连接MG,则GM∥HN,因此GH与MN共面;题图④中,G,M,N共面,但H∉平面GMN,因此GH与MN异面,所以题图②④中GH 与MN异面.答案:②④【解题技法】1.点、线共面的判断方法(1)纳入平面法:要证明“点共面”或“线共面”,可先由部分点或直线确定一个平面,再证其余点或直线也在这个平面内.(2)辅助平面法:先证明有关的点、线确定平面α,再证明其余元素确定平面β,最后证明平面α,β重合.(3)证明四点共面常通过证明四点组成的四边形为平行四边形或梯形来解决. 2.两直线位置关系的判断【微提醒】平面外一点与平面内一点的连线与平面内不经过该点的直线是异面直线.【对点训练】1.已知异面直线a,b分别在平面α,β内,且α∩β=c,那么直线c一定()A.与a,b都相交B.只能与a,b中的一条相交C.至少与a,b中的一条相交D.与a,b都平行【解析】选C.由题意易知,c与a,b都可相交,也可只与其中一条相交,故A,B均错误;若c与a,b都不相交,则c与a,b都平行,根据基本事实4,知a∥b,与a,b为异面直线矛盾,D错误.2.设a,b,c是空间中的三条直线,下面给出四个命题:①若a∥b,b∥c,则a∥c;②若a⊥b,b⊥c,则a∥c;③若a与b相交,b与c相交,则a与c相交;④若a⊂平面α,b⊂平面β,则a,b一定是异面直线.上述命题中错误的是__________(写出所有错误命题的序号).【解析】由基本事实4知①正确;当a⊥b,b⊥c时,a与c可以相交、平行或异面,故②错误;当a与b相交,b与c相交时,a与c可以相交、平行,也可以异面,故③错误;a⊂α,b⊂β,并不能说明a与b不同在任何一个平面内,故④错误.答案:②③④考点二基本事实及其应用[例2]如图,在长方体ABCD-A1B1C1D1中,E,F分别是B1C1和C1D1的中点.求证:(1)E,F,D,B四点共面;(2)BE,DF,CC1三线共点.【证明】(1)如图,连接EF,BD,B1D1,因为EF是△B1C1D1的中位线,所以EF∥B1D1,因为BB1与DD1平行且相等,所以四边形BDD1B1是平行四边形,所以BD∥B1D1,所以EF∥BD,所以E,F,D,B四点共面;(2)因为EF∥BD,且EF≠BD,所以直线BE和DF相交,延长BE,DF,设它们相交于点P,因为P∈直线BE,直线BE⊂平面BB1C1C,所以P∈平面BB1C1C,因为P∈直线DF,直线DF⊂平面CDD1C1,所以P∈平面CDD1C1,因为平面BB1C1C∩平面CDD1C1=CC1,所以P∈CC1,所以BE,DF,CC1三线共点.【解题技法】1.证明空间点共线问题的方法(1)一般转化为证明这些点是某两个平面的公共点,再根据基本事实3证明这些点都在这两个平面的交线上.(2)选择其中两点确定一条直线,然后证明其余点也在该直线上.2.共面、共点问题(1)先确定一个平面,然后再证其余的线(或点)在这个平面内;(2)利用确定平面的定理,如由点构造平行直线、构造相交直线等.【对点训练】1.如图,α∩β=l,A,B∈α,C∈β,且A,B,C∉l,直线AB∩l=M,过A,B,C三点的平面记作γ,则γ与β的交线必经过()A.点AB.点BC.点C但不过点MD.点C和点M【解析】选D.因为AB⊂γ,M∈AB,所以M∈γ.又α∩β=l,M∈l,所以M∈β.根据基本事实3可知,M在γ与β的交线上.同理可知,点C也在γ与β的交线上.所以γ与β的交线必经过点C和点M.2.已知空间四边形ABCD(如图所示),E,F分别是AB,AD的中点,G,H分别是BC,CD 上的点,且CG=13BC,CH=13DC.求证:(1)E,F,G,H四点共面;(2)三直线FH,EG,AC共点.【证明】(1)连接EF,GH,因为E,F分别是AB,AD的中点,所以EF∥BD.又因为CG=13BC,CH=13DC,所以GH∥BD,所以EF∥GH,所以E,F,G,H四点共面.(2)易知FH与直线AC不平行,但共面,所以设FH∩AC=M,所以M∈平面EFHG,M∈平面ABC.又因为平面EFHG∩平面ABC=EG,所以M∈EG,所以FH,EG,AC共点.考点三异面直线所成的角[例3](1)如图所示,圆柱O1O2的底面半径为1,高为2,AB是一条母线,BD是圆O1的直径,C是上底面圆周上一点,∠CBD=30°,则异面直线AC与BD所成角的余弦值为()A.33535B.43535C.3714D.277【解析】选C.连接AO2,设AO2的延长线交下底面圆周上的点为E,连接CE,易知∠CAE(或其补角)即为异面直线AC与BD所成的角,连接CD(图略),在Rt△BCD 中,∠BCD=90°,BD=2,∠CBD=30°,得BC=3,CD=1.又AB=DE=AE=BD=2,AC=B2+B2=7,CE=B2+B2=5,所以在△CAE中,cos∠CAE=B2+B2-B22B·B==3714,即异面直线AC与BD所成角的余弦值为3714.(2)(2023·武汉模拟)在直三棱柱ABC-A1B1C1中,AB⊥BC,AB=BC=AA1,D,E分别为AC,BC的中点,则异面直线C1D与B1E所成角的余弦值为()A .33B .55C .1010D .3010【解析】选D .设AB =2,取A 1B 1的中点F ,连接C 1F ,DF ,DE ,则B 1F =12A 1B 1,因为D ,E 分别为AC ,BC 的中点,所以DE ∥AB ,DE =12AB ,因为A 1B 1∥AB ,A 1B 1=AB ,所以DE ∥B 1F ,B 1F =DE ,所以四边形DEB 1F 为平行四边形,所以DF ∥B 1E ,所以∠C 1DF 为异面直线C 1D 与B 1E 所成的角或补角.因为AB ⊥BC ,AB =BC =AA 1=2,D ,E 分别为AC ,BC 的中点,所以DF =B 1E =12+22=5,C 1F =12+22=5,C 1D =(2)2+22=6,所以cos ∠C 1DF =121D ==3010.【解题技法】求异面直线所成角的方法(1)求异面直线所成角的常用方法是平移法.平移的方法一般有三种类型:利用图中已有的平行线平移;利用特殊点(线段的端点或中点)作平行线平移;补形平移.(2)求异面直线所成角的三步:一作、二证、三求.①一作:根据定义作平行线,作出异面直线所成的角;②二证:证明作出的角是异面直线所成的角;③三求:解三角形,求出所作的角.如果求出的角是锐角或直角,则它就是要求的角;如果求出的角是钝角,则它的补角才是要求的角.【对点训练】1.在正方体ABCD-A1B1C1D1中,P为B1D1的中点,则直线PB与AD1所成的角为()A.π2B.π3C.π4D.π6【解析】选D.如图,连接A1C1,BC1,因为AD1∥BC1,所以∠PBC1为直线PB与AD1所成的角.设正方体的棱长为2,则PB=6,PC1=2,BC1=22,则PB2+P12=B12,在Rt△PBC1中,因为sin∠PBC1=B1B1=2=12,所以直线PB与AD1所成的角为π6.2.如图,在圆锥SO中,AB,CD为底面圆的两条直径,AB∩CD=O,且AB⊥CD, SO=OB=3,SE=14SB,则异面直线SC与OE所成角的正切值为()A .222B .53C .1316D .113【解析】选D .如图,过点S 作SF ∥OE ,交AB 于点F ,连接CF ,则∠CSF (或其补角)为异面直线SC 与OE 所成的角.因为SE =14SB ,所以SE =13BE.又OB =3,所以OF =13OB =1.因为SO ⊥OC ,SO =OC =3,所以SC =32.因为SO ⊥OF ,所以SF =B 2+D 2=10.因为OC ⊥OF ,所以CF =10.所以在等腰△SCF 中,tan ∠CSF =113.即异面直线SC 与OE 所成角的正切值为113.【加练备选】平面α过正方体ABCD-A 1B 1C 1D 1的顶点A ,α∥平面CB 1D 1,α∩平面ABCD =m ,α∩平面ABB 1A 1=n ,则m ,n 所成角的正弦值为()A .32B .22C .33D .13【解析】选A .如图所示,过点A 补作一个与正方体ABCD-A 1B 1C 1D 1相同棱长的正方体,易知平面α为平面AF 1E ,则m ,n 所成的角为∠EAF 1.因为△AF 1E 为正三角形,所以sin ∠EAF 1=sin 60°=32.。

《立体几何复习》课件

3 推理和归纳
善于运用逻辑推理和归纳总结的方法解决问题。
总结和要点
立体几何概念
立体几何是研究空间图形的分 支学科。
• 常见的图形 • 基本性质 • 公式和公理
应用和技巧
如何应用立体几何解决实际问 题。
• 观察问题 • 建立模型 • 应用公式和性质
练习和考试
如何练习和应对立体几何考试。
• 多做练习题 • 理解题目要求 • 推理和归纳
《立体几何复习》PPT课 件
立体几何是研究空间图形的形状、大小、位置及其性质的一个分支学科。通 过这个PPT课件,我们将全面复习立体几何的各个方面,并提供解决问题的方 法和考试技巧。
立体几何概述
1 什么是立体几何?
立体几何研究的是空间中的三维图形,包括球体、立方体、圆锥体等。
2 为什么要学习立体几何?
应用立体几何解决实际问题的方法
1
观察问题
仔细观察问题,理解所给信息和要求。
2
建立模型
根据问题建立合适的几何图形模型。
3
应用公式和性质
利用已知的公式和性质进行计算和推理。
立体几何的练习和考试技巧
1 多做练习题
通过做大量练习题来提高解题能力和应用能力。
2 理解题目要求
仔细阅读题目,理解题目所要求解决的问题。
立体几何不仅有实际应用,还有助于培养我们的空间思维能力和逻辑推理能பைடு நூலகம்。
3 立体几何的重要性
立体几何在建筑、工程、艺术等领域都有广泛的应用。
常见的立体几何图形
立方体
立方体具有六个面、八个顶点和 十二条边。
圆柱体
圆柱体由两个平行的圆形底面和 一个侧面组成。
金字塔
金字塔有一个多边形底面和三角 形的侧面。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、求两条异面直线所成的角的基本方法:
通过平移将其转化为两条相交直线(即作出平面角)
3、主要有以下几种平移的方法:
(1)直接平移法(利用图中已有的平行线);
1 (2)中位线平移法;
2 (3)补形平移法:延长某线段、延展某个面 或补一个与已知几何体相同的几何体, 4 以便找出平行线).
直线和平面所成的角
0011 0010 1010 1101 0001 0100 1011
在七种距离中,求点到平面的距离是重点
怎样求点到平面的距离? (1)直接法,即直接由点作垂线,求垂线段的长
1 (2)转移法,转化成求另一点到该平面的距离
42 (3)体积法,主要是在三棱锥中应用
知识回顾:
四、七种空间几何体表面积和体积的计算:
柱体(四棱柱为主)、锥体(三棱锥、四棱锥为主)
观察下列模型,回忆并梳理我们在这些模型背景下都根据怎样
41 2 的条件,证明过哪些结论?常用的辅助线又是怎样构造的呢?
知识回顾:
五、两类常见题型中的几何题模型
0011 0010 1010 1101 0001 0100 1011
1、和平行相关的问题:
A
P
P
B
D
C
D
C
A
1 D1
A1
B
C1 B1
D A
2 D
4 A
C B
C B
知识回顾:
五、两类常见题型中的几何题模型
0011 0010 1010 1101 0001 0100 1011
2、和垂直相关的问题
P
P
P
B
A
D C
B A
D1 A1
D A
C
C1 B1
C B
421D
A
C B
立体几何复习4课1 2 0011 0010 1010 1101 0001 0100 1011
知识回顾:
一、立体几何证明中常用的公理、定理、推论:
0 0 1 1【0 0设1 0问1 0】1 0在1 1你0 1梳0 0理0 1的0 1常0 0用1 0的1 1公理、定理和推论中
1、哪些能证明线线平行? 哪些能证明面面平行? 哪些能证明线面平行?
(1)两点之间的距离
(2)点到直线的距离.
(3)点到平面的距离
(4)两条平行线间的距离.
1 (5)两条异面直线间的距离.
2 (6)平面的平行直线与平面之间的距离
4 (7)两个平行平面之间的距离.
七种距离:
0011 0010 1010 1101 0001 0100 1011
412
知识回顾:
三、七种距离:
0011 0010 1010 1101 0001 0100 1011
梳理棱柱、棱锥、棱台、圆柱、圆锥、圆台、球 这7种几何体表面积和体积的计算公式。
注意将立体图形应用侧面展开图和旋转体轴截面
412 转化成平面问题解决!
知识回顾:
五、两类常见题型中的几何题模型
0011 0010 1010 1101 0001 0100 1011
412
线线平行的证明
0011
0(0110)1aa01////0bc11
01 0001 0100
b // c
1011
// (3) m m // n
n
a //
(2) a
a
//
l
l
1 (4)a
42 b
a
//
b
线面平行的证明
0011 0010 10a1/0/ b1101 0001 0100 1011
1、直线和平面所成的角的范围是[0°,90°]
0011 0010 1010 1101 0001 0100 1011
⑴若直线和平面平行或在平面内,则直线和平面所成的角是0; ⑵若直线和平面垂直,那么就说直线和平面所成的角是900; ⑶斜线和平面所成的角的范围是(0°,90°)
2、求斜线和平面所成角的方法:
41 2 关键是作垂线,找射影.构造一个直角三角形
二面角
0011 0011、0 二101面0 1角10大1 0小00范1 0围10是0 1[0101,180] 2、求二面角的方法: 根据定义,找到二面角的平面角
41 2 即在两个半平面内分别找二面角棱的垂线
知识回顾:
三、七种距离:
0011 0010梳10理10我11们01在00本01章01中00 学10习11 到的以下七种距离,想一想: 图怎样画?距离分别怎样用立体几何的方法求?
(1)
a
a
//
(2)
b
a
//
a
//
面面平行的证明
a //
(1)
b //
a b
P
//
a
b
412 (2)
a a
//
知识回顾:
一、立体几何证明中常用的公理、定理、推论:
0 0 1 1【0 0设1 0问1 0】1 0在1 1你0 1梳0 0理0 1的0 1常0 0用1 0的1 1公理、定理和推论中
两条异面直线所成的角 直线和平面所成的角 二面角
1、这几种角的定义分别是什么? 2、这几种角的范围是什么?
41 2 3、这几种角的大小如何确定?(即在空间图形中怎样找角?)
两条异面直线所成的角
1、两条异面直线所成角的范围是 (0,90]
0011 0010 1010 1101 0001 0100 1011
b
2
(4)
a
l
l
a
4a
面面垂直的证明
0011 0010 1010 1101 0001 0100 1011
(1)二面角 l 是Βιβλιοθήκη 二面角 (2)a a
412
知识回顾:
二、空间中的三种角:
0 0 1 1根0 0据1 0下1 0列1 0问1 1题0 1,0 0梳0 1理0 1我0 0们1 0在1 1本章中学习到的空间中的三种角:
2、哪些能证明线线垂直? 哪些能证明线面垂直? 哪些能证明面面垂直?
412
线线垂直的证明
a // b
(1)
0011 0010
1l01 0a11
l b
01 0001 0100
1011
(2)
la
a
l
a
线面垂直的证明
la
(1)
l a
b b
P
l
a
b
a
(3)
//
a
1 (2)
a a
// b
相关文档
最新文档